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Abstract

Many natural and social phenomena can be modeled by inter-
action point processes (IPPs) (Diggle et al. 1994), stochastic
point processes considering the interaction between points. In
this paper, we propose the infinite branching model (IBM),
a Bayesian statistical model that can generalize and extend
some popular IPPs, e.g., Hawkes process (Hawkes 1971;
Hawkes and Oakes 1974). It treats IPP as a mixture of ba-
sis point processes with the aid of a distance dependent prior
over branching structure that describes the relationship be-
tween points. The IBM can estimate point event intensity, in-
teraction mechanism and branching structure simultaneously.
A generic Metropolis-within-Gibbs sampling method is also
developed for model parameter inference. The experiments
on synthetic and real-world data demonstrate the superiority
of the IBM.

Introduction

The evolving of our world can be regarded as a series of
events, many of which are generally nonindependent. One
event may cause or repel the occurrences of others. Ex-
amples can be readily found in various of areas. For in-
stance, many biological phenomena compete for local re-
sources, hence demonstrate spatial over-dispersion prop-
erty. Strong clustering patterns are often observed by seis-
mologists (Marsan and Lengliné 2008) and epidemiolo-
gists (Yang and Zha 2013), as earthquakes and epidemics are
well known diffusible events. Buy and sell trades in financial
markets also arrive in clusters (Hewlett 2006). Information
prorogation in social network shows contagious and cluster-
ing trait (Yu, Xie, and Sanner 2015). All these events exhibit
strong interactive property. Understanding their character-
istics can help us categorize, predict and manipulate these
events, thereby making positive impacts in our physical and
social world.

Despite the high diversity of the aforementioned areas,
there are three common tasks for understanding these inter-
active events: (1) Event intensity estimation, which aims at
predicting the number of events for a specific time period. It
helps to gain insight into the temporal trends in events. (2)
Interaction mechanism estimation, which tries to reveal the
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triggering or repelling mechanism of events. It provides in-
formative hints for dissemination control and influence ma-
nipulation. (3) Branching structure! estimation, in which the
relationship between events is inferred. It helps to determine
the connection of events, understand the underlying causal
structure and support event grouping. These three tasks tan-
gle with one another, making the overall problem complex.
As a result, most existing approaches only consider one or
two of these tasks.

Stochastic point process (Vere-Jones 1988) provides us a
generic yet adaptable tool for modeling series of events oc-
curring at random locations and times. It considers a random
collection of points falling in some space. When modeling
purely temporal events, each point represents the time of an
event and the space in which the points fall is simply a por-
tion of the real line. A variety of point processes has been
developed with distinct modeling purposes. In this paper,
we mainly focus on interaction point processes (IPPs) (Dig-
gle et al. 1994; Ripley 1977) that model not only the gen-
eration of points but also their interactions. Specifically, a
Bayesian statistical model, which can generalize and extend
some popular IPPs, e.g., Hawkes process (Hawkes 1971;
Hawkes and Oakes 1974), is proposed with the considera-
tion of the aforementioned three tasks.

Many statistical methods exist for modeling events in spa-
tial and temporal space, and most of them make an ex-
changeability assumption on a certain component of the
overall model (Orbanz and Roy 2013). For instance, ran-
dom walk models (Bacallado et al. 2013) and the infi-
nite hidden Markov model (Beal, Ghahramani, and Ras-
mussen 2001), which are widely used for discrete time se-
ries, assume Markov exchangeability (Diaconis and Freed-
man 1980; Zabell 1995) implying that the joint probability
only depends on the initial state and the number of tran-
sitions. Lévy process, the continuous time analog of ran-
dom walk and the foundation of many other widely used
continuous time models, assumes exchangeability over in-
crements. Another popular example is dependent Dirichlet
process (DDP) (MacEachern 1999) which is marginally ex-
changeable (Orbanz and Roy 2013). It means that DDP is a
random measurable mapping whose output is an exchange-

!The formal definition of branching structure will be given later.
It can be understood as relationship between events for now.



able random structure.

However, in general, the observed events in spatial and
temporal space are seldom exchangeable, especially for
their dependencies. Distance dependent Chinese Restaurant
process (ddCRP) (Blei and Frazier 2011) is a simple yet
flexible class of distributions over partitions allowing non-
exchangeability. It can be used for directly modeling depen-
dencies between data points in infinite clustering models and
the dependencies can be across space and time. In this paper,
we adapt the ddCRP as a prior over the branching structure
of spatial and temporal events. With its support, a Bayesian
statistical model is proposed treating IPP as a mixture of ba-
sis point processes (bPPs). It allows discovery of a poten-
tially unbounded number of mixing bPPs, while simultane-
ously estimating branching structure. We therefore call our
approach the infinite branching model (IBM).

