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Abstract

Due to the nonlinear but highly interpretable representations,
decision tree (DT) models have significantly attracted a lot
of attention of researchers. However, DT models usually suf-
fer from the curse of dimensionality and achieve degenerated
performance when there are many noisy features. To address
these issues, this paper first presents a novel data-dependent
generalization error bound for the perceptron decision tree
(PDT), which provides the theoretical justification to learn a
sparse linear hyperplane in each decision node and to prune
the tree. Following our analysis, we introduce the notion of
sparse perceptron decision node (SPDN) with a budget con-
straint on the weight coefficients, and propose a sparse per-
ceptron decision tree (SPDT) algorithm to achieve nonlinear
prediction performance. To avoid generating an unstable and
complicated decision tree and improve the generalization of
the SPDT, we present a pruning strategy by learning classi-
fiers to minimize cross-validation errors on each SPDN. Ex-
tensive empirical studies verify that our SPDT is more re-
silient to noisy features and effectively generates a small,
yet accurate decision tree. Compared with state-of-the-art DT
methods and SVM, our SPDT achieves better generalization
performance on ultrahigh dimensional problems with more
than 1 million features.

Introduction

Due to the nonlinear, but highly interpretable representa-
tions (Murthy, Kasif, and Salzberg 1994), decision tree (DT)
(Moret 1982; Safavian and Landgrebe 1991) has been a par-
ticularly powerful tool in various machine learning and data
mining applications, ranging from Agriculture (McQueen et
al. 1995), Astronomy (Salzberg et al. 1995) and Molecu-
lar Biology (Shimozono et al. 1994) to Financial analysis
(Mezrich 1994).

Many early works focus on the DT, in which each node
uses the value of a single feature (attribute) (Breiman et
al. 1984; Quinlan 1993) for decision. Since the decision of
those methods at each node is equivalent to an axis-parallel
hyperplane in the feature space, they are called axis-parallel
DT, which suffer from the curse of dimensionality. To im-
prove the performance of axis-parallel DT, researchers de-
veloped perceptron decision tree (PDT) (Bennett et al. 2000)
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in which the test at a node uses the linear combinations of
features. Clearly, PDT is the general form of axis-parallel
DT.

Many real-world problems, like documents and Microar-
ray data (Guyon and Elisseeff 2003), are represented as high
dimensional vectors. Many features in high dimensional
space are usually non-informative or noisy. Those noisy fea-
tures will decrease the generalization performance of DT
and derogate from their promising results for dealing with
non-linear separable data, especially when they are many
noisy features. For some applications like Microarray data
analysis (Guyon and Elisseeff 2003), it is desired to iden-
tify a small set of features that represent the original feature
space. Thus, it is imperative to develop a sparse DT with
respect to input features and its corresponding theory.

Another drawback for DT is that its performance is sensi-
tive to the tree structure, which is determined by the distribu-
tion of features. Thus, ensembles offer an effective technique
for obtaining increased accuracy by combining the predic-
tions of many different trees, like random forest feature
selection (RFFS) (Hastie, Tibshirani, and Friedman 2001)
and Gradient boosted feature selection (GBFS) (Xu et al.
2014). GBFS is an advanced gradient boosted DT (Fried-
man 2000), which employs gradient boosting to do fea-
ture selection in DT. GBFS, which belongs to axis-parallel
DT, shows its state-of-the-art feature selection performance
compared with l1-regularized logistic regression (Lee et al.
2006), RFFS, and some other promising baselines. Cost-
Sensitive Tree of Classifiers (CSTC) (Xu et al. 2013) is an-
other state-of-the-art approach for feature selection in DT,
which follows the PDT. Both are based on the l1-regularized
SVM (Zhu et al. 2003): minimizing l1-regularization plus
other loss functions. However, the theoretical and empirical
analysis in (Tan, Tsang, and Wang 2014) have shown that
l1-regularized methods achieve suboptimal performance in
feature selection, compared with the sparse model with an
explicit budget constraint on the weights.

