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Abstract

Conventional multi-label classification algorithms treat
the target labels of the classification task as mere sym-
bols that are void of an inherent semantics. However, in
many cases textual descriptions of these labels are avail-
able or can be easily constructed from public document
sources such as Wikipedia. In this paper, we investigate
an approach for embedding documents and labels into a
joint space while sharing word representations between
documents and labels. For finding such embeddings, we
rely on the text of documents as well as descriptions for
the labels. The use of such label descriptions not only
lets us expect an increased performance on conventional
multi-label text classification tasks, but can also be used
to make predictions for labels that have not been seen
during the training phase. The potential of our method
is demonstrated on the multi-label classification task of
assigning keywords from the Medical Subject Headings
(MeSH) to publications in biomedical research, both in
a conventional and in a zero-shot learning setting.

1 Introduction

Classification is a classical task in machine learning whose
goal is to assign class labels to instances based on in-
stances’ properties. This can be seen as a learning pro-
cess to identify common properties in instances and to ag-
gregate instances, which are characterized by similar prop-
erties, in the same class. That is, classes represent com-
monality among instances in an abstract level. Thus, we
evaluate how well the classifiers generalize to unseen in-
stances. In a similar sense, evaluation can also be extended
to the performance of the classifiers on unseen labels. For
the latter, however, classification algorithms cannot work
well if they exploit association patterns only between in-
stances and labels given in the training set. This is because,
in classification problems, a label is often represented by
one of a fixed number of discrete values. In other words,
there is no way to know how unseen labels are related to
seen labels. This sort of problem is often referred to as
“zero-shot learning” (ZSL) where a subset of labels is as-
sociated with none of training examples, but only appears
among the target labels at test time (Farhadi et al. 2009;
Palatucci et al. 2009). Hence, the main question in ZSL is
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how we can define more meaningful labels in order to im-
prove performance of classifiers even on unseen labels.

Recently, several approaches have been proposed to ad-
dress ZSL problems by making use of additional informa-
tion such as attributes of labels (Lampert, Nickisch, and
Harmeling 2014) and their textual information such as the
labels’ name (Frome et al. 2013; Socher et al. 2013;
Akata et al. 2015). Such information allows for classifiers
to make reasonable predictions on unseen instances associ-
ated with unseen labels, without losing generalization per-
formance. As an example, assume that we are given a clas-
sifier trained on a collection of documents about “dogs” and
“cats.” What if documents about “wolves” and “lions” ar-
rive at test time? Given the fixed label set, i.e., “dogs” and
“cats,” the classifier may predict the label of documents
about wolves as “dogs” because it is likely that the docu-
ments about “wolves” shares more terms with ones about
dogs than cats. Similarly, the documents about lions will be
predicted as “cats.” Let us consider a slightly different sce-
nario that “wolves” and “lions” are also used as labels to
be predicted at test time even though we did not train the
classifier for such labels. Defining A ≺ B which means
A comes before B in a ranked list, we want the classifier
to yield the following ranked lists of labels for the docu-
ments about wolves: “dogs” ≺ “cats” ≺ “wolves” ≺ “lions,”
“dogs” ≺ “wolves” ≺ “cats” ≺ “lions,” or, ideally, “wolves”
≺ “dogs” ≺ “cats” ≺ “lions” based on the fact that “dogs”
and “wolves” belong to the same family, and under the as-
sumption that the classifier also knows such fact learned
from external resources. In other words, for the documents
about wolves it is reasonable that “wolves” always precedes
“lions” in label ranking based on the relationship between
“dogs” and “wolves.”

One way that allows classifiers to learn relationships be-
tween labels and to exploit the information for making pre-
dictions for unseen labels has been introduced in (Frome
et al. 2013). This approach first represents words as d-
dimensional vectors. These word embeddings are learned
from large textual corpora such as Wikipedia whose vocab-
ulary includes textual descriptions for labels such as “dogs”
and “cats”. In turn, representations of words corresponding
to label names are used instead when labels need to be con-
sidered. As the embedding space has the interesting property
that words used in similar contexts have similar representa-
tions, one is able to make reasonable predictions for unseen
labels even when no prior information on them is available.
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Although it sheds light on an interesting direction of ZSL,
it is still problematic when we consider this method on prob-
lems where textual information of labels is quite complex to
be converted into words by looking up in the dictionary. To
circumvent this problem, one can make the assumption that
each label has its own description in textual format. Then,
such descriptions can be represented by tf-idf as in (Elho-
seiny, Saleh, and Elgammal 2013). For example, “dog” in
Wikipedia is described as follows:

The domestic dog (Canis lupus familiaris or Canis fa-
miliaris) is a domesticated canid which has been selec-
tively bred for millennia for various behaviors, sensory
capabilities, and physical attributes. . . .