The IBM is also related to the infinite relational model
(IRM). The IRM aims at inferring meaningful latent struc-
ture within observed graph or network. An unbounded num-
ber of blocks of nodes with similar behavior can be automat-
ically revealed with the support of the CRP prior on node
partitions. But the IBM is interested in discovering the im-
plicit branching structure of a collection of spatial and tem-
poral points based on their positions and distances in space.
In terms of the adopted prior for partition, the IBM can be
regarded as a distance dependent version of IRM, but for
discovering latent branching structure in spatial and tempo-
ral space.

Interaction Point Processes

Interaction point process® (Diggle et al. 1994; Ripley 1977)
is a broad range of stochastic point processes that can
model various of interaction mechanisms, e.g., Hawkes
process (Hawkes 1971; Hawkes and Oakes 1974), cas-
cades of Poisson processes (Simma and Jordan 2010) and
Neyman-Scott process (Neyman and Scott 1958). The work
in (Adams 2009) provides a brief summary of some popular
IPPs. In this section, we use Hawkes process as an illustra-
tion to introduce IPP and show that many popular IPPs can
be defined via a Poisson cluster process (Hawkes and Oakes
1974) inspired by which we can later define a mixture model
with Poisson processes as bPPs for generalizing and extend-
ing these IPPs.

Hawkes Processes

Hawkes process is one of the most general and flexible IPPs.
Its formal definition can be given via conditional intensity
function. Let X = {t;}, be a stochastic point process on
temporal space, where ¢; € R indicates the time of point.
Hawkes process is a family of point processes having the
following form of conditional intensity function:

) = u(t) + 37 aB(t — ).

t;<t

ey
Function p(t) is a non-negative function on R, representing
immigrant intensity. Variable « is a non-negative parameter

2Specifically in this work, we only consider pair-wise interac-
tion point processes.
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representing total offspring intensity. Function 5(t) is a den-
sity function defined on [0, 00), indicating normalized off-
spring intensity. Typical normalized offspring intensities are
in decay function form, e.g., exponential decay function and
logistic decay function. Thus, we can see that the triggering
effect of a point appears immediately after its occurrence
and quickly decays in certain ways, thereby showing clus-
tering patterns. The product «3(t) represents the offspring
intensity. The meaning of the intensity and parameter names
will become clear in the following. It is worth noting that we
use A(t) to represent intensity function conditioned on pre-
vious points with the consideration of notation simplicity.

As discussed in (Hawkes and Oakes 1974), Hawkes pro-
cess can also be viewed equally as a Poisson cluster process
that is constituted by a collection of Poisson processes fol-
lowing a certain branching structure. There are two types of
points in a Poisson cluster process, immigrant and offspring.
The generative procedure of points for a Poisson cluster
process can be described as following: (1) The immigrant
points t; € I are generated via a Poisson process with an
immigrant intensity p(¢). (2) Every immigrant point ¢; can
generate a cluster of offspring points and the clusters are in-
dependent. (3) Within each cluster, points are organized in
generations. Generation 0 is simply the immigrant point it-
self. Every point ¢; of a generation can recursively generate
a Poisson process O, with an offspring intensity 5 (t — ¢;),
forming the next generation. (4) Finally, Poisson cluster pro-
cess is the combination of all points.

If a point ¢; is generated by a Poisson process O;, namely
t; € Oy, then we say that point ¢; is a child of point ¢; and
point ¢; is the parent of point ¢;. The collection of all the
parent-child relationships forms the branching structure, de-
noted by C = {¢;}. ¢; = ¢ means point j is the child of
point 7 and ¢; = j means point j is an immigrant point. It
is worth noting that for traditional Hawkes process, the off-
spring intensities are the same for all the points. But we can
extend it by allowing different offspring intensities for dif-
ferent clusters. The details will be described in the proposed
method. Besides, cluster Poisson process is recursively de-
fined, which means more than one generation of descendants
can be generated.

