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Abstract

Learning with limited labeled data is always a challenge in
AI problems, and one of promising ways is transferring well-
established source domain knowledge to the target domain,
i.e., domain adaptation. In this paper, we extend the deep
representation learning to domain adaptation scenario, and
propose a novel deep model called “Deep Adaptive Exem-
plar AutoEncoder (DAE2)”. Different from conventional de-
noising autoencoders using corrupted inputs, we assign se-
mantics to the input-output pairs of the autoencoders, which
allow us to gradually extract discriminant features layer by
layer. To this end, first, we build a spectral bisection tree to
generate source-target data compositions as the training pairs
fed to autoencoders. Second, a low-rank coding regularizer
is imposed to ensure the transferability of the learned hid-
den layer. Finally, a supervised layer is added on top to trans-
form learned representations into discriminant features. The
problem above can be solved iteratively in an EM fashion of
learning. Extensive experiments on domain adaptation tasks
including object, handwritten digits, and text data classifica-
tions demonstrate the effectiveness of the proposed method.

Introduction

Learning with limited labels has drawn considerable atten-
tion in particular with the availability of large amount of
training data from different sources. There are a group meth-
ods proposed recently that reuse relevant datasets (source)
as the auxiliary for effective model learning on the current
dataset (target), i.e., transfer learning (Pan and Yang 2010).
Most existing transfer learning methods manage to deal with
different domains but identical task, i.e., domain adaptation,
where the domain shift between the current data (target) and
auxiliary data (source) is mitigated.

As to domain adaptation, there are three lines that at-
tract substantial research attention recently: (1) feature space
adaptation (Pan et al. 2011; Gong et al. 2012; Long et al.
2014c), (2) classifier adaptation (Bruzzone and Marconcini
2010; Bahadori, Liu, and Zhang 2011; Duan, Xu, and Tsang
2012; Ni, Qiu, and Chellappa 2013), (3) deep feature adap-
tation (Glorot, Bordes, and Bengio 2011; Mesnil et al. 2012;
Chen et al. 2012; Donahue et al. 2014). While feature space
adaptation attempts to find common subspace or smooth
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transitions to mitigate domain discrepancy, classifier adap-
tation builds transferable classifiers for the target data. Dif-
ferent from them, deep feature adaptation is more flexible
due to the adaptable building block. In addition, deep struc-
ture is able to abstract domain invariant descriptors through
layers related semantics. Nonetheless, few works in this line
have been done so far for unsupervised domain adaptation,
where target labels are totally missing.

In this paper, following the line of “deep feature adapta-
tion”, we propose a novel framework called “Deep Adaptive
Exemplar AutoEncoder” (DAE2), as illustrated in Figure 1.
Our model can exploit the semantics, and explicitly couple
source and target data in the deep strucutre, which, however,
are ignored by the exisiting methods (Glorot, Bordes, and
Bengio 2011; Chen et al. 2012). First, we partition source
and target data by a spectral bisection tree, and use source-
target pairs within the same partition to train linear/non-
linear autoencoders (AE). On bottom layers, source-target
pairs within larger partitions reflect the underlying data dis-
tribution, while on top layers, such pairs within smaller par-
titions represent the class information. Second, as we only
have limited source-target pairs for training, we propose to
marginalize over the perturbed terms by minimizing the em-
pirical expectation of loss function in addition to a low-rank
coding regularizer which ensures the source and target data
are tightly coupled. Then a supervised layer is added on top
to generate the cross-domain discriminative features. Exten-
sive experiments on vision, and text datasets demonstrate
that the proposed Deep Adaptive Exemplar Autoencoder is
able to extract domain invariant features that reduce the di-
vergence between two relevant yet different domains.

Related Work

Adapting feature space methods usually align two domains
by seeking for a shared subspace. In (Gong et al. 2012),
a geodesic flow kernel is implemented to learn the tran-
sitions from source to target domains. Therefore, features
projected to the intermediate subspaces are able to repre-
sent both source and target data well. Recently, regulariz-
ers such as low-rank constraint (Shao, Kit, and Fu 2014)
and Maximum Mean Discrepancy (MMD) (Pan et al. 2011;
Baktashmotlagh et al. 2013; Long et al. 2014c) have been
applied on transfer learning to guide the subspace or kernel
learning. However, the shallow structure adopted by above
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Figure 1: Framework of the proposed method. On the left, the whole dataset is partitioned into a hierarchical structure by a
spectral bisection tree. For example, source and target data X

(1)
s , X(1)

t in the first layer are partitioned into four new small
sets: X(2,1)

s , X(2,1)
t , X(2,2)

s , X(2,2)
t . The source-target compositions in each layer are used to train a deep adaptive exemplar

autoencoder structure on the right, where we obtain L unsupervised layers, and a supervised layer by class-wise MMD criterion
and labeled source data X1, X2, ...Xc on top.

methods can not explore the semantics well.
A popular strategy to share classifiers is multi-task learn-

ing (Argyriou, Evgeniou, and Pontil 2007). Recently, SVM
has been broadly discussed on domain adaptation problems
regarded with images recognition or video analysis (Bruz-
zone and Marconcini 2010; Bahadori, Liu, and Zhang 2011;
Duan, Xu, and Tsang 2012; Xiao and Guo 2012). In fact,
feature space and classifier can be jointly adapted under
a single framework (Argyriou, Evgeniou, and Pontil 2007;
Long et al. 2014a). However, their shallow structure hardly
exploits the semantics, and the requirement of target labels
makes it inappropriate for unsupervised domain adaptation.

Deep representation learning can disentangle different ex-
planatory factors of variation (Bengio, Courville, and Vin-
cent 2013), and has been applied for domain adaptation re-
cently (Glorot, Bordes, and Bengio 2011; Chen et al. 2012;
Mesnil et al. 2012). However, these methods mix the source
and target data and treat them without difference during
the model training. Therefore, a large amount of training
data may be needed to learn a generic model for both do-
mains. Recently, CNN network “Caffe” attracts substan-
tial research attention for its appealing performance (Don-
ahue et al. 2014); however, its success heavily relies on the
tremendous labeled data. Thus, it is more appropriate for vi-
sual feature extraction rather than a transfer learning. An-
other related work is deep multi-view learning (Wang et
al. 2015) which maximizes the correlation between differ-
ent data views. Recently, a deep multi-task learning frame-
work has been proposed in (Yosinski et al. 2014). However,
its requirement for target labels does not fit the unsuper-
vised domain adaptation. Most recently, deep low-rank cod-
ing (DLRC) is proposed to boost the low-rank transfer learn-
ing through the deep structure (Ding, Shao, and Fu 2015)
which is similar to our work; however, our data composition
strategy, non-linear building block, and supervised layer on
top lead to better performance in general.

Data Composition via Spectral Bisection Tree

To explore the semantics of data from coarse to fine, we need
to build up a hierarchical structure to generate source-target
data pairs fed to the autoencoders. Here we take spectral bi-

section tree as the partition method since it is running fast
and able to discover the underlying data structure.

Building Spectral Bisection Tree

Let us define source and target data as Xs ∈ R
d×ns and

Xt ∈ R
d×nt where d is the number of features in each vec-

tor, ns and nt are the number of source and target data, re-
spectively, therefore, the source target data composition can
be written as: X = [Xs, Xt] ∈ R

d×n, where n = ns + nt.
Given the singular value decomposition of the centered data:
uTX = σvT, where (u, v, σ) is the largest singular value
triplet, spectral bisection divides the whole dataset through
the hyperplane determined by the singular vector u. Then
the dataset can be divided into two parts in the second layer
by principles below:

X(2,1) = {xi|vi ≥ θmed}, X(2,2) = {xi|vi < θmed}, (1)

where the first number of superscripts of X indexes the layer
and the second one indexes the partitions in this layer, and
θmed is the median entry of vector v to guarantee the parti-
tion is balanced. Although the computational complexity for
SVD is large when min{d, n} is large, we could use Lanczos
algorithm for a fast computation of the first singular value
triplet (u, v, σ) (Berry 1992).

After the first data partition by spectral bisection, we have
two new partitions: X(2,1), X(2,2) where the superscript in-
dexes the layer and the partition. Specifically, each partition
includes both source and target data, which can be repre-
sented as: X(2,1) = [X

(2,1)
s , X(2,1)

t ], X(2,2) = [X
(2,2)
s ,

X
(2,2)
t ]. We can recursively produce exponentially many

such partitions which only rely on the number of layers L,
such that the total number of partitions is 2L − 1.

Source-Target Compositions

The benefit of such hierarchical structure of the composi-
tions of source and target data is obvious: we are able to
capture the semantics from coarse to fine. In the bottom lay-
ers, source and target data are matched to each other in a
global way, while in the top layers, source and target are
only matched within each small partition. This means only
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data within small partitions from different domains are cou-
pled.

However, it is still not clear how to generate such source-
target data pairs. An arbitrary composition will fool the au-
toencoder as no clear semantics are given and inputs/outputs
are completely random signals. To that end, we use a non-
parametric method to build the source-target data pairs.
Specifically, for the j-th partition in the i-th layer, we find
the nearest neighbor of X(i,j)

s from X
(i,j)
t , and build train-

ing pairs (xin, xout) in the following way:

∀xin ∈ X(i,j)
s , xout = NN(xin, X

(i,j)
t ), (2)

where NN(·, ·) represents the nearest neighbor search func-
tion, and xin, X(i,j)

t are query, reference, respectively. The
resulting input data for an autoencoder is still X(i,j)

s , but
the output data is a subset of X

(i,j)
t . We denote X̂

(i,j)
t as

this new output to differentiate from the original X(i,j)
t . In

fact, we could also switch source and target data to get more
training data pairs, e.g., X(i,j)

t as input and X̂
(i,j)
s as output.

Combining the original input and output pairs of conven-
tional autoencoder, we have the final training pairs from the
source-target composition X(i,j) as:

(
X

(i,j)
in , X

(i,j)
out

)
=

([X(i,j)
s , X

(i,j)
t , X(i,j)

s , X
(i,j)
t ]︸ ︷︷ ︸

X
(i,j)
in

, [X̂
(i,j)
t , X̂(i,j)

s , X(i,j)
s , X

(i,j)
t ]︸ ︷︷ ︸

X
(i,j)
out

).

Then we combine all such training pairs in the i-th layer
(1 ≤ j ≤ 2(i−1)) to build (X

(i)
in , X

(i)
out ) in the i-th layer.

Deep Adaptive Exemplar Autoencoder

In this section, we detail how to build deep autoencoders
with semantics-awareness source-target data pairs for unsu-
pervised domain adaptation.

Linear Adaptive Exemplar AutoEncoder (AE)

Conventional denoising autoencoder is a single hidden layer
neural network, including the input, hidden layer, and out-
put. Suppose the non-linear transform from input to hidden
layer is f and the non-linear transform from hidden-layer
to output is g, then denoising autoencoder attempts to mini-
mize the following loss function:

L (X̃,X) =
1

4n

∑
x∈X

x̃∈˜X

(g ◦ f(x̃)− x)2, (3)

where x̃, X̃ are the contaminated versions of x,X with ran-
dom dropout or additive Gaussian noises, and n is the num-
ber of training samples. Intuitively, denoising autoencoder
is able to find transform function robust to corruption sim-
ulated by dropout or Gaussian noise because it is able to
recover the original data from the contaminated ones. Like
conventional single hidden layer neural network, the mini-
mization problem concerned with Eq. (3) can be solved by
back propagation and gradient descent algorithms.

However, non-linear activations usually drag down the
system efficiency. Motivated by the recent work on

marginalized denoising autoencoder proposed in (Chen et
al. 2012), we replace the non-linear transforms f, g by a sin-
gle linear transform function W ∈ R

d×d. We also remove
the corruption sampling scheme by marginalization, leading
to a new linear exemplar autoencoder:

min
W

E[‖Xout −WXin‖2F], (4)

where E[·] is the mathematical expectation, and ‖ · ‖F is
the matrix Frobenius norm. As we can see the “corrupted
data - original data” training pairs have been replaced by the
learned source-target compositions with semantics, which
can be seen as exemplars found through nearest neighbor
search. Finally, the transform matrix W can be solved by
the followings:

W = E[PQ−1] = E[P ]E[Q−1],

where P = XoutX
T
in and Q = XinX

T
in .

(5)

When there are infinite many samples in Xin and Xout, i.e.,
ns → ∞, nt → ∞, we can obtain the optimized W as both
P and Q converge to their expectations. Alternatively, we
could also directly compute the empirical expectation of W
based on the current observations. For Q, we have:

E[Q] = E

∑
x∈Xin

[xxT] =
∑
x∈Xin

Ep(xi,xj)[xx
T]. (6)

However, it is still unclear how to compute the joint prob-
ability of transition from the i-th element of xin to j-th el-
ement of xin. In this paper, we use the following weighted
kernel similarity as the metric for the transition probability:

p(xi, xj) =
exp(−(xi − xj)

2/2γ2)∑
i�=j exp(−(xi − xj)2/2γ2)

, (7)

where i, j index the elements in x, and γ is the bandwidth of
Gaussian kernel. Therefore, Eq. (6) can be rewritten as:

E[Q(i,j)] =
∑
x∈Xin

p(xi, xj)xixj . (8)

We can compute E[P ] in a similar way:

E[P(i,j)] =
∑
x∈Xin
x̃∈Xout

p(x̃i, xj)x̃ixj , (9)

where subscripts of P,Q indicate the elements in the matrix.
Recently, low-rank coding has been applied to trans-

fer learning scenario to guide the shared subspace learn-
ing (Shao, Kit, and Fu 2014; Ding, Shao, and Fu 2015), as it
can derive a locality-awareness reconstruction between do-
mains, where source and target data are accurately aligned:

min
Z

rank(Z), s.t.,W [Xs, Xt] = WXsZ, (10)

where “rank(·)” indicates the matrix rank, Z is the low-rank
coefficient matrix that can recover the structure of X despite
of noise. Integrating Eq. (10) and Eq. (4), we obtain the lin-
ear adaptive exemplar autoencoder:

min
W,Z

E[‖Xout −WXin‖2F] + λrank(Z)

s.t., WX = WXsZ,
(11)

where λ is a balancing parameter. It can be seen that we have
casted the original unconstrained optimization problem in
Eq. (4) to a new constrained problem. Solutions for problem
above will be detailed in the later sections.
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Non-Linear Adaptive Exemplar AutoEncoder (AE)

Recall in Eq. (3) we minimize the loss function about input x
and output g◦f(x̃) under single hidden layer neural network
framework. Under the transfer learning scenario with the
built source-target pairs, we formulate the non-linear adap-
tive exemplar autoencoder as:

L (Xin, Xout) =
1

4n

∑
xin∈Xin
xout∈Xout

(g ◦ f(xin)− xout)
2. (12)

Since we have limited source-target pairs, we still hope to
find the empirical expectation or in other words, marginal-
izing over xin in Eq. (12). This is equal to minimizing the
following expectation w.r.t. xin:

1

4n

∑
xin∈Xin
xout∈Xout

Ep(xin,xout)[(g ◦ f(xin)− xout)
2]. (13)

However, the marginalization is not easy to address due
to the existence of hidden layer. We first reformulate this
problem by the second-order Taylor expansion at the mean
vector of Xin, and focus on a single source-target pair:

L (xin, xout) ≈ L (μin, xout) + (μin − xin)
T∇xinL

+
1

2
(μin − xin)

T∇2
xin

L (μin − xin),
(14)

where μin is the empirical expectation of xin, namely, the
mean vector of Xin, ∇xinL is the first-order derivative of
L w.r.t. xin, and ∇2

xin
L is the second-order derivative of

L w.r.t. xin, namely, Hessian matrix. It is easy to check that
E[xin] = μin, and therefore, we can obtain the following
derivation:

E[L (xin, xout)] ≈ L (μin, xout) +
1

2
tr(Σ∇2

xin
L ), (15)

where Σ = E[(μin−xin)(μin−xin)
T] is the covariance matrix

of variable xin.
To facilitate the computation of the expectation derived

from Eq. (15), we introduce the following approximation.
First, we assume each dimension in xin is generated indepen-
dently, and therefore, Σ is a diagonal matrix with only vari-
ance of each feature of xin on the diagonal. This also means
the off-diagonal elements in Hessian matrix ∇2

xin
L are also

zeros. Second, although there is an explicit formulation for
∇2

xin
L , we further simplify it by dropping certain terms and

removing off-diagonal elements, as suggested in (LeCun et
al. 2012; Chen et al. 2014). Finally, we obtain the approxi-
mation of element loss function as:

E[L (xin, xout)] ≈ L (μin, xout) +
1

2
tr(ΣD), (16)

where diagonal matrix D has i-th non-zero element as:

Dii =

m∑
j=1

∂2L

∂f(xin)2j

(
∂f(xin)j
∂xin,i

)2

, (17)

where m is the dimension of hidden layer. Integrating low-
rank coding constraint, we have the final objective for non-
linear single layer adaptive autoencoder:

min
W,Z

∑
xout∈Xout

L (μin, xout) +
1

2

∑
xin∈Xin

tr(ΣD) + λrank(Z)

s.t., WX = WXsZ.

(18)

Solutions

Linear and non-linear adaptive exemplar autoencoders share
many contents except for the loss functions described in
Eq. (4) and Eq. (13), respectively, which is only related to
the solutions of W . Therefore, we do not differentiate one
from another at the beginning, but explain the common con-
tents first. In the following part we use symbol L for the
generic loss function with meanings:

L =

⎧⎨
⎩

E[‖Xout −WXin‖2F Linear;
∑

xout∈Xout

L (μin, xout) +
1

2

∑
xin∈Xin

tr(ΣD) Non-linear.

The proposed learning objectives in Eq. (11) and Eq. (18)
can be solved iteratively by Augmented Lagrange Methods
(ALM) (Liu et al. 2013). However, its time consuming op-
erations such as matrix inverse and product will drag down
the system performance. To that end, we propose a novel
first order Taylor expansion like approximation to accelerate
the computation here by removing the quadratic terms. First,
we convert the original objectives of adaptive exemplar au-
toencoder to augmented Lagrangian function:

L + λ‖Z‖∗ + 〈Y,WX −WXsZ〉+ τ

2
(‖WX −WXsZ‖2F),

where τ > 0 is a penalty parameter, and Y indicates the
Lagrangian multiplier. 〈, 〉 indicates matrices inner product,
namely, 〈A,B〉 = tr(ATB). Note that as suggested by work
in (Liu et al. 2013), we use the matrix nuclear norm ‖Z‖∗
as the surrogate of the original rank minimization problem
in our formulation. Afterwards, we reformulate the last two
terms by combining them into a single quadratic term:

L + λ‖Z‖∗ + h(Z,W, Y, τ), where

h(Z,W, Y, τ) =
τ

2
(‖WX −WXsZ + Y/τ‖2F).

(19)

It should be noted that problem in Eq. (19) is not jointly
solvable over Y , Z and W , but can be optimized over each of
them by fixing the rests. Thus, we propose to optimize each
of them one after another. In the meanwhile, by considering
others as constants, we approximate the term h via Taylor
expansion at the current point. At t iteration, we optimize:
Update Z:

Zt+1 = argmin
Z

λ‖Z‖∗ +
ηzτ

2
‖Z − Zt‖2F + 〈∇Zht, Z − Zt〉

= argmin
Z

λ

ητ
‖Z‖∗ +

1

2
‖Z − Zt +∇Zht‖2F,

(20)
where ∇Zht = τ(WtXs)

T(WtX −WtXsZt + Yt/τ) is
the derivative of h w.r.t. Z, η = ‖WtXs‖22. The convex prob-
lem above can be solved with exact solution via Singular
Value Thresholding (SVT) (Cai, Candès, and Shen 2010).
Update W :

Wt+1 = argmin
W

Lt + h(Zt,W, Yt, τ). (21)

For linear adaptive AE, the problem is convex and we can
achieve its closed form solution as:
Wt+1 = (YtR

T
t + 2E[XoutX

T
in])(2E[XinX

T
in]− τRtRt

T)−1

= (YtR
T
t + 2E[P ])(2E[Q]− τRtRt

T)−1,
(22)
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Algorithm 1 Solving adaptive exemplar autoencoder
Input: X

(l)
in , X

(l)
out .

Initialize: λ = 1, Zt = Yt = 0, τt = 10−6,
t = 0, ρ = 1.1, τmax = 106, ε = 10−6.

while not converged do

1. Fix other variables and update Zt+1 via Eq. (20);
2. Fix other variables and update Wt+1 via Eq. (21);
3. Update ALM multiplier via
Yt+1 = Yt + τtWt+1(X −XsZt+1);

4. Update τ via τt+1 = min(ρτt, τmax);
5. Check if the objective function converges:
‖Wt+1(X −XsZt+1)‖∞ < ε.

end while

Output: Low-rank coding Z(l)

where Rt = X −XsZt+1.
For non-linear adaptive AE, the loss function described

in Eq. (18) is very similar to the conventional loss function
of single hidden layer neural network, and both tr(ΣD) and
h are differentiable w.r.t. W . Thus, we can implement gra-
dient descent and back propagation algorithms (Rumelhart,
Hinton, and Williams 1988) on Eq. (21) for solutions. We
elaborate the ALM based solutions in Algorithm 1, where
we follow the parameters setting in (Liu et al. 2013).

Deep Feature and EM Training

In our framework, following the layerwise training proce-
dure (Bengio et al. 2007), we can obtain the deep feature
layer by layer. Specifically, given X

(l)
in and X

(l)
out , we could

learn the new feature by low-rank coding Z(l) through Al-
gorithm 1, which will be used as the new feature for layer
l + 1: X(l+1) ← Z(l). Suppose we have L layers in our
framework, then we use [Z(1);Z(2)...;Z(L)] as our learned
representations from the proposed deep structure, where “;”
denotes column-wise concatenation.

Finally, we add a supervised layer on top to facilitate
supervised learning given labels of source data in domain
adaptation. Recently, maximum mean discrepancy (MMD)
has been widely applied in transfer learning problems by
minimizing the distance of centers of two domains in the
reproducing kernel Hilbert space (RKHS) (Pan et al. 2011).
Here we adopt the JDA (Long et al. 2013b) that exploits
class-wise MMD criterion as the objective for common fea-
ture space learning. To differentiate the learned features
from deep adaptive AE, we use Z(L+1) to represent the dis-
criminative features output by JDA. The learned discrimina-
tive feature Z(L+1) can be used for data partition again by
the spectral bisection tree, and enable to learn new adaptive
exemplar autoencoder. This is essentially an EM style learn-
ing: (1) In E step, by projecting data to the learned feature
space, we estimate the target labels using nearest neighbor
rule. (2) In M step, we minimize our objective in Eq. (19)
followed by class-wise MMD. This is essentially the com-
plete procedure of our Deep Adaptive Exemplar AutoEn-
coder framework, which is elaborated in Algorithm 2. Note
we set γ = 1 and the number of iteration T = 10 as they
will yield good results in most cases.

Algorithm 2 Deep adaptive exemplar autoencoder
Input: Source and target data Xs, Xt,

source data labels, number of layers L.
Initialize: γ = 1, T = 10.
for t = 1 to T

1. Partition X into set {X(i,j)}, 1 ≤ i ≤ L by Eq. (1);
2. Build source-target pairs for adaptive AE by Eq. (3);
3. for l = 1 to L

Learn adaptive AE in layer l by Algorithm 1;
end for

4. Learn Z(L+1) on top by class-wise MMD criterion;
5. Set X = Z(L+1);
end for

Output: Domain invariant feature Z(L+1)

Experimental Results

We will first summarize the experimental settings in this sec-
tion, and then compare our methods with existing state-of-
the-art works on several benchmark datasets.

Datasets and Experimental Setting

• MSRC+VOC is generated by selecting all 1269 images
from MSRC1 and 1530 images from VOC20072. We re-
size the image to have 256 pixels in length, and extract
dense SIFT (DSIFT) as the basic features.

• USPS+MNIST3 has 10 common handwritten digits from
USPS and MNIST. Similar to (Long et al. 2013b), 1800
images are randomly sampled from USPS as one domain
while another 2000 images are sampled from MNIST as
another domain. All images are down-sampled to 16×16.

• Office+Caltech-2564 has been widely adopted as bench-
marks for domain adaptation including 10 common
categories from “Office” dataset and “Caltech-256”. It
has four distinct domains: Amazon (A), Webcam (W),
DSLR (D), and Caltech-256 (C) and uses 800-dim
SURF+BagOfWords features.

• Reuters-21578 contains text features in different top and
subcategories. Specifically there are three large top cate-
gories: orgs, people, and place, a few subcategories within
each of them. To fairly compare with other methods, we
use the preprocessed version of Reuters-21578 from (Gao
et al. 2008) as our basic features.

Comparison methods We compare with recent state-of-
the-art domain adaptation methods: TSL (Si, Tao, and Geng
2010), MTrick (Zhuang et al. 2011), TCA (Pan et al.
2011), mSDA (Chen et al. 2012), GFK (Gong et al. 2012),
DASA (Fernando et al. 2013), TSC (Long et al. 2013a),
LTSL (Shao, Kit, and Fu 2014), TJM (Long et al. 2014c),
GTL (Long et al. 2014b), GUMA (Cui et al. 2014), AR-
RLS (Long et al. 2014a), DLRC (Ding, Shao, and Fu 2015).

1http://research.microsoft.com/en-
us/projects/objectclassrecognition/

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007
3http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
4http://www-scf.usc.edu/∼boqinggo/domainadaptation.html
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Table 1: Domain adaptation results (mean ± std %) on the four domains of Office+Caltech-256 dataset. Note A = Amazon, C
= Caltech-256, D = DSLR, W = Webcam. We highlight the best performance with bold fonts.

Config\Methods DASA GFK LTSL TJM TCA mSDA GUMA DLRC DAE2-1 DAE2-2

C→W 36.8±0.9 40.7±0.3 39.3±0.6 39.0±0.4 30.5±0.5 38.6±0.8 42.3±0.3 41.7±0.5 42.0±0.7 45.4±0.6

C→D 39.6±0.7 38.9±0.9 44.5±0.7 44.6±0.8 35.7±0.5 44.5±0.4 44.7±0.4 46.5±0.6 45.2±0.3 47.3±0.7

C→A 39.0±0.5 41.1±0.6 46.9±0.6 46.7±0.7 41.0±0.6 47.7±0.6 46.7±0.6 49.7±0.4 45.6±0.5 48.5±0.6

W→C 32.3±0.4 30.7±0.1 29.9±0.5 30.2±0.4 29.9±0.3 33.6±0.4 34.2±0.5 33.8±0.5 31.1±0.3 34.5±0.5

W→A 33.4±0.5 29.8±0.6 32.4±0.9 30.0±0.6 28.8±0.6 35.4±0.5 36.2±0.5 36.5±0.7 35.1±0.4 37.7±0.7

W→D 80.3±0.8 80.9±0.4 79.8±0.7 89.2±0.9 86.0±1.0 87.9±0.9 73.5±0.4 94.3±1.1 89.8±0.5 92.3±0.7

A→C 35.3±0.8 40.3±0.4 38.6±0.4 39.5±0.5 40.1±0.7 40.7±0.6 36.1±0.4 41.7±0.5 40.1±0.6 45.6±0.4

A→W 38.6±0.6 39.0±0.9 38.8±0.5 37.8±0.3 35.3±0.8 37.3±0.7 35.9±0.3 41.8±0.9 42.0±0.4 44.4±0.3

A→D 37.6±0.7 36.2±0.7 38.3±0.4 39.5±0.7 34.4±0.6 36.3±0.5 38.2±0.8 40.8±0.6 42.0±0.3 45.3±0.5

(a) MSRC+VOC and MNIST+USPS (b) Reuters-21578

Figure 2: Domain adaptation results on MSRC+VOC, MNIST+USPS, and Reuters-21578 datasets.

In this section, we use DAE2-1/DAE2-2 to indicate our
linear/nonlinear adaptive exemplar AE, respectively. We set
model parameter λ = 1, and the layer of spectral bisection
tree L = 4 if not otherwise specified. In all experiments,
we strictly follow the setting of unsupervised domain adap-
tation, with labeled source and unlabeled target data.

Results and Discussion

In all experiments, we are only accessible to the labels of
source domain and use these source labels and data as the
references to classify the target data. For different methods,
the usages of labeled source data are different. For example,
SGF, DASA, TCA, and mSDA are trained in a totally unsu-
pervised way, meaning source labels are not used in the fea-
ture learning stage. On the other hand, GFK, LTSL and TSC
are trained with source labels, and TJM, ARRLS, DLRC and
Ours introduce pseudo target labels to target domains.

Compared to SGF and DASA, GFK, LTSL and TSC
achieve better performance in most cases in Table 1. The
main reason is they are able to incorporate source labels dur-
ing the model training to transfer discriminative knowledge
to target domain. Similarly, ARRLS, TJM and Ours include
pseudo labels of target data to facilitate supervised learn-
ing, where labeled source and target data can be accurately
aligned. Besides, the EM like iterative learning can further
boost the performance, as shown in Table 1, and Figure 2.

Notably, in some cases, mSDA performs better than other
competitive algorithms, which indicates that the deep struc-

ture of linear denoiser could uncover more discriminative
information across two domains. Compared to mSDA, our
proposed DAE2 framework not only builds a deep struc-
ture, but also integrates novel source-target data composition
methods and low-rank coding term. Therefore, our method
could achieve better results than most existing works in
benchmark evaluations here, especially on USPS+MNIST,
where we achieve significant improvements.

Conclusions

In this paper, we proposed a Deep Adaptive Exemplar Au-
toencoder framework for unsupervised domain adaptation.
First, we partitioned source and target data by a spectral
bisection tree, and used learned source-target pairs to train
semantics-awareness autoencoders. Second, a new adaptive
exemplar autoencoder was learned through the training pairs
obtained from the last step, followed by a supervised layer
on top. The entire framework can be refined in an EM fash-
ion of learning. Extensive experiments on vision, digits, and
text datasets demonstrated the proposed deep domain adap-
tation framework worked fairly well on benchmark datasets.
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