Furthermore, it is worth noting that learning word represen-
tations is independent of the training data in (Frome et al.
2013). If instances are also in textual format, we may fur-
ther exploit word embeddings by finding a joint space of all
available information such as word sequence patterns in both
instances and label descriptions, and association patterns be-
tween instances and labels.

Hence, in this paper, we aim at learning document, la-
bel, and word representations from such textual informa-
tion where labels descriptions and documents share the same
word vocabulary, as well as association patterns between
documents and labels. This joint learning scheme allows us
to infer representations for unseen labels and to obtain bet-
ter classification systems in terms of generalization perfor-
mance on both unseen instances and labels.

2 Problem Statement

In the following we will define a set of notations which will
be used throughout this work. Assume that we are given a
vocabulary of V words W = {1, 2, · · · , V }, a set of L labels
Cs = {1, 2, · · · , L}, and a set of N training examples D =

{(T (n)
x ,Y(n))Nn=1} where T (n)

x = {w(x)
1 , w

(x)
2 , · · · , w(x)

Mn
}

denotes a sequence of Mn words w ∈ W , and Y(n) =
{y1, y2, · · · , yQn

} a set of Qn relevant labels y ∈ Cs for
the n-th training example. Each label yl ∈ Cs has its own
description T (l)

y = {w(y)
1 , w

(y)
2 , · · · , w(y)

Ml
} consisting of

Ml words. Let X = {x1,x2, · · · ,xN} ∈ R
k×N , Y =

{y1,y2, · · · ,yL} ∈ R
k×L and U = {u1,u2, · · · ,uV } ∈

R
k×V be document, label, and word representations, respec-

tively. For example, x1 corresponds to the k-dimensional
vector for the document indexed 1 in D, i.e., T (1)

x .
In this work, we examine our hypothesis on a multi-label

text classification dataset where |Y(n)| ≥ 1 for all n. Given
multiple labels per document, our task is to learn a rank-
ing function which yields higher similarity scores between a
document and its relevant labels than ones between a doc-
ument and irrelevant labels. More formally, the objective
is to learn a ranking function f : (x,y) → R such that
f
(
x,yyp

)
> f (x,yyn

) where yp ∈ Y and yn ∈ Y .
At test time we have a set of unseen labels Cu = {L +

1, L + 2, · · · , L + Lu} and each unseen label y∗l ∈ Cu also
has its description T (l)

y∗ .

3 Method

In this section, we describe how to learn representations of
both documents and labels jointly from their textual descrip-
tion in a way that a document and its relevant labels yield
higher similarity scores in the joint embedding space.

3.1 Documents and Labels as Word Sequences

As for documents, i.e., instances represented by sequences
of words, we can also deal with labels as instances of word
sequences, provided they have textual descriptions. Based
on the assumption that a representation of such an instance
should contain global information on its description, one can
learn fixed-size vector representations for documents and la-
bels while learning a local predictor of a word given its con-
text in the textual description (Le and Mikolov 2014).

Given the training document set KX = {T (n)
x |1 ≤ n ≤

N}, firstly, we show how to learn representations for a doc-
ument and individual words, respectively. For convenience,
we will drop n from both T (n)

x and xn when it is not confus-
ing. Note that the document representation x is a set of learn-
able parameters as well as the word representations. The ob-
jective function is to maximize the probability of predicting
a word at position t in Tx given its c− 1 surrounding words
and the document representation x:

p(wt|w−t,x) =
exp(u′T

wt
ûwt)∑V

v=1 exp(u
′T
v ûwt)

(1)

where u′
wt

is the ck-dimensional vector for an out-
put word wt, and ûwt

denotes the context rep-
resentation of the output word, which is a con-
catenation of representations for the context words
w−t = {wt−(c−1)/2, · · · , wt−1, wt+1, · · · , wt+(c−1)/2}
and the document representation x defined as

ûwt
=

[
x,uwt−(c−1)/2

, · · · ,uwt+(c−1)/2

]
∈ R

ck. (2)

Here, ûwt
can be interpreted as a combination of global (i.e.,

x) and local (i.e.,
[
uwt−(c−1)/2

, · · · ,uwt+(c−1)/2

]
) context

information of a word wt in Tx. Instead of using the softmax
in Eq. 1 directly, we use its approximation, namely negative
sampling (Mikolov et al. 2013):

log p (wt|w−t,x)

≈ log σ(u′T
wt
ûwt) +

κ∑
i=1

EPn(w)

[
log σ(u′T

wi
ûwt)

] (3)

where σ(x) is the sigmoid function, κ is the number of neg-
ative samples, and Pn(w) is the unigram distribution raised
to the power of 3/4.

Then, we optimize both X and U in a way of maximizing
the average log probability over all words in documents KX

as follows

LX (ΘX ;KX)

=

N∑
n=1

1

|T (n)
x |

|T (n)
x |∑
t=1

− log p(wt,n|w−t,n,xn)
(4)
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where ΘX = {X,U,U′}. Similarly, one can learn Y for
the label descriptions KY = {T (l)

y |1 ≤ l ≤ L} and U:

LY (ΘY ;KY ) =
L∑

l=1

1

|T (l)
y |

|T (l)
y |∑

t=1

− log p(wt,l|w−t,l,yl)

(5)
where ΘY = {Y,U,U′}.

3.2 Joint Embeddings

So far we have discussed how to learn document, label and
word representations jointly from textual description of doc-
uments and labels. Once we learn the document representa-
tions X and the label representations Y, they are assumed
to be global representations for their textual description. In
that case, modeling the relationship between documents and
labels is disregarded. However, since our goal in multi-label
classification tasks is to make relevant labels distinguishable
from irrelevant labels for a given instance, we learn a rank-
ing function to place relevant labels at the top of a ranking
of labels by similarity scores w.r.t. a given instance.

Defining the k×k matrix W, the bilinear function f(x,y)
is written as

f(x,y) = xTWy. (6)

By using the bilinear function f(x,y), we can compute the
rank of yp ∈ Y with respect to x as sum of the number of
incorrectly ranked pairs as follows

Ψ(x, yp) =
∑
yn∈Y

I
[
f
(
x,yyp

)
≤ f (x,yyn)

]
(7)

where I [·] takes 1 if its argument is true otherwise 0. The
overall loss is, then, the sum of the average rank of relevant
labels for a document representation over the training set:

Lr (ΘJ ;D) =

N∑
n=1

1

|Y(n)|
∑

yp∈Y(n)

Ψ(x, up) (8)

where ΘJ = {X,Y,W}.
As it is difficult to optimize the loss function in Eq. 8 di-

rectly, one can consider instead the Weighted Approximate
Rank Pairwise (WARP) loss (Weston, Bengio, and Usunier
2011), which uses an approximation of Eq. 7 given by

Ψ∗ (x, yp) =
∑

yv∈Vyp

w(yp)
[
m− f(x,yyp

) + f(x,yyv
)
]
+

(9)
where w(yp) is a weight of the positive label yp, [x]+ outputs
x if x > 0 otherwise 0, m ∈ R denotes a margin, and Vyp

is
the set of labels defined by

Vyp
= {yn| (m+ f(x,yyn

)) ≥ f(x,yyp
), ∀yn ∈ Y}.

(10)
For a weight w(yp), a truncated harmonic function can be
used as follows

w(yp) =

r(yp)∑
i=1

1

i
(11)

Algorithm 1: Training AiTextML

input : D = {(T (n)
x ,Y(n))Nn=1},

KY = {T (l)
y |1 ≤ l ≤ L}

output: Θ = {U,U′,X,Y,W}
1 do
2 for n = 1 to N do
3 V∗ ← ∅ // violation labels set

4 foreach yp ∈ Y(n) do
5 S ← 0
6 pos ← f(xn,yyp

)
7 do
8 S ← S + 1
9 pick yn from {1, · · · , L} at random

10 neg ← f(xn,yyn)
11 if m+ neg ≥ pos then
12 V∗ ← V∗ ∪ yn
13 update ΘJ using Eq. 13
14 break

15 while m+ neg ≤ pos and S < L− |Y|
16 foreach wt ∈ |T (n)

x | do
17 update ΘX using Eq. 4

18 foreach l ∈ {Y(n) ∪ V∗} do

19 foreach wt ∈ |T (l)
y | do

20 update ΘY using Eq. 5

21 while until termination conditions are met

where r(yp) =
∑

yv∈Vyp
I
[
m+ f(x,yyv ) ≥ f(x,yyp)

]
is

the rank of yp. Due to computational cost of Eq. 11, which
allows us to optimize precision at the rank of yp (Usunier,
Buffoni, and Gallinari 2009), it is further approximated by

w(yp) ≈
⌊L− |Y|

S

⌋
(12)

where S is the number of samples drawn uniformly from
Y until a label yv ∈ Vyp

is sampled. By substituting the
ranking loss in Eq. 8 by Eq. 9, we obtain the WARP loss:

Lw (ΘJ ;D) =

N∑
n=1

1

|Y(n)|
∑

yp∈Y(n)

Ψ∗(x, yp). (13)

3.3 Putting It All Together

Our goal is to learn representations for documents, labels,
and words, which are all in textual format, jointly to improve
the generalization performance of our proposed method to
unseen labels as well as to seen ones on multi-label text clas-
sification datasets. We call this method All-in Text Multi-
label Learner (AiTextML). The goal is achieved by combin-
ing the losses regarding document and label representations
from word sequences in Eqs. 4 and 5, and the WARP loss,
i.e., Eq. 13. Thus, the objective is

L (Θ;D,KY ) = αLw + βLX + γLY

s.t. α+ β + γ = 1
(14)

1950



Table 1: Statistics of the BioASQ dataset

# training examples (N) 6,692,815
# validation examples (Nv) 100,000
# test examples (Nt) 4,912,719
# words (V ) 528,156
# seen labels (L) 23,669
# unseen labels (Lu) 2,435
Avg. # of relevant seen labels
per training example 10.83

# test examples that have unseen labels 432,703
Avg. ratio of relevant unseen labels
in the test set 10.31%

where Θ = {U,U′,X,Y,W} denotes the set of parame-
ters which are randomly initialized, and the control parame-
ters α, β, γ determine the impact of the WARP loss Lw and
the representation learning losses LX and LY to the total
loss L. We use stochastic gradient descent (SGD) with a
fixed learning rate η for all time steps τ to update the pa-
rameters Θ given a training example indexed n at a time:

Θτ+1 := Θτ − η
∂L(Θτ ; T (n)

X ,Y(n),KY )

∂Θτ
. (15)

The pseudo-code of our proposed method is shown in Alg. 1.

3.4 Inference on Unseen Documents and Labels

As shown in the previous sections, our proposed method
needs document and label representations to be estimated
as parameters from word sequences. The same holds for un-
seen data points at test time. Consider that we are given a
test set D∗ = {(T (n)

x∗ ,Y∗(n))}Nt
n=1, and that some of labels

do not appear in the training set such that y∗(·) ∈ {L+1, L+

2, · · · , L + Lu} where Lu is the number of unseen labels.
To make predictions on unseen documents w.r.t. unseen la-
bels as well, we initialize X∗ = {x∗

1,x
∗
2, · · · ,x∗

Nt
} and

Y∗ = {y∗
1,y

∗
2, · · · ,y∗

Lu
} randomly for unseen documents

and labels, respectively. In turn, we define only X∗ and Y∗

as trainable parameters for the AiTextML model on the test
set D∗ while all the other parameters {U,U′,X,Y,W}
are kept fixed. At inference time, we use the same control
parameters α, β and number of parameter updates used in
the training phase. To prevent learning X∗ and Y∗ from
document-label association patterns in D∗, we set γ to 0.

Note that as unseen document representations x∗ and un-
seen label representations y∗ are independent of each other,
we can easily parallelize this inference stage.

4 Experimental Setup

4.1 Dataset

We use the BioASQ Task 3a dataset, a collection of scien-
tific publications in biomedical research, to examine our pro-
posed method.1 It contains about 12 million publications,

1http://www.bioasq.org/participate/data

each of which is associated with around 11 descriptors on
average out of 27,455, which come from the Medical Sub-
ject Headings (MeSH) hierarchy.2 We removed 1003 de-
scriptors from the MeSH hierarchy because they do not have
textual descriptions as well as 348 descriptors not appearing
in the BioASQ Task 3a dataset. We split the dataset by year
so that the training set includes all papers by 2004 and the
rest of papers published between 2005 and 2015 belongs to
the test set. Thus, descriptors introduced to the MeSH hierar-
chy after 2004 can be considered as unseen labels. 100,000
papers before 2005 were randomly sampled and set aside as
the validation set for tuning hyperparameters. Since we split
the dataset by year, 2,435 labels in the test set do not appear
in the training set. About 10% of test examples contain such
unseen labels in their target label set. The ratio of unseen
labels in the target label set of the test data is 10.31%.

We applied minimal preprocessing to documents and la-
bel descriptions; tokenization and replacement of numbers
and rare words to special tokens, e.g., NUM and UNK. The
word vocabulary was built according to the word frequency
in the training documents, for which words occurring more
than 10 times were chosen. The statistics on the dataset used
are summarized in Table 1.

4.2 Baseline

Since no work has been reported yet in this line of re-
search to our best knowledge, we compare AiTextML with
the same model using fixed γ = 0 in Eq. 14. That is,
our baseline also optimizes the WARP loss. However, our
baseline considers learning representation of documents and
words simultaneously, whereas Wsabie in (Weston, Bengio,
and Usunier 2011) uses fixed feature representations for in-
stances. Hence, our baseline is also able to learn feature
representations and can be seen as an extension of Wsabie.
Unlike conventional multi-label learning algorithms, Wsa-
bie scales well on large-scale datasets in terms of both the
number of training examples and labels, and performs com-
parably even in standard benchmark datasets for multi-label
text classification (Nam et al. 2015).

4.3 Evaluation Measures

We report the performance of our proposed method us-
ing three measures: rank loss, average precision and one-
error (Schapire and Singer 2000). The rank loss measures
the quality of label ranking given by

RL (x,Y) =
1

|Y||Y|
∑

(yp,yn)

∈Y×Y

I
[
f(x,yyp

) ≤ f(x,yyn
)
]

(16)
which has the same form except for the normalization fac-
tor |Y| with the ranking function in Eq. 7. We can compute
average precision at the position of relevant labels:

AvgPr(x,Y) =
1

|Y|
∑

(yp,yt)
∈Y×Y

I
[
f(x,yyp

) ≥ f(x,yyt
)
]

Ψ(x, yp) + 1
.

(17)
2https://www.nlm.nih.gov/mesh/introduction.html
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Figure 1: Effect of learning from label descriptions in terms
of rank loss on the BioASQ dataset w.r.t. the seen labels.
The rank loss was estimated on randomly sampled 10,000
training examples and on a fixed subset of 10,000 test ex-
amples every 60 mins in the course of training, indicated by
markers.

The one-error loss accounts for the accuracy of a label
ranked at the top defined as

OneErr(x,Y) = 1− I

[
arg max
i∈{1···L}

f(x,yi) ∈ Y

]
. (18)

In addition to the commonly used measures in multi-label
classification, we evaluate the performance of models per
label given ranked lists of labels. Let us define a set of doc-
ument indices which are associated with label size of s as
As, and ϕ(y) as the size of a label y. For example, if a la-
bel y appears only in a single training document, ϕ(y) = 1.
Label-based average rank (AvgRank) with respect to label
size s is given by:

AvgRank(s) =
1

Zsn

∑
n∈As

∑
yp∈Y(n)

[Ψ(xn, yp) + 1]ϕ(yp)=s

(19)
where Zsn = |As|

∑
yp∈Y(n) I [ϕ(yp) = s] and [x]ϕ(yp)=s

outputs x if ϕ(yp) = s is true otherwise 0.

5 Experiments
We used the validation set to set our hyperparameters as fol-
lows: the number of negative samples κ = 5, the dimen-
sionality of all representations 100, the size of the context
window c = 5, learning rate η = 0.025, margin m = 0.1,
and the control variables α = 1/3, β = 1/3, γ = 1/3. For
the baseline, different control parameters α = 1/3, β =
2/3, γ = 0 were used, but the rest of the hyperparameters
were same with our proposed method. Unless we specify
otherwise, the hyperparameter settings are used throughout
all experiments. In order to prevent overfitting, we impose
constraints on norm of document, label and word vectors
such that ‖ui‖2 ≤ 1, i ∈ {1, · · · , V }, ‖xd‖2 ≤ 1, d ∈
{1, · · · , N}, and ‖yl‖2 ≤ 1, l ∈ {1, · · · , L}. We performed
all experiments on a machine with two Intel Xeon E5-2670
CPUs and 32GB of memory.

Figure 2: Label frequency distribution and relative improve-
ment over the baseline with respect to label size.

Table 2: Comparison of AiTextML to the baseline w.r.t.
seen labels. The AiTextML model was trained for the same
amount of time (24 hrs) as the baseline. The numbers in the
parentheses following the methods correspond to the control
parameters (α, β, γ) in Eq. 14.

RL AvgPr OneErr
Baseline

(
1
3 ,

2
3 , 0
)

0.05217 0.36645 0.41728

AiTextML
(
1
3 ,

1
3 ,

1
3

)
0.03544 0.32786 0.25992

5.1 Effect of Label Descriptions
We carried out experiments to compare the models which
learns purely from the association patterns and the other
which learn from label descriptions as well as the associa-
tion patterns. As can be seen in Fig. 1, learning from label
descriptions improves the generalization performance of our
method. Indeed, rank loss on the training set of the model
without learning from label descriptions is even lower than
that of the model trained on label descriptions. In contrast
to the baseline, AiTextML achieves better rank loss scores on
the test set. This shows that label descriptions help AiTextML
prevent from overfitting. Since AiTextML learns label repre-
sentations not only from the association patterns, but also
textual description of labels, it takes more time for a single
iteration indeed under the same hyperparameter settings.

Once having trained AiTextML and the baseline for 50
epochs, we evaluated two models on the full set of test ex-
amples. We observed that AiTextML outperforms substan-
tially the baseline in terms of rank loss and one-error, which
tells us learning from label descriptions plays an important
role for the improvements. However, AvgPr of our proposed
method rather decreases compared to the baseline. Note that
our objective measure in the optimization corresponds to
ranking. The results are shown in Table 2. It is often the
case that label frequency distribution in real world multi-
label text datasets follows a power law as shown in Fig. 2,
which means, informally, there are few frequent labels, but
many infrequent ones. This property makes it difficult for
classifiers to generalize well to unseen instances if they have
rare labels in their target labels since a classifiers tend to
overfit rare labels.

In order to take a closer look at the source of improve-
ments, we comapared both the baseline and our proposed
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Table 3: Nearest neighbors for given unseen labels in seen and unseen label representations.

Tundra Night Vision Hope

Seen
labels

Genetic Speciation Halorhodopsins Adult Children
Arcidae Fluorophotometry World War II

Secernentea Arthropod Compound Eye Healthy Volunteers
Biological Extinction Retinoscopes World War I

Wetlands Color Vision Health Status Disparities

Unseen
labels

Grassland Retinal Photoreceptor Cell Outer Segment Time-to-Treatment
Permafrost Mesopic Vision Anatomists

Click Chemistry Plant Photoreceptors Pragmatic Clinical Trials as Topic
Ponds Rod-Cone Interaction Secondary Care

Cambium Bleaching Agents Historically Controlled Study

method in terms of AvgRank. Fig. 2 shows that AiTextML
performs significantly better than the baseline for frequent
labels, whereas its performance on rare labels is worse than
the baseline. Our model learns more often from descriptions
of frequent labels in a way that their representations are ef-
fective in predicting a next word given its context and max-
imizing similarity scores to the documents that they belong
to as well. Due to the fact that AiTextML focuses more on
frequent labels, average ranks rare labels are rather ignored
which results in lower average precision.

5.2 Unseen Label Representations

We demonstrate the quality of unseen label representations
by listing nearest neighbors in both seen and unseen label
spaces to selected unseen labels, shown in Table 3. For ex-
ample, given a query “Tundra,” we have “Genetic Specia-
tion,” “Biological Extinction,” and “Wetlands” as similar la-
bels from the seen label set, which are somehow related to
environmental danger in the tundra. “Grassland” from the
unseen label set is another type of biomes which is often
used to contrast different characteristics of “Tundra.” “Per-
mafrost” and “Ponds” are also related labels to “Tundra”
when a paper discusses climate changes and their effects in
the tundra. Such relationships can be also found for the un-
seen label “Night Vision.”

In contrast, there is no clear relationship between the un-
seen query label “Hope” and both seen and unseen labels.
This is because such a label has a very short description
and unclear terms are used in the description. For example,
“Hope” is described as “Belief in a positive outcome.”

5.3 Zero-Shot Prediction

One of the promising aspects of our proposed method is
the capability of learning unseen label representations from
their descriptions. About 400,000 test examples have 1∼2
unseen labels in their target label sets on average as shown
in Table 1. Without using the inference step and the joint
space embedding, a reasonably straightforward solution to
obtain unseen label representations is averaging embeddings
of words which occur in textual description of labels includ-
ing their name. For label names, we applied the same pre-
processing pipeline used for the documents. For example, if
we have an unseen label “1918-1919 Influenza Pandemic,”

Table 4: Comparison of AiTextML, which represents unseen
labels by the inference step, to averaging of embeddings
for words in label names or descriptions on the zero-shot
task. For averaging words in the textual information, we use
the word embeddings from the baseline and the AiTextML
model.

RL AvgPr OneErr
Baseline avg (names) 0.50225 0.00317 0.99969
Baseline avg (desc.) 0.48812 0.00375 0.99946
AiTextML avg (names) 0.52335 0.00290 0.99979
AiTextML avg (desc.) 0.52890 0.00388 0.99941
AiTextML inf (desc.) 0.21622 0.02665 0.98608

it is replaced with “NUM-NUM influenza pandemic” and
then its representation is determined by the averaged rep-
resentations of three words “NUM-NUM,” “influenza,” and
“pandemic.” We use a special token “UNK” when a word
cannot be found in the vocabulary. Also, the norm of un-
seen label representations is scaled to 1. Instead of learning
such word embeddings independently of our task, we used
word embeddings of the baseline and AiTextML in Sec. 5.1.
Note that our baseline has the same architecture and number
of parameters for AiTextML, but does not learn from label
descriptions.

We compare the proposed method with four possible com-
binations of two word embeddings from the baseline and
AiTextML, and two textual information sources to be used
for representing unseen labels, i.e., names and descriptions.
As can be seen in Table 4, AiTextML, which infers unseen
label representations from textual descriptions, outperforms
the baseline models for estimating unseen label representa-
tions by averaging over representations for words appear-
ing in either label names or descriptions. Moreover, using
the averaged word embeddings from label descriptions does
not achieve relevant improvements over using only the la-
bel names. In other words, when we consider the word em-
beddings to obtain unseen label representations, using label
descriptions seems to be a better choice than label names.
However, the gain is not comparable to what our proposed
method achieves. This shows that the inference step for un-
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seen label representations in our proposed method plays an
important role for yielding more useful information than
given by the average of word embeddings in this task.

6 Discussion

We have presented a framework for learning document, la-
bel, and word representations jointly to leverage shared in-
formation available in textual format. This allows not only
to make better predictions w.r.t. seen labels, but also pro-
duces better representations for unseen labels in a zero-shot
learning setting. In particular, we could show that our meth-
ods outperforms a baseline approach which simply averages
representations of all words in either the label names or the
label descriptions.

Our objective in this work is to jointly learn document, la-
bel and word representations to exploit shared information,
and we demonstrated AiTextML only on textual data. How-
ever, we note that the label representation learning part can
be also applied to other domains such as object classification
in images under the ZSL setting instead of defining attributes
for unknown labels. A major limitation when considering
our proposed method in learning label representations is the
availability of label descriptions. If a dataset does not have
such label descriptions, one can make use of external knowl-
edge resources such as Wikipedia to construct the label de-
scription set. For example, the first sentence or paragraph in
Wikipedia articles contain very general terms for describing
facts of interest.

Finally, we would like to highlight the key differences be-
tween our proposed method and the approaches where label
names are used to obtain unseen label representations. The
principle of AiTextML is more general because we can eas-
ily and efficiently add representations for unseen labels to
the model by the inference step under the assumption that
label descriptions consist of general terms. If words in label
names are out of the vocabulary, we need to handle them
more carefully because label names are rather short in gen-
eral and such information loss occur frequently, which often
leads to inaccurate unseen label representations in the ZSL
task. Furthermore, whereas label representations by using
their names provide only a good starting point for label em-
beddings, the proposed method allows us to obtain improved
label rankings on test instances as well by learning all rep-
resentations jointly in conjunction with label descriptions in
the whole training process.
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