Other Types of Interaction Point Processes

While Hawkes processes address an important case in which
an occurrence of a point can cause additional points in near
future, there exist other types of IPPs. Interestingly, we
can find that, within the Poisson cluster process framework,
many IPPs with distinct interaction mechanisms can be de-
fined by choosing different offspring intensity functions.
Due to the space limit, we only make a few examples to illus-
trate it. For instance, cascades of Poisson processes (Simma
and Jordan 2010) can be defined as a Poisson cluster pro-
cess in which offspring intensity function considers all the
previous points in its previous generation instead of just its
parent. Neyman-Scott process (Neyman and Scott 1958) is
a Poisson cluster process that only allows one generation
of offspring. For repulsive point processes (Adams 2009;
Snoek, Zemel, and Adams 2013), which show inhabitation
behaviors, intensity increment is suppressed once a point



occurs and released in certain ways when the point is far
away. Thus, they can be defined as Poisson cluster pro-
cesses via, for instance, a Gaussian or Weibull shape off-
spring intensity. As discussed in (Simma and Jordan 2010),
periodic activity can also be modeled by Poisson cluster
process by using a step function of time as the offspring
intensity. Moreover, it is possible to obtain complex in-
teraction mechanisms by defining offspring intensity as a
mixture of base intensities as described in (Hawkes 1971;
Zhou, Zha, and Song 2013). Hence, all these IPPs can be
unified and generalized with the support of the Poisson clus-
ter process.

The Infinite Branching Model

Inspired by the Poisson cluster process, in this work, we pro-
pose a Bayesian statistical model, the IBM, that generalizes
IPPs as a mixture of Poisson processes. The key component
of the IBM is a distance dependent prior over branching
structure of points. As mentioned in the introduction sec-
tion, most of the statistical models designed for spatiotem-
poral events assume exchangeability, which is unrealistic for
modeling point dependencies. Hence, we adapt the ddCRP,
a class of non-exchangeable distributions over partitions, as
a prior of branching structure.

The ddCRP is a generalization of the Chinese restaurant
process (CRP) that is an exchangeable prior on partitions for
many popular Bayesian nonparametric models. Unlike CRP,
the ddCRP assumes non-exchangeability of data. The order
of data affects the distribution of partition structures. It pro-
vides a data clustering scheme via the following metaphor.
Suppose there is a Chinese restaurant that has an infinite
number of tables. A sequence of customers enter and se-
lect a table to sit. Customer chooses a table to sit via cus-
tomer assignment. A customer is either assigned to another
customer with probability proportional to a decay function
output depending on their distance, or assigned to herself or
himself with probability proportional to a concentration pa-
rameter. Customer always sits with her or his assigned cus-
tomer. Thus, table assignment can be obtained via customer
assignment as a byproduct.

The direct modeling of customer relationships and its
non-exchangeability property make the ddCRP suitable as
a prior for branching structure of stochastic points in spa-
tiotemporal space. In the IBM, customers represent points,
tables represent point clusters. Customer assignments repre-
sent point connections. We say point j is the child of point ¢
(or point j is triggered by point ) if point j is assigned with
point ¢. The distribution of point assignment can be formally
described as:

p(e; = iln, f, D) o { Fldy) e fj. @)
n ifi=j,
where c; indicates the point assignment for point j, d;; is the
distance between the points ¢ and j, D is the matrix defining
pair-wise point distances, and f(-) is a function that medi-
ates how the distance affects the probability of point con-
nection, e.g., window decay function. It reflexes the prior
belief of branching structure. It also makes sure that a point

can only be assigned to a previously occurred point. A point
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is an immigrant if it is assigned to itself, and it is an off-
spring otherwise. Hence, the concentration parameter 7 con-
trols how likely a point is an immigrant. As we can see that
the point type can be determined by point assignment. Point
clustering can also be obtained via point assignment indi-
rectly. As in the CRP, each point cluster is endowed with
a specific point generation scheme. It is also worth noting
that the overall collection of point assignments C' = {c¢;}
can now equally represent the branching structure C' as de-
scribed in the previous section. Thus, the ddCRP can be used
as a distribution over branching structures. In the following,
we use R(c1. ) to represent the mapping from point assign-
ment to point cluster assignment, R*(cy.y) to represent the
immigrant of the corresponding cluster, and R (c1.n) torep-
resent the offspring of the corresponding cluster.

With the support of the branching structure prior, the IBM
can be formally defined. Unlike traditional Hawkes process
in which all point clusters share the same offspring inten-
sity, the IBM can allow different offspring intensities for
different clusters, which grants more flexibility for model-
ing real-world events. For defining a concrete model, we as-
sume both immigrant intensity and total offspring intensity
are constant variables drawn from exponential distributions.
Normalized offspring intensity is in exponential distribution
form, B(t) = A% exp(—\Pt), with \? as its inverse scale pa-
rameter drawn from a Gamma distribution. The IBM can be
described as following for generating a sequence of points
{ti}:

1. Sample immigrant intensity p ~ Exponential(\*).

2. Sample ¢; from PP(u), sample its total offspring in-
tensity oy ~ Exponential(A\*) and sample inverse scale
parameter for its normalized offspring intensity )\/13 ~
Gamma(a', 3').
3. Forn >1:

~1

(a) Sample t,, > t,,_q from PP(pu+ Y ;|

aifilt — 1)
(b) Sample point assignment ¢,, ~ ddCRP(n, f, D). Itin-
directly determines cluster assignment and point types:
R(cy), R*(c,) and R (¢y,).
(¢) If t,, is an offspring, then set a, = gy, ) and AP =
AP
R(cn)
tal offspring intensity ag(c,) ~ Exponential(A*) and
sample inverse scale parameter for its normalized off-
spring intensity )\f{(cn) ~ Gamma(a, ).

. Otherwise, for a new cluster, sample its to-

In the above, A, A%, o and B " are hyper-parameters. PP(-)
indicates a Poisson process. Samples can be drawn from an
inhomogeneous Poisson process by utilizing a thinning pro-
cess, a point process variant of rejection sampling. Specif-
ically, the Ogata’s modified thinning (Ogata 1981) can be
used, as summarized by the Algorithm 7.5.IV in (Vere-Jones
1988). The model can be readily simplified for mimicking
the traditional Hawkes process. Although we adopt expo-
nential distribution form for normalized offspring intensity,
other distribution forms or combinations can be used for
modeling different interaction mechanisms, e.g., spatiotem-
poral interaction. It has been noted that the CRP can be



regarded as a special case of the ddCRP. As a result, the
branching structure prior in the IBM can become exchange-
able in terms of clustering when the ddCRP prior degrades
to the CRP. It means that the probability of a point belong-
ing to a cluster only depends on the number of points that
are already in the cluster.

Hierarchical Model

It is always desirable to discover latent hierarchical struc-
ture from data. For IPPs, it is beneficial to reveal the rela-
tionship between point clusters. For instance, finding similar
clusters of buy and sell trades in financial market can be in-
sightful for making trading strategy. Hence, we extend the
IBM to a hierarchical model in which similar point clus-
ters can form a hyper-cluster sharing the same offspring
intensity. For defining a concrete extension, we again as-
sume p and « are constant variables drawn from exponen-
tial distributions. But, for this time, we let normalized off-
spring intensity be in Weibull distribution form for show-
ing its capability of capturing different interaction mecha-

nism: (1) = (K /A7) (15//\[3)kﬁ_1 e~/ "*" The hierarchi-

cal model is described as follow:

1. Sample immigrant intensity ;4 ~ Exponential(A*).

2. Sample ¢; from PP(u), sample its total offspring in-
tensity «; ~ Exponential(A\%) and sample inverse scale
parameter for its normalized offspring intensity )\f ~
Gamma(c/', 3').

3. Forn > 1:

(a) Sample t,, > t,,_1 from PP (u + Z?;ll a; Bi(t —t;))

(b) Sample point assignment ¢,, ~ ddCRP(n, f, D). Itin-
directly determines cluster assignment and point types:
R(cy), R*(c,) and R (cy,).

(c) Sample hyper-cluster assignment hp(,) ~ CRP(Y),
~ is the concentration parameter for CRP.

(d) If R(c,) belongs to an existing hyper-cluster, then
set oy, = Qpy, , and Bn = BhR(ci)' Otherwise,
for a new hyper-cluster, sample its total offspring in-
tensity «p ~ Exponential(A*), and sample scale
parameter for normalized offspring intensity )\5 ~
InverseGamma(a', 8').

In the above, A\, \%, a/, B/ and kP are hyper-parameters. It
is worth noting that this hierarchical model extends the IBM
in a similar way that the Chinese restaurant franchise (CRF)
process (Teh et al. 2004) extends the CRP. The main differ-
ence is that the point clustering in our model is achieved
via a ddCRP instead of a CRP with the consideration of
branching structure. This hierarchial model can automati-
cally discover the point clusters that share the same trigger-
ing scheme even when they are disjoint in spatiotemporal
space.

Inference with Generic Metropolis-with-Gibbs
Sampling

The purpose of the inference is to estimate the posteriors

of branching structure, immigrant intensity and offspring in-

1856

tensity given observed points. Since it is not tractable ana-
lytically, we adopt the Markov chain Monte Carlo (MCMC)
algorithm. Assume we have observed a set of points, X =
{t;},, for a time period [0, T]. We do not consider edge
effect in this work, hence no point exists before time 0. As
described in (Vere-Jones 1988), with the support of local
Janossy density, the likelihood function for a realization X
of a regular point process can be represented as:

L= (fj[l )\(ti)) exp (_ /OT /\(t)dt> :

where A(t) denotes conditional intensity function. Unlike
the traditional Hawkes process, the conditional intensity
function in the IBM can be written separately for immigrants
and offspring. Furthermore, directly modeling the branching
structure grants us the computational simplicity to decom-
pose the likelihood function into independent parts:
N
p(Xl.u“a «, /37 C) = p(I‘.uv C) Hp(oz ‘O‘R(ci% /BR(ci)v 0)7 (4)
i=1
where I represents immigrants and O; denotes the offspring
whose parent is point 7. The likelihood functions for / and
O; can be written as:

3)

) t;
pla}) = —Aduert) s
exp (fy u(t)dt)
Cq c; t - tq,
p(O;]-) = I1;,c0, @reen Breen ) ©

exXp (aR(Ci) ft? BR(Ci) (t - ti)dt>

In some cases in which the conditional distributions of
parameters are tractable, Gibbs sampling method can be
used for inference. However, here we present a generic
Metropolis-within-Gibbs algorithm (Neal 2000) despite the
specific form of intensities. For Metropolis-within-Gibbs ap-
proach, each inference iteration updates parameters alter-
natively as Gibbs sampling does, while Metropolis-Hasting
method is used for each parameter’s update. In order to up-
date a parameter w, a proposal distribution ¢(-) is used to
generate a candidate value w*. Its acceptance probability is
defined as: min (1, M), where 7(-) can be any
q(w*|w)7(w)
un-normalized measure for parameter w. The second input
of the min function is called Hastings ratio. In the following,
we give the Hastings ratio for each parameter’s update in the

IBM:
p() (ﬂ(tz‘)) (/T /T X )
A, = exp t)dt — t)dt ),
" p(w) t£[1 p(t:) 0 () 0 )
@ ) . @)
PlOR(cy) QR(c;)
Ao, = H ( )
p(aR(ci)) teR (i) QR(c;)
(®)
- exp ( > (ane) — bre)) BR(cw) :
t;€R’ (c;)
P(BR(C,)) BR(e,)(tj —te;)
ABR( ) _E\FR(ei)) H i A e 2
H(eq ) St — te,
P(Br(c;)) LR (e Bree) (t; ;)
©)

~exp( Z aR(mU).
t;€R’ (c;)



For the above Hastings ratios, we assume the prior distri-
butions of parameters are independent. In Eq. 8 and Eq. 9,
intermediate variables are defined for notation simplicity:
Brien = [, Brteo (t=t3)dt, Brieoy = [ Brien (t—t5)dt,
and U = Bpg(,) — Br(c,). Variables fi, g, and Br(.,)
indicate the candidate values drawn from proposal distribu-
tions, e.g., Gaussian distribution. For updating the branching
structure variables, the branching structure prior defined by
Eq. 2 is used as the proposal distribution. The conditional
prior and the proposal distribution cancel when calculating
Hastings ratios, and only the likelihood ratio is left. There
are three different cases for branching structure variable up-
date: (1) update from immigrant to offspring. (2) update
from offspring to immigrant, and (3) change parent. For the
first case, the Hastings ratio can be represented as:

téi )

(t ) ’
jGR/(ci)

and W= ag(e;) Br(e;) —

aRr(e)Pree) (ti —
)

H V - exp

t;€R (c;)

I—-0
AL

@R Bree;) (ti—te;)
where V' = AR(c;)BR(c;) (ti—te;)
aRr(e;)BR(e;) are intermediate variables for notation sim-
plicity. The first part of Eq. 10 represents the likelihood ratio
for point 7, and the second part represents the likelihood ra-
tio for all of its offspring indicated by ¢; € R (¢;). Similarly,
we can have the Hastings ratio for the second case:

p(ti)

AO—>I _
OR(e;)BR(c;) (ti —

Ciq

te)

(11)
( € )’
t;eR (2;)

where V and W are as defined before. The second part of
Eq. 11 also represents the likelihood ratio for all the off-
spring of point 4, which are indicated by ¢; € R (¢;). For
the third case, we have the Hastings ratio:

I1

t;€R' (c;)At;€R' (2;)

- exp ( Z W) ,
t;€R' (c;)At;€R (&)

where V and W are as defined before. For the second part
of Eq. 12, we use the notation ¢; € R (¢;) A t; € R (&) to
represent point ¢’s offspring that change clusters when c¢; is
changed. Each of these Metropolis-Hasting updates can be
performed several times before combining via Gibbs sam-
pling. The Metropolis-within-Gibbs inference algorithm for
the extended hierarchical IBM can be derived based on the
above derivations with the consideration of hyper-cluster as-
signment.

00 R Breen (ti — te;)

—~0 _ v
AR(e;) BR(es) (ti — te;)

12)

Experiments
We conduct experiments on both synