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Abstract

Metric learning has become a critical tool in many machine
learning tasks. This paper focuses on learning an optimal Ma-
halanobis distance matrix (parameterized by a positive semi-
definite matrix W) in the setting of supervised learning. Re-
cently, particular research attention has been attracted by low-
rank metric learning, which requires that matrix W is dom-
inated by a few large singular values. In the era of high fea-
ture dimensions, low-rank metric learning effectively reduces
the storage and computation overheads. However, existing
low-rank metric learning algorithms usually adopt sophisti-
cated regularization (such as LogDet divergence) for encour-
aging matrix low-rankness, which unfortunately incurs iter-
ative computations of matrix SVD. In this paper, we tackle
low-rank metric learning by enforcing fixed-rank constraint
on the matrix W. We harness the Riemannian manifold ge-
ometry of the collection of fixed-rank matrices and devise a
novel second-order Riemannian retraction operator. The pro-
posed operator is efficient and ensures that W always resides
on the manifold. Comprehensive numerical experiments con-
ducted on benchmarks clearly suggest that the proposed algo-
rithm is substantially superior or on par with the state-of-the-
art in terms of k-NN classification accuracy. Moreover, the
proposed manifold retraction operator can be also naturally
applied in generic rank-constrained machine learning algo-
rithms.

Introduction

Metric learning methods (Yang 2006; Kulis 2013; Bellet,
Habrard, and Sebban 2013) strive to effectively gauge the
pairwise distance between two data objects. In the past few
years, metric learning has become ubiquitous and stimu-
lated by a large spectrum of applications in the research
fields such as machine learning and information retrieval.
For a number of fundamental machine learning algorithms
(such as k-means clustering and k-NN classification) and
applications (such as image search), the naive Euclidean
distance is often insufficient for describing domain-specific
data affinities. Learning a well-defined metric (typically in
the form of Mahalanobis distance metric) plays a crucial
role in obtaining state-of-the-art performance and a vast lit-
erature of metric learning algorithms under various prob-
lem settings has been created, including semi-supervised
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learning (Hoi, Liu, and Chang 2008; Liu et al. 2010), fully
supervised learning (Xing et al. 2003; Ying and Li 2012;
Hu, Lu, and Tan 2014), transfer learning (Luo et al. 2014)
or structural learning (Lim, Lanckriet, and McFee 2013).
Prominent real-world applications of metric learning tech-
niques include face verification (Hu, Lu, and Tan 2014),
image retrieval (Hoi, Liu, and Chang 2010), image anno-
tation (Verma and Jawahar 2012), and bioinformatics (Kato
and Nagano 2010), etc.

Instead of using nonlinear distance functions (Weinberger
and Saul 2006; Kedem et al. 2012), the main scope of
this paper is to optimize the (squared) Mahalanobis dis-
tance (Xing et al. 2003) between two data points, which is
mathematically expressed as below

D(xi,xj) = (xi − xj)
�W(xi − xj), (1)

where the parametric matrix W is often assumed to be pos-
itive semi-definite in order to ensure a well-defined metric.

In supervised metric learning, the matrix W is critically
optimized based on pre-specified similar/dissimilar con-
straints. Profiting from advances in numerical optimization
techniques (particularly sophisticated schemes on PSD ma-
trices (Shen et al. 2009)), supervised metric learning is mak-
ing big strides towards elevating the accuracies of machine
learning systems. Importantly, the number of free parame-
ters in W is quadratic with regard to the feature dimension,
which indicates a huge feasible region in many real-world
scenarios. Avoiding the over-fitting is therefore crucial for
attaining good accuracy on unseen data points. To this end,
a large body of metric learning literature has actively ex-
plored the regularization imposed on W (Jin, Wang, and
Zhou 2009; Liu and Vemuri 2012; Chen et al. 2012). For
example, the information-theoretic approaches, exemplified
by sparse distance metric learning (SDML) (Qi et al. 2009)
and sparse semi-supervised metric Learning (S3ML) (Liu et
al. 2010), propose to use LogDet divergence and L1 regular-
ization on W. The LogDet divergence effectively aligns the
learned W with our empirical belief of W. The justification
for the sparse regularization primarily is a theoretical result
in covariance matrix estimation (Ravikumar et al. 2011).