Our main contribution is first to present a novel general-
ization error bound for the PDT, which takes into account the
distribution of the data, and provides the theoretical justifi-
cation to learn a sparse hyperplane classifier in each decision
node and prune the tree. From the analysis of our bound, the
training error loss, the margin, the capacity of the kernel ma-
trix defined on the training data (Tsang and Kwok 2006), and
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the complexity of the tree are the dominant factors that af-
fect the generalization performance of PDTs. In particular,
our bound indicates that decreasing training error loss and
the capacity of the kernel matrix, and enlarging the margin
can yield better generalization performance. Suppose linear
kernel is used, decreasing the capacity of the kernel matrix
can be done via feature selection. Thereafter, we introduce
the notion of sparse perceptron decision node (SPDN) to
perform feature selection and optimize training error loss
and margin simultaneously, and then develop a sparse per-
ceptron decision tree (SPDT) to achieve nonlinear predic-
tion performance. To obtain a stable DT structure, instead
of conducting ensemble, we propose an objective to learn
classifiers and to identify a universal feature subset that si-
multaneously minimizes the cross validation errors on each
SPDN. After that, we further diminish the generalization er-
ror by pruning the tree. Finally, extensive empirical studies
verify the effectiveness of our approach.

Related Work

OC1 (Murthy, Kasif, and Salzberg 1994) is a popular PDT,
which belongs to a randomized algorithm that performs a
randomized hill-climbing search to learn the classifiers and
builds the tree in a top-down approach. Murthy, Kasif, and
Salzberg (1994) show the competitive results of OC1 com-
pared with C4.5 (Quinlan 1993) (which is the famous axis-
parallel DT) and other baselines. Bennett et al. (2000) first
provide the margin bound for the perceptron decision tree
(PDT), then update the weights of OC1 with the maximum
margin for each node. However, the results of (Bennett et
al. 2000) show that the performance of modified-OC1 with
the maximum margin for each node is similar with OC1.
The main reason may be the data dependency of the bound
comes through the margin only.

Another strategy is the combination of bagging and build-
ing ensembles of trees. For instance, Random Forests by
Breiman (2001), is a popular method to control the gener-
alization error of decision trees. While this paper focuses on
single-tree performance on high-dimensional settings.

Region-specific and locally linear models (Jose et al.
2013; Oiwa and Fujimaki 2014) are an advanced technique
for dealing with the non-linear problem. Local deep kernel
learning (LDKL) (Jose et al. 2013) formulates the problem
from a local kernel learning perspective where they learn
tree-structured primal feature embedding and has shown its
superior performance in (Jose et al. 2013). Partition-wise
linear models (Oiwa and Fujimaki 2014) assign linear mod-
els to partitions and represent region-specific linear models
by linear combinations of partition-specific models. They
first formalize the problem as l0 penalizing problem and then
apply a convex relaxation with a combination of l1 penalties.
The model is similar with GBFS and CSTC, which is differ-
ent in penalizing terms.

Theoretical Results

Following (Bartlett and Mendelson 2002; Shawe-Taylor and
Cristianini 2004), this section provides the generalization er-
ror bound for the PDT, which takes into account the distribu-

tion of the data. We begin with some basic definitions. We
denote the transpose of vector/matrix by the superscript ′.
Let � represent the elementwise product sign. If S is a set,
|S| denotes its cardinality. Let R represent real number, X
be the input vector over R and Y = {−1, 1} be the output
space. Suppose sign(·) represents sign function; tr(·) de-
notes the trace of matrix argument; ln(·) represents the nat-
ural logarithm and Θ(·) returns 1 if its argument is greater
than 0, and zero otherwise. Ên denotes the empirical risk.
Let F be a class of functions mapping from X to R. We fol-
low the definitions in (Bartlett and Mendelson 2002) and use
Rn(F ) and Gn(F ) to denote the Rademacher and Gaussian
complexity of F , respectively.

Definition 1 (Generalized Decision Trees (GDT), Bennett et
al. (2000)). Given a space X and a set of Boolean functions
FGDT = {fGDT : X → {0, 1}}, the class of Generalized
Decision Trees over FGDT is the set of functions that can be
implemented using a binary tree where each internal node is
labeled with an element of FGDT , and each leaf is labeled
with either 1 or 0.

Definition 2 (Perceptron Decision Tree (PDT), Bennett et
al. (2000)). Given X = R

m, and assume g is a linear real
function over X and w ∈ R

m, a Perceptron Decision Tree
(PDT) is a GDT over

FPDT = {hw : hw(x) = Θ(gw(x)), gw(x) = w′x+ b}
Next, we introduce two important Theorems.

Theorem 1 (Bartlett and Mendelson (2002)). Let D be a
probability distribution on X × Y and let F be a set of real
valued functions defined on X , with sup{|F(x)| : F ∈ F}
finite for all x ∈ X . Suppose that φ : R → [0, 1] satis-
fies φ(α) ≥ 1 (α ≤ 0) and is Lipschitz with constant L,
then with probability at least 1 − δ with respect to training
samples S = {(x1, y1), · · · , (xn, yn)} drawn independently
according to D, every function in F satisfies

PD(y �= sign(F(x)))

≤ Ên(φ(yF(x))) + 2LRn(F ) +

√
ln(2/δ)

2n

Theorem 2 (Shawe-Taylor and Cristianini (2004)). Fix γ
and let F be the class of functions mapping from X × Y
to R given by f(x, y) = −yg(x) (x ∈ X , y ∈ Y),
where g is a linear function in a feature space induced by
a kernel k(·, ·) with Euclidean norm at most 1. Let S =
{(x1, y1), · · · , (xn, yn)} be drawn independently according
to a probability distribution D and fix δ ∈ (0, 1). Then, with
probability at least 1− δ over samples of size n we have

PD(y �= sign(g(x))) = ED[Θ(−yg(x))]

≤ 1

nγ

n∑
i=1

ξi +
4

nγ

√
tr(K) + 3

√
ln(2/δ)

2n

where K is a kernel matrix defined on the training data with
k(·, ·) and ξi = max(0, γ − yig(xi)).

The generalization error bound for PDT is given as fol-
lows:
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Theorem 3. Let T be a PDT, where the linear functions gw
in T are with the Euclidean norm at most 1. Suppose that the
depth of T is no more than d, and it contains no more than M
leaves. Let S = {(x1, y1), · · · , (xn, yn)} be the n sample,
which is generated independently according to a probability
distribution D. Then, we can bound the generalization error
with probability greater than 1− δ to be less than

∑
l

dl∑
i=1

Dl
i+

5cdMGn(T )

2
+

(
(3d+ 1)

√
nM + 1

)√ ln(6/δ)

2n

where c is a constant, dl(dl ≤ d) is the depth of leaf l,
Dl

i =
1

nlγl
i

∑nl

j=1 ξ
l
i,j +

4
nlγl

i

√
tr(Kl), nl denotes the num-

ber of samples Sl = {(xl
1, y

l
1), · · · , (xl

nl
, ylnl

)} reaching
leaf l, Kl is the kernel matrix for {xl

1, · · · , xl
nl
}, ξli,j =

max
(
0, γl

i − yli,jg
l
i(x

l
j)
)
, where yli,j represents the correct

output for input xl
j in decision node i and γl

i denotes the
corresponding margin.

Proof. For a tree of depth d, the indicator function of a leaf
is a conjunction of no more than d decision functions. More
specifically, if the decision tree consists of decision nodes
chosen from a class T of Boolean functions, the indicator
function of leaf l (which takes value 1 at a point x if x
reaches l and 0 otherwise) is a conjunction of dl functions
from T , where dl is the depth of leaf l. We can represent the
function computed by the tree as follows:

f(x) =
∑
l

σl

dl∧
i=1

hl,i(x)

where the sum is over all leaves l, σl ∈ {±1} is the label of
leaf l, hl,i ∈ T , and the conjunction is understood to map
to {0, 1}. Let F be this class of functions. Choose a family
{φL : L ∈ N} of cost functions such that each φL dominates
the step function Θ(−yf(x)) and has a Lipschitz constant L.
For each L, Theorem 1 implies that with probability at least
1− δ1:

P (y �= f(x))

≤ Ên(φL(yf(x))) + 2LRn(F ) +

√
ln(2/δ1)

2n

Define φL(α) to be 1 if α ≤ 0, 1 − Lα if 0 < α ≤ 1/L,
and 0 otherwise. Let P̃n(l) denotes the proportion of all the
samples in S which reach leaf l and are correctly classified.
Assume Sl = {(xl

1, y
l
1), · · · , (xl

nl
, ylnl

)} reach leaf l with
|Sl| = nl. Then we have

Ên(φL(yf(x)))

=
∑
l

∑
(xl,yl)∈Sl

Θ(−ylf(xl))

n
+
∑
l

P̃n(l)φL(1)

=
∑
l

∑
(xl,yl)∈Sl

Θ(−ylf(xl))

n
+
∑
l

P̃n(l)max(0, 1−L)

(1)

If no sample reaches leaf l, the sum term of leaf l in the
Eq.(1) is zero. Here we consider 1 ≤ nl < n. As L ∈ N, the
second term in Eq.(1) is zero. Following the generalization
error bounds w.r.t. Rademacher complexity in (Bartlett and
Mendelson 2002), with probability at least 1− δ2, we get:∑

(xl,yl)∈Sl
Θ(−ylf(xl))

n
≤
∑

(xl,yl)∈Sl
Θ(−ylf(xl))

nl

≤ P (yl �= f(xl)) +
Rn(F )

2
+

√
ln(2/δ2)

2nl

(2)

The probability of xl misclassified is equal to the prob-
ability of at least one decision node from the root to a
leaf l making the errors. Suppose {gl1, · · · , gldl

} are the lin-
ear functions with the Euclidean norm at most 1 and as-
sociated with each decision node from the root to a leaf
l. The corresponding margins are {γl

1, · · · , γl
dl
}. For input

xl ∈ {xl
1, · · · , xl

nl
}, the correct output of each decision

node from the root to a leaf l is denoted by {yl1, · · · , yldl
},

where yli ∈ {yli,1, · · · , yli,nl
}. By the union bound and Theo-

rem 2, with probability at least 1− δ3, we get the following:

P (yl �= f(xl))

=P
( dl⋃

i=1

(yli �= sign(gli(x
l)))

)

≤
dl∑
i=1

P (yli �= sign(gli(x
l)))

≤
dl∑
i=1

( 1

nlγl
i

nl∑
j=1

ξli,j+
4

nlγl
i

√
tr(Kl)

)
+3dl

√
ln(2/δ3)

2nl

(3)

Let δ1 = δ2 = δ3 = δ/3 and L = M . The results of Eq.(1),
Eq.(2) and Eq.(3) imply that with probability, at least 1− δ

P (y �= f(x))

≤
∑
l

dl∑
i=1

Dl
i+

5MRn(F )

2
+
(
(3d+1)

√
nM+1

)√ ln(6/δ)

2n

where Dl
i =

1
nlγl

i

∑nl

j=1 ξ
l
i,j +

4
nlγl

i

√
tr(Kl). Let c is a con-

stant. Theorem 12, Theorem 16 and Lemma 4 in (Bartlett
and Mendelson 2002) imply that Rn(F ) ≤ cdGn(T ), which
implies the result.

Theorem 3 reveals important factors to reduce the gener-
alization error bound for the PDT model: the first is to de-
crease the training error loss and the capacity of the kernel
matrix for each node, and the second is to enlarge the margin
for each node. We first enforce an upper bound budget B for
the capacity of the kernel matrix, i.e. tr(Kl) ≤ B. Suppose
there are n samples S = {(x1, y1), · · · , (xn, yn)}, xi ∈ R

m

(xi = [xi,1, · · · , xi,m]′). Since we use linear kernel here, de-
creasing the capacity of the kernel matrix can be transformed
to a budget constraint on the weight coefficients, which leads
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to a feature selection problem for the linear decision func-
tion. Mathematically, let K̂ denote the kernel matrix on the
re-scaled instance: x̂i = xi � �, where � = [�1, · · · , �m]′ ∈
{0, 1}m represents a feature selection vector. The capac-
ity constraint on the kernel matrix is tr(K̂) ≤ B, then
tr(K̂) =

∑n
i=1 �

′(xi�xi) ≤ nx̃max

∑m
j=1 �j , where x̃max

be the maximum element in [x1 � x1, · · · , xn � xn]. Let
B/nx̃max = B, where B is a budget constraint on the
weight coefficients. Thus tr(K̂) ≤ B can be transformed
to

∑m
j=1 �j ≤ B, � ∈ {0, 1}m. Then we learn a sparse lin-

ear decision function on each node by minimizing the train-
ing error loss and maximizing the margin at the same time.
Based on Theorem 3, we hereinafter introduce the notion of
sparse perceptron decision node (SPDN).
Definition 3 (Sparse Perceptron Decision Node (SPDN)).
Assume there are n samples S = {(x1, y1), · · · , (xn, yn)}
drawn independently according to a probability distribution
D, where xi ∈ R

m (xi = [xi,1, · · · , xi,m]′) and yi ∈ {±1}.
� = [�1, · · · , �m]′ ∈ {0, 1}m represents a feature selection
vector. Let K̂ denote the kernel matrix on the re-scaled in-
stance: x̂i = xi�� and the capacity constraint on the kernel
matrix can be transformed as

∑m
j=1 �j ≤ B with a budget

B. A sparse perceptron decision node contains a linear deci-
sion function gw(x) = w′(xi��+ b), ||w||2 = 1, where the
parameters are obtained by solving the following problem :

min
�∈E

min
w,ξ,γ

−γ + C

n∑
i=1

ξi

s.t. yiw
′(xi � �+ b) ≥ γ − ξi, ξi ≥ 0, i = 1, · · · , n

||w||2 = 1, γ ≥ 0

(4)

where E = {� ∈ {0, 1}m|∑m
j=1 �j ≤ B} and B is a budget

constraint on the weight coefficients.

Sparse Perceptron Decision Tree

In this section, we first present an algorithm for SPDT, then
develop the technique for learning a classifier at SPDN. Af-
ter that, we present a pruning strategy to improve the gener-
alization of SPDT.

Algorithm for SPDT

We build an SPDT in a top-down approach. Starting from
the root, we train one linear decision function on each SPDN
and use it to split the training data into two child nodes. This
process continues until the remaining data at the node can-
not be further split by the induced classifier. The details are
stated in Algorithm 1.

Decision Function Learning at SPDN

For the sake of clarity, we consider the function with-
out an offset, although the model can be extended to
the function with the offset. For the inner minimization
problem of Eq.(4), the corresponding Lagrangian func-
tion is: L(w, ξ, γ, α, λ, ψ, ν) = −γ + C

∑n
i=1 ξi −∑n

i=1 αi(yiw
′(xi � √

�) − γ + ξi) + λ(‖w‖2 − 1) −∑n
i=1 ψiξi− νγ, with αi, λ, ψi, ν ≥ 0. Differentiating w.r.t.

Algorithm 1 Sparse Perceptron Decision Tree (SPDT)
Input: Training data S = {(x1, y1), · · · , (xn, yn)}, where

xi ∈ R
m and yi ∈ {±1}.

Output: A sparse perceptron decision tree
1: while SPDN contains more than one class do
2: train one classifier for this SPDN
3: split the training data of this node into left child if

those instances are predicted to be positive by the
classifier and call Algorithm 1 with split data as the
input.

4: split the rest of training data of this node into right
child and call Algorithm 1 with the remaining data as
the input.

5: end while
6: Return the complete sparse perceptron decision tree.

the primal variables and substituting the relations obtained
into the primal, we obtain the following dual objective func-
tion: L(α, λ, �) = − 1

4λ

∥∥∑n
i=1 αiyi(xi � �)

∥∥2 − λ. Opti-
mising λ gives λ∗ = 1

2‖
∑n

i=1 αiyi(xi � �)‖, resulting in
L(α, �) = −∥∥∑n

i=1 αiyi(xi � �)
∥∥. Thus, Eq.(4) can be

equivalently reformulated as the following problem:

min
w,�

SPDN(w, �, S)=min
�∈E

max
α∈A

−1
2

∥∥∥ n∑
i=1

αiyi(xi��)
∥∥∥2 (5)

where A = {α|∑n
i=1 αi ≥ 1, 0 ≤ αi ≤ C, i = 1, · · · , n}.

Though Eq.(5) is a mixed-integer problem, we can adapt
the feature generating machine (FGM) (Tan, Wang, and
Tsang 2010; Zhai et al. 2012; Tan, Tsang, and Wang 2013;
2014) to solve it efficiently. As shown in Algorithm 1 of
(Tan, Tsang, and Wang 2014), the optimization strategy of
FGM is the same as the cutting plane algorithm, which in-
volves two major steps: worst-case analysis and master-
problem optimization.

Worst-case analysis For the fixed α, we need to solve

max
�

1

2

∥∥∥ n∑
i=1

αiyi(xi � �)
∥∥∥2 :

m∑
j=1

�j ≤ B, � ∈ {0, 1}m (6)

This is transformed as max�
∑m

j=1
1
2 (
∑n

i=1 αiyixi,j)
2�j

subjected to
∑m

j=1 �j ≤ B, � ∈ {0, 1}m, which is a linear
integer programming (LIP) problem. We speed up solving
this problem by the sorting method.

Master-problem optimization The solution �t of Eq.(6)
at each worst-case analysis is added to a candidate set, then
we employ a multiple kernel learning (MKL) model with
base kernels corresponding to each �t in the candidate set
to solve the convex relaxation of Eq.(5). The resultant MKL
problem can be solved efficiently by the modified acceler-
ating proximal gradient (APG) method developed in (Tan,
Tsang, and Wang 2014), which takes O(nTB) time com-
plexity, where T is the number of the worst-case analyses.

SPDT Pruning

Theorem 3 reveals that the generalized bound also depends
on the depth and leaves of the tree, which appear in the sec-
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Figure 1: Testing error rates (in %) on the XOR synthetic
data with different # noisy features.

ond and third terms of the bound. Inspired by this, we can
reduce the depth and leaves of the tree by pruning the tree
to further diminish the generalization error. We follow the
pruning strategy in (Xu et al. 2013) to conduct pruning for
SPDT. To this end, we present to use the cross validation
(CV) for each node to estimate the generalization error. If
the sum of CV errors of child nodes is bigger than that of
the parent node, we remove those child nodes.

It is obvious that any slight changes in the data distribu-
tion result in generating different feature subsets for many
feature selection methods, like (Xu et al. 2013; 2014). To
identify a stable and unique feature subset across different
folds of CV, we introduce the universal feature selection vec-
tor �uni, which is selected by the following formulation:

min
wυ,�uni

∑
υ

SPDN(wυ, �uni, Sυ) (7)

where Sυ represents the υ−th fold of training data, wυ is the
corresponding weight vector. To solve Eq.(7), we first con-
duct the worst-case analysis using the sum of objectives of
each data fold. Then, we get the universal feature selection
vector �uni and based on this, we adapt the efficient Master-
problem solvers in (Tan, Tsang, and Wang 2014) to get the
wυ for each data fold separately. We repeat those procedures
until convergence. This framework is called embedded cross
validation. By using this method, we can find an intrinsic set
of features.

For prediction, we aggregate the outputs from classifiers,
which is generated from each data fold, by means of voting.

Experiment

In this section, we conduct comprehensive experiments to
evaluate the proposed method on both synthetic and high di-
mensional real-world data sets. Most data sets are collected
from this website1. pcmac data set is from (Xu et al. 2014).
Data sets used in this paper is described in Table 1.

We compare SPDT with a number of baseline methods:
standard SVM (l2-SVM)2, CART-LC (Breiman et al. 1984),
OC1 (Murthy, Kasif, and Salzberg 1994), LDKL (Jose et al.

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
2https://www.csie.ntu.edu.tw/∼cjlin/liblinear/

Table 1: Datasets used in the experiments

DATASET # FEATURES # TRAINING # TESTING

colon 2,000 32 30
pcmac 3,289 1,555 388
gisette 5,000 6,000 1,000
epsilon 2,000 21,767 14,511
rcv 47,236 12,146 8,096
news20 1,355,191 3,000 2,000

2013), GBFS (Xu et al. 2014), CSTC (Xu et al. 2013) and
FGM (Tan, Tsang, and Wang 2014). We use the linear clas-
sification/regression package LIBLINEAR (Fan et al. 2008)
with L2-regularized square hinge loss (primal) to implement
standard SVM. We compare with LDKL, which uses com-
posite non-linear kernels, achieves significantly better clas-
sification accuracies as compared to localized multiple ker-
nel learning (Gönen and Alpaydin 2008) (LMKL, which is
competitive with RBF-SVM) and other state-of-the-art non-
linear methods. Therefore, we do not compare with other
nonlinear SVMs. The codes of other baseline methods are
provided by their authors.

We use 5-fold cross validation to prune SPDT. Following
the parameter settings in (Tan, Tsang, and Wang 2014), B is
chosen in a range of {2, 5, 10, 20, 50, 100, 150, 200, 250} for
the rcv data set and {0.01m, 0.02m, · · · , 0.09m} for other
data sets; C is selected using 5-fold cross validation over
the range {0.001, 0.01, 0.1, 5, 10} for the first three data sets
and we fix C = 5 for larger data sets like epsilon and rcv.
The tree-depth is fixed to 3 in LDKL, following the settings
in (Oiwa and Fujimaki 2014).

Experiments on Synthetic Data

We compare the performance of different methods on the
XOR synthetic data with different numbers of noisy fea-
tures, which is non-linearly separable. Following the strat-
egy in (Tan, Tsang, and Wang 2014), we generate the syn-
thetic data as follows: At first, we generate 10,000 training
instances, 2,000 testing instances and 200 features. The first
two dimensions are informative features, which are sampled
from the i.i.d. Gaussian distributionN (0, 1). The remaining
dimension are noisy features, which are sampled from the
i.i.d. Uniform distribution U(0, 1). The output y is decided
by those two informative features. For instance, if the first
two features have the same sign, then y is 1 and -1 otherwise.
Then, we gradually increase the noisy features to the dataset
and test whether the considered methods can successfully
identify the former two informative features and have stable
and accurate classification performance. Figure 1 (left panel)
shows two informative features. We fix B = 1 for SPDT.

Figure 1 (right panel) shows that: 1) l2-SVM cannot work
on the XOR data set. 2) FGM has shown impressive results
in (Tan, Tsang, and Wang 2014), but it cannot work on the
XOR data set as well. 3) When the number of noisy features
equals 200, CART-LC and OC1 are a bit better than l2-SVM;
GBFS and CSTC are much better than other baselines. How-
ever, CART-LC, OC1, GBFS and CSTC are sensitive to the
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Table 2: Testing error rates (in %) for different methods.
Numbers in parentheses indicate the depth of tree. The best
results are in bold.

DATASET l2-SVM CART-LC OC1 LDKL SPDT

colon 20.00 40.91(2) 33.33(2) 16.67 13.33(1)
pcmac 7.47 16.22(2) 9.68(6) 7.99 7.22(2)
gisette 2.30 48.17(5) 18.83(6) 2.80 2.20(2)
epsilon 13.24 49.40(2) 47.66(4) 15.36 12.45(8)
rcv 4.05 17.13(6) 48.68(3) 3.90 3.85(5)

number of noisy features. 4) LDKL and SPDT are most suc-
cessful, while our model generates more stable and accurate
results.

Experiments on Real-world Data

Classification Performance To verify the effectiveness of
conducting feature selection in the decision tree, we evalu-
ate the classification performance of SPDT on all data sets
compared with l2-SVM, CART-LC, OC1 and LDKL. The
results are shown in Table 2.

The results of Table 2 show that: 1) CART-LC and OC1
generally underperform on all data sets. The results support
the argument of this paper: DT models usually suffer from
the curse of dimensionality and achieve degenerated perfor-
mance on high dimensional data sets, which boosts our ap-
proach. 2) SPDT gets a lower error rate than l2-SVM and
LDKL. It is important to generate different hyperplanes with
maximum-margin based on different sets of features. Thus,
the results verify the effectiveness of conducting feature se-
lection in the DT. 3) SPDT has the best performance com-
pared with baselines, while generating a small tree.

Feature Selection Performance We evaluate the feature
selection performance of SPDT on pcmac, gisette, epsilon
and rcv data sets compared with sparse classifier models,
such as GBFS, CSTC and FGM. CSTC runs out of mem-
ory on rcv. The results of Figure 2 show that: 1) FGM and
SPDT clearly outperform GBFS and CSTC in terms of fea-
ture selection performance, which verifies that the sparse
models with an explicit budget constraint on the weights
are more effective than l1-SVM based approaches. 2) SPDT
outperforms FGM. Thus, it is imperative to utilize the tree-
structure to conduct feature selection.

High-dimensional Results We evaluate our method on
the news20 data set with 1,355,191 features. As CART-LC,
OC1, LDKL, GBFS and CSTC are very slow on this data set,
we compare our method with l2-SVM and FGM only on this
data set. For l2-SVM, the error rate is 13.2%. Other results
are reported in Table 3. For news20, when selecting 1,000
features in high dimensional results, the training time for
our SPDT is 31.8 seconds. So SPDT can efficiently handle
the high-dimensional data set with 106 features and achieve
superior performance compared with FGM and SVMs.

Training Time Some baselines like l2-SVM, GBFS and
LDKL are written in C++; while CSTC and SPDT are imple-
mented in Matlab. In each SPDN, the learning model can be

Table 3: Testing error rates (in %) for FGM and our method
on news20 data set. The better results are in bold.

# Selected features FGM SPDT

300 13.85 3.40

800 9.15 2.70

1,000 9.40 2.45

Table 4: Training time (in second) for GBFS and our method
on rcv data set. The faster results are in bold.

# Selected features GBFS SPDT

100 874.2s 5.9s
500 5214.8s 12.0s
900 8523.3s 41.9s

solved by efficient feature selection methods, such as FGM3.
We use the rcv data set for time comparison. The results are
shown in Table 4. Since CART-LC, OC1 and CSTC are very
slow on this data set, we cannot report their training time
here. Even though GBFS and LDKL are written in C++,
from Table 4, we can see that, the training of our method
is much faster than that of GBFS, and it is also much faster
than LDKL, which takes 8019.3s.

Conclusion

In this paper, we first develop a new generalization error
bound for the PDT, where the data dependency of the bound
comes through the training error loss, the margin and the ca-
pacity of the kernel matrix defined on the training data. It
provides the theoretical justification to learn a sparse linear
hyperplane in each decision node and to prune the SPDT.
Our analysis reveals a new insight for the design of decision
tree algorithms. Compared with state-of-the-art baselines,
the results on the synthetic data set show that SPDT is more
resilient to noisy features; and empirical studies on real-
world data sets demonstrate that SPDT generates a small,
yet more accurate decision tree for high dimensional data,
and can identify more informative features than state-of-the-
art feature selection methods. Moreover, the training of our
SPDT is much more efficient than other decision tree algo-
rithms. In future, we will explore how to extend the work to
multi-class problems.
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