Matrix low-rankness is another widespreadly adopted
regularization in machine learning, such as in robust
PCA (Candès et al. 2011) and subspace segmentation (Liu,
Lin, and Yu 2010). A number of low-rank metric learning
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algorithms (Zhong, Huang, and Liu 2011; Bi et al. 2011;
Kulis, Sustik, and Dhillon 2009; Liu et al. 2015) have been
proposed. A major merit of low-rank W is having the fac-
torization W = LL� (L is low-rank and non-unique), such
that the distance computation can be greatly expedited by
(xi−xj)

�W(xi−xj) = (L�xi−L�xj)
�(L�xi−L�xj).

For example, the work in (Kulis, Sustik, and Dhillon 2009)
designed a rank-1 update rule, picking a single constraint for
processing at each iteration. The authors prove that the algo-
rithm preserves matrix rank, so it can learn low-rank metric
matrices when the input parameters have low rank. How-
ever, it requires iterating many cycles through all constraints
to reach convergence. Existing low-rank metric learning ap-
proaches suffer from two intrinsic limitations. First, since
most low-rankness encouraging norms can hardly eliminate
small singular values of W, they cannot bound the rank of
intermediate solutions a priori, which makes the compact
factorization W = LL� infeasible. Second, a full SVD of
an intermediate W is often routinely conducted after each
update, in order to casting it back to the PSD matrix cone, as
seen in the work of (Liu et al. 2015). For high-dimensional
data, the cost of iterative full SVD is computationally unaf-
fordable.

Inspired by recent advances in optimization over the man-
ifold of low-rank matrices (Absil, Mahony, and Sepulchre
2007; Meyer, Bonnabel, and Sepulchre 2011; Shalit, Wein-
shall, and Chechik 2010), in this paper we propose a novel
low-rank metric learning algorithm, which is essentially
characterized by a smooth objective function and a fixed-
rank constraint on W. The smoothness of the objective
function enables an efficient gradient descent optimization
scheme. The rank constraint explicitly ensures a low-rank
solution.By virtue of the geometry of the Riemannian mani-
fold formed by low-rank matrices, we expose a novel retrac-
tion operator defined on this Riemannian manifold, which
serves as our key technical contribution. The operator enjoys
both conceptual elegance and lower complexity. On the one
hand, it is rigorously proved to be a second-order Rieman-
nian retraction. In other words, it concurrently accomplishes
both the gradient descent and fixed-rank projection in a uni-
fied computational procedure. On the other hand, the com-
putation does not rely on full SVD of W, which is a signif-
icant improvement in comparison with existing works. We
conduct comprehensive evaluations on seven benchmarks
for corroborating the effectiveness of the proposed algo-
rithm.

Problem Specification
Notations: We here clarify the notations used throughout
this paper. Let Sd

+,Sd denote the sets of positive semidef-
inite or generic symmetric matrices of size d × d respec-
tively. For any matrix M, let ‖M‖F represent the Frobe-
nius norm (the sum of squared singular values). tr(M) de-
notes the trace of a square matrix, namely

∑
i M(i, i) over

all valid index i. Let [x]+ = max(x,0) be an element-wise
filter function.

Our problem setting is virtually compatible with conven-
tional supervised metric learning. A dataset X = {(xi, yi) ∈
R

d×[0, 1, . . . , �]}ni=1 is provided for training purpose, where

d is the dimensionality of observations. Any integer from
[1 : �] represents a unique valid label. For un-annotated sam-
ples, their label indicators are simply set to 0. For the task
of Mahalanobis-style metric learning, the goal is to seek for
a distance matrix W∗ ∈ Sd

+, such that the distance value
between two feature vectors xi,xj can be well described by
(xi − xj)

�W∗(xi − xj). Our formulation is comprised of
two criteria:

Criterion-I: Rank Constraint and Matrix Complexity.
As exhibited by the achievement in metric learning and sub-
space learning (Wang and Tang 2004), a budgeted number
of new dimensions can be sufficient for distinguishing sim-
ilar or dissimilar data pairs. In light of this observation, we
aggressively fix the rank of W to be equal or below a pre-
specified constant of k. The value of k, which reflects our be-
lief of the intrinsic dimension of the data, is often far smaller
compared with the feature dimension. The optimal choice of
k can hardly be identified in theory. Nonetheless, as later re-
vealed by our experiments, the k-NN classification accuracy
is stably excellent for a large range of k. Therefore an em-
pirical guess of the value of k often works in practice.

To mitigate the risk of over-fitting in tackling out-of-
sample data, we leverage (squared) matrix Forbenius norm
to regularize W, which is essentially the sums of all squared
elements in W. Formally it can be expressed as tr(W�W).
Note that the popularly-used matrix nuclear norm (Liu et al.
2015) is not favorable in our setting, owing to the fixed-rank
constraint. We now have the regularization terms imposed
on W, as following:

R(W) = 1
2λtr(W

�W) + fb(rank(W) ≤ k), (2)

where fb(·) represents the barrier function. It returns +∞
when the statement is false, otherwise 0. λ > 0 is a reg-
ularization parameter to balance the relative importance of
tr(W�W) and other loss terms.

Criterion-II: Margin Optimization. Supervision informa-
tion can be utilized in various forms for the task of metric
learning. Let us simply adopt the pairwise form owing to its
simplicity. A piece of pairwise annotation clearly specifies
whether two samples share the same label. To universally
encode the supervision information, let us define a target
matrix T:

T(i, j) =

{ −1, yi = yj , yi, yj �= 0,
1, yi �= yj , yi, yj �= 0,
0, otherwise.

(3)

To simplify the statement, let us re-define the pairwise dis-
tance among xi,xj :

D(xi,xj) = 2(xi − xj)
�W(xi − xj)− 1. (4)

The above distance is expected to be close to the values
specified in T. Directly regressing D(xi,xj) to T(i, j) in
least-squares is problematic, since it triggers penalties when
the resultant distance is “better” than T (e.g., D(xi,xj) <
−1 for T(i, j) = −1). To mitigate the over penalty, we
adopt a soft margin based loss term, namely [1−D(xi,xj)]+
for T(i, j) = 1 or [D(xi,xj) − (−1)]+ for T(i, j) = −1.
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Figure 1: Smoothing margin loss via modified logistic
losses.

The margin loss can then be presented in a unified form be-
low:
Lmargin(W) =

∑
i,j [T(i, j) · (T(i, j)−D(xi,xj))]+, (5)

where multiplying T(i, j) excludes any un-annotated data
from contributing to the margin loss.

The soft margin function [x]+ has a non-differentiable
point at x = 0 and thus only sub-gradient is available. To
improve the scalability to gigantic data, we expect the ob-
jective function to be smooth at every point in order to em-
ploy efficient gradient descent optimization. To eliminate
the irregularity of [x]+, we here adopt the modified logis-
tic loss (Zhang and Oles 2001; Zhang et al. 2003) to smooth
the margin loss. Let σ(x) = 1/(1 + exp(−x)) denote the
logistic function. The smoothing trick relies on the approxi-
mation below:

[x]+ = limβ→+∞ −1/β · log (σ(−βx)) . (6)
The r.h.s of Eqn. (6) asymptotically converges to the l.h.s.

with increasingly larger β. A few exemplar approximate
losses are displayed in Figure 1. We set β = 5 through-
out this work. A smooth margin loss can be obtained by a
marriage of Eqn. (6) with Eqn. (5), namely

Lmargin(W;β) = − 1
β

∑
i,j log (σ(−βξij)) , (7)

where ξij is an auxiliary variable defined by
ξij = T(i, j) · (T(i, j)−D(xi,xj)). (8)

Putting all above considerations together, we obtain the
final problem formulation of supervised metric learning:

argminW Lmargin(W) + 1
2λtr(W

�W) (9)

s.t. rank(W) ≤ k, W ∈ Sd
+.

The Optimization Method
Our algorithm intelligently optimizes Problem (9) over the
Riemannian manifold of low-rank matrices. A gradient de-
scent scheme is adopted for progressively reducing the ob-
jective value. The prominent complication in the optimiza-
tion stems from the fixed-rank and PSD constraints, namely
the new solution is required to stay rank-k and a PSD matrix
after moving along the descending direction. Direct projec-
tion onto the rank-k PSD cone is problematic since the pro-
jected solution is not guaranteed to still decrease the objec-
tive. Therefore, an efficient line-search procedure is critical.

Algorithm 1 The Proposed Optimization Method on Rie-
mannian Manifold

Input: data matrix X ∈ R
d×n, target matrix T ∈

{−1, 0, 1}n×n.
Output: optimal solutions W∗;
Parameter: step sizes η0, ηmin, linear search attenuation fac-
tor s ∈ (0, 1), rank constraint k;

1: Initialize W with random numbers;
2: Perform partial eig-decomposition on W to extract k

largest singular pairs, obtaining UΛU�;
3: η = η0;
4: while not converged do
5: Calculate G by Equation (13);
6: Project G to obtain P ← U�GU;
7: η ← η/s;
8: while η ≥ ηmin do
9: A ← ηUΛ+GU;

10: Perform economic QR-decomposition on matrix A, ob-
taining (QA,RA) ← qr(A);

11: B ← RA(ηP+Λ)R�
A;

12: Perform eigen-decomposition on matrix B, obtaining
(UB ,SB) ← eig(B);

13: ̂U ← QAUB , ̂Λ ← [SB ]+, W′ = ̂ÛΛ̂U�;
14: if tr((W′ −W)G) < 0 then
15: η ← sη; continue;
16: end if
17: if W′ satisfies the Armijo rule then

18: W ← W′; U ← ̂U; Λ ← ̂Λ; break;
19: end if
20: η ← sη;
21: end while
22: end while
23: W∗ ← W;

Gradient Calculation

For notational brevity, let us introduce an auxiliary variable
Σξ ∈ R

n×n with Σξ(i, j) = σ(βξij), and use X ∈ R
d×n to

represent the data matrix attained by piling all feature vec-
tors in a column-wise fashion.

The gradient of λtr(W�W) is trivially obtained as
1
2∂λtr(W

�W)/∂W = λW. (10)

Regarding the margin loss term, utilizing the standard cal-
culus rule ∂ log(σ(x))/∂x = σ(−x), its gradient with re-
gard to W can be computed as

1
4 · ∂Lmargin(W)/∂W

= 1
4

∑
i,j∈[1:n] σ(βξij) · ∂ξij∂W

= − 1
2

∑
i,j σ(βξij) ·T(i, j) · (xi − xj)(xi − xj)

�

= −
∑

i,j σ(βξij) ·T(i, j) · (xix
�
i − xix

�
j ) (11)

= −(XDX� −X (T ◦Σξ)X
�)

= −X (D−T ◦Σξ)X
�, (12)

where ◦ represents the Hadamard product for element-wise
multiplication. Eqn. (11) holds owing to the symmetry of
T◦Σξ in our problem setting. D is a diagonal matrix whose
diagonal elements are the sums of corresponding rows of
T◦Σξ. It is verified that D−T◦Σξ is the Laplacian matrix
calculated under current estimations of W.
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Riemannian gradient retraction for updating W
We use a variable G to denote the negative gradient, which
represents the best possible descending direction. G can be
computed by combining Equations (10)(12):

G = 4X (D−T ◦Σξ)X
� − λW. (13)

The complication of optimizing W primarily stems from
the non-convex rank constraint rank(W) ≤ k. Given a
step size η, a move along the negative gradient direction,
which brings W + ηG, nearly always violates the rank-k
constraint. One may advocate projecting W + ηG back to
be rank-k PSD cone by keeping k largest singular values
of W + ηG. It can be computationally done through SVD.
This strategy is widely known as projected gradient method
in the field of numerical optimization. However, we find in
practice that the new solution obtained by this simple projec-
tion operation tends to heavily deviate from the original de-
scent direction G and results in a worse solution. Intuitively,
a better tactic for ensuring a better solution is concurrently
considering gradient descent and any post-processing (such
as the SVD-based projection) followed.

The step size η plays a key role for a gradient-descent
based optimization method. Conventionally, fine tuning the
step size can be done by sophisticated schemes, such as
Armijo or Goldstein conditions (Nocedal and Wright 2006).
For low-rank metric learning methods, heuristic choice of
step size is often used. For example, the work in (Davis et al.
2007) adopted the Lagrange multiplier calculated from a sin-
gle supervisory similar/dissimilar constraint as the step size.
As a crucial caveat at the computational aspect, one shall
definitely avoid iteratively performing SVD of W+ ηG for
each candidate η. As shown later, the above consideration
has motivated our development of an algorithm which only
requires one-time SVD of W during the entire optimization.

Now we proceed to introduce the proposed Riemannian
retraction operator. The new method is based on the concept
of low-rank matrix manifold. Importantly, all d×d symmet-
ric matrices of rank k lie on a manifold embedded in the
ambient space R

d×d. Denote the manifold as

Md,k = {W : W ∈ Sd, rank(W) = k}. (14)

Each point W on Md,k defines a tangent space, de-
noted TWM. A typical Riemannian gradient descent-and-
retraction procedure consists of two consecutive operations:

1. Projection that casts the gradient G from the ambient
space into TWM, the tangent space at current solution;

2. Retraction that maps a point in the tangent space back to
the manifold of low-rank matrices.
The procedure is intuitively presented in Figure 2, where

G �→ Ĝ, Ĝ �→ W′ correspond to the projection and retrac-
tion operations respectively.

Let UΛU� be the thin SVD of the rank-k matrix W,
where U ∈ R

d×k defines the bases of W’s row/column
subspace and Λ ∈ R

k×k is a diagonal matrix. To define
the complemental subspace induced by U, we introduce the
notation R ∈ R

d×r (r = d−k) with RU� = 0,R�R = Ir
and UU� + RR� = Id. According to a standard ar-
gument in (Absil, Mahony, and Sepulchre 2007), for any

Figure 2: Illustration of Riemannian projection (G �→ Ĝ)
and retraction (Ĝ �→ W′).

symmetric matrix G, the orthogonal projection to the tan-
gent space THM can be accomplished by PTWM(G) :

G �→ Ĝ � PUGPU + PUGPR + PRGPU, where
PU = UU�,PR = RR� are known as projection ma-
trices. In fact, Ĝ is only used for algorithmic analysis and
need not be explicitly computed.

To ensure the new W′ reside on Md,k, a natural solu-
tion is explicitly expressing it as the product of two rank-k
matrices, namely W′ � KK� with K ∈ R

d×k. We here
adopt a constructive methodology for computing K. Specif-
ically, let us further assume that K = (W

1
2 + Z)U with

Z ∈ R
d×d. Recall that (U,R) are basis matrices comple-

mentary to each other, any Z can thus be equivalently repre-
sented as UZU + RZR, where ZU ∈ R

k×d,ZR ∈ R
r×d.

The real descent direction in practice is

G̊ � W′ −W

= (W
1
2 + Z)UU�(W

1
2 + Z)� −W

= ZUU�Z� +W
1
2UU�Z� + ZUU�W

1
2(15)

Now the retraction operation reduces to optimizing Z (or
ZU,ZR) under specific criterion. We choose to optimize
ZU,ZR, such that G̊ approximates G as accurate as pos-
sible in a least-squares sense1. In fact, letting U�G̊U =

U�GU and U�G̊R = U�GR obtains two equations:

ZUUU�Z�
U +Λ

1
2U�Z�

U + ZUUΛ
1
2 = U�GU (16)

ZUUU�Z�
R +Λ

1
2U�Z�

R = U�GR, (17)

Solving them obtains

ZUU = (U�GU+Λ)1/2 −Λ1/2 (18)

ZRU = (R�GU)(U�GU+Λ)−1/2. (19)

Plugging them into K = (W
1
2 + Z)U further obtains

K = (UΛ+GU)(U�GU+Λ)−1/2, (20)

and based on the assumption W′ = KK� we have

W′ = (UΛ+GU)([U�GU+Λ]+)
†(UΛ+GU)�, (21)

which is the new point after retraction. Note that U�GU+
Λ is not necessarily a PSD k × k matrix, which may lead to
a violation of W′ ∈ Sd

+. We thus abuse [·]+ in Eqn. (21) to
denote a function which abandons all negative eigen-values.

1In what follows, we ignore the step size η for conciseness.
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Complexity and Theoretic Results

We avoid iterative SVD of W by maintaining the latest k
eigen-pairs (U,Λ) (lines #13 and #18 in Algorithm 1). This
can be accomplished by an economic QR-decomposition of
UΛ + GU (line #10). In Algorithm 1, the most expen-
sive operation in Eqn.(21) stems from the computation of
U�GU. Other operations have time complexity of O(k3)
(eigen-decomposition in line #12) or O(dk2) (matrix multi-
plication such as in lines #9 and #11). To sum up, in com-
parison with conventional SVD-based projected gradient
method with O(d2k), our algorithm only computes U�GU
once for all possible step sizes and the other parts enjoy
largely reduced complexity in O(nk2 + k3).

It is interesting to analyze the difference between G̊ and
Ĝ. In fact, we have
Theorem 1 G̊ has the following properties: 1) the residual
G̊−Ĝ is in the normal direction of the tangent plane TWM;
2) tr(Ĝ�G̊) ≥ 0.

As argued in gradient descent method (Nocedal and
Wright 2006), G̊ is a descent direction only if tr(G�G̊) ≥
0, Theorem 1 ensures that G̊ is always positively correlated
with Ĝ, which is the projection of G on the tangent space. In
practice, we track the sign of tr(G�G̊) for quickly filtering
out non-descending directions, as seen in Algorithm 1.

Importantly, as our main theoretic observation, the pro-
posed computation in Eqn. (21) rigorously defines a second-
order Riemannian retraction operator:
Theorem 2 Let RW : TWM �→ M denote the retraction
function which describes the calculation of Ĝ �→ W′ in Fig-
ure 2. RW defines a second-order retraction on Riemannian
manifold. Specifically, it satisfies: 1) RW(0) = W; 2) Lo-
cal rigidity, namely the curve defined by γ

̂G(τ) = RW(τĜ)

satisfies γ̇
̂G(0) = Ĝ; and 3) PTWM

(
dRW(τ ̂G)

dτ2 |τ=0

)
= 0,

namely the second order derivatives are all normal to the
manifold.

All proofs of above theorems are deferred to the supple-
mental material due to space limit.

Experiments

In this experimental section we denote the proposed method
as fixed-rank metric learning (FRML).

Dataset Description: We adopt seven machine learning
benchmarks. Table 1 summarizes the important information
of the experimental data. We download three datasets, DNA,
Splice, Vowel, from the data repository of LibSVM.2 KD-
DCup043 represents the Quantum Physics dataset used for
KDD data mining competition. CIFAR104 is comprised of
images from ten semantic categories, such as “airplane” and
“horse”. COIL205 is another multi-view image object recog-
nition benchmark established by Columbia University. HAR

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
3http://osmot.cs.cornell.edu/kddcup/datasets.html
4http://www.cs.toronto.edu/∼kriz/cifar.html
5http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

Dataset #Sample #Feature #Class k
DNA 3,186 180 3 20
Splice 3,175 60 2 20
Vowel 990 10 11 5

KddCup04 50,000 65 2 20
CIFAR10 60,000 2,048 10 100
COIL20 1,440 1,024 20 100

HAR 10,299 561 6 100

Table 1: Summary of the benchmarks used in the experi-
ments.

stands for Human Activity Recognition, which is part of UCI
collection6 and contains sensor recordings from smart phone
accelerometer and gyroscope. For most benchmarks, we di-
rectly use the features provided by the repository organizers.
We extract visual features on CIFAR10 using the output of
some intermediate layer in deep networks (Jia et al. 2014),
and concatenate raw pixels as features for COIL20.

Baseline Algorithms: We carry out quantitative compar-
isons with seven baseline algorithms, including 1) Euclidean
(EU): the standard Euclidean distance; 2) Inverse Covari-
ance (InvCov): a Mahalanobis metric using the inverse co-
variance matrix as its metric matrix; 3) Principal Compo-
nent Analysis (PCA): a classic statistical tool designed for
data that are corrupted by Gaussian noises; 4) Supervised
Locality Preserving Projections (SLPP) (He 2005): it solves
a variational problem that optimally preserves the neighbor-
hood structure of the data set. We use its supervised vari-
ant. 3) Large Margin Nearest Neighbor (LMNN) (Wein-
berger and Saul 2009): the intuition underlying this work
is to simultaneously attract same-label instances into the
neighborhood and push away those with different labels;
4) Information-Theoretic Metric Learning (ITML) (Davis
et al. 2007): a work which popularizes LogDet regulariza-
tion in metric learning. It is fed by pairwise constraints and
updates the parameters from a single constraint at each it-
eration; 5) Sparse Distance Metric Learning (SDML) (Qi
et al. 2009): it also adopt LogDet divergence for regular-
izing the Mahalanobis metric. Meanwhile, an L1 sparsity
term is included to zero most off-diagonal elements in the
metric matrix, improving the robustness. For SDML, we
implement two efficient solvers using either graphicalLasso
(nearly identical to the original solver in (Qi et al. 2009))
or ADMM. After comparing the efficacy of these two ver-
sions, we adopt ADMM-based solver in the evaluations. For
other baseline algorithms, we use standard built-in routines
in Matlab or source codes obtained from the authors.
Accuracy and Speed: In all experiments, we randomly sam-
ple 50% data as the training set, and the rest for testing pur-
pose. 1,000 random samples in the test set (or the entire test
set for Vowel and COIL20) are treated as queries. A leave-
one-out scheme is utilized for evaluation. Specifically, we
retrieve the 50 nearest neighbors for each query from the
test set, and calculate the percentage of same-label samples
among them. The precision is averaged over all queries, ob-

6https://archive.ics.uci.edu/ml/datasets
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DNA Splice Vowel KDDCup04 CIFAR10 COIL20 HAR

EU 57.27± 0.66 61.67± 0.45 26.63± 0.30 60.84± 0.62 71.16± 1.38 45.72± 0.29 82.37± 0.62
InvCov 36.07± 0.24 56.90± 0.44 22.41± 0.45 60.38± 0.56 22.23± 1.25 7.22± 0.14 28.99± 0.68

PCA 70.37± 0.50 66.79± 0.64 26.73± 0.43 60.46± 0.46 71.87± 0.99 46.53± 0.40 82.47± 0.39
SLPP 74.24± 0.71 70.33± 0.84 28.42± 0.48 59.64± 0.62 71.19± 1.19 50.48± 1.13 91.50± 0.75

LMNN 86.31± 0.65 74.66± 0.70 32.44± 0.64 61.47± 0.54 75.04± 0.97 63.95± 0.37 97.05± 0.23
ITML 88.13± 1.54 76.10± 1.04 36.09± 1.68 62.73± 0.81 −− /−− 7.28± 0.14 94.94± 0.49
SDML 86.76± 0.65 72.78± 1.15 28.28± 0.63 62.74± 0.69 72.66± 1.23 46.90± 0.60 88.01± 0.57
FRML 91.88± 0.58 77.06± 0.58 39.01± 1.07 64.17± 0.82 79.19± 1.01 67.66± 0.61 94.26± 1.02

Table 2: 50-NN accuracies on the test set. All evaluations are conducted on four shared machines in a private large-scale cluster.
Each is equipped with 64 CPU cores and 760GB physical memory. All implementations are based on carefully optimized
Matlab code. On each benchmark the best accuracy is highlighted in bold. − − / − − implies the program does not converge
within one day.

Training Time (in seconds)
KDDCup04 CIFAR10 COIL20 HAR

PCA 0.07 13.78 4.50 1.16
SLPP 5.73 7.01 0.35 1.07

LMNN 272.79 2880.48 249.31 543.53
ITML 399.14 −− 89662.11 10054.13
SDML 72.76 63952.49 14595.21 4338.01
FRML 18.47 403.82 426.67 105.66

Table 3: Training time on four most time-consuming bench-
marks. Note that ITML does not converge on CIFAR10 in
one day.

taining average precision scores. 10 independent trials are
conducted to reduce the effect of randomness.

Regarding the parameter tuning, we empirically set the
target dimensions of SLPP, LMNN and our proposed FRML
(namely the fixed rank k), which are found in the last column
of Table 1. SDML is unable to specify the rank constraint.
The optimization threads of FRML and SDML terminate
when the relative improvement of objective values between
two consecutive iterations is below 10−5, or they reach the
maximum iteration count of 200 / 100 respectively. ITML
terminates after at most 100 passes over all constraints or
reaches its default solution precision. For LogDet based for-
mulations, one can choose either identity matrix or covari-
ance matrix as the prior. As suggested by (Qi et al. 2009),
we apply covariance matrix for SDML. We also empirically
compare both options for ITML, and report the better accu-
racies achieved with identity matrix. In Problem (9), λ is set
to be 10−4 in all experiments. The L1 sparsity parameter is
set as 10−3 for SDML. Moreover, both SDML and ITML
rely on k-NN affinity graphs, whose construction takes un-
affordable time on KDDCup04 and CIFAR10. We thus draw
10,000 random samples for approximate graph construction.

The recorded 50-NN accuracies and training time are seen
in Tables 2 and 3 respectively. Our proposed FRML dom-
inates by significant margins on 6 out of 7 benchmarks
in terms of accuracy and in par with other algorithms on
HAR. Regarding the training time, we find that ITML and
SDML are significantly slower than others, particulary on
high-dimensional data (such as CIFAR10). We arguably at-
tribute their low efficacy to the slow convergence rate of
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Figure 3: Illustration of rank(W) at different optimization
iterations for FRML. The figures correspond to CIFAR10
(left) and HAR (right) respectively. On both benchmarks
FRML converges in fewer than 200 iterations.

ITML (it computes a stochastic gradient from a single con-
straint each time, which is noisy) and iterative full eigen-
decomposition of SDML respectively. In comparison, our
proposed FRML only requires a one-time O(n2k) SVD for
all optimization and O(n2k) matrix product at each linear-
search iteration. The core computation enjoys O(nk2 + k3)
complexity, which explains the fast training of FRML in Ta-
ble 3.

Parameter Sensitivity: One may argue that FRML is sen-
sitive to the choice of rank k. In fact, we find in practice
that FRML is able to adaptively pursue a low-rank solu-
tion, even a high value of k is specified. Figure 3 shows
the evolutions of rank(W) at each iteration, on CIFAR10
and HAR respectively. Though k is initially set to be 100
on both benchmarks, the algorithm intelligently adjust the
rank of current solution. The ranks of final solutions stop at
78 and 52 for CIFAR10/HAR respectively. The implications
are two-folds: 1) the intrinsic discriminative dimension for
supervised metric learning is often very low compared with
the feature dimensions, 2) though the optimal k in FRML is
unable to be determined in theory, we can empirically assign
a relatively high value and are still able to expect a low-rank
solution eventually.
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Conclusions

We present a novel fixed-rank formulation for supervised
metric learning and propose a Riemannian manifold based
optimization method. The proposed FRML clearly distin-
guishes itself by elegant theoretic analysis and reduced com-
putational complexity. Our evaluations exhibit significant
improvements in terms of both accuracy and training time.
It is also potentially applicable for other rank-constrained
machine learning problems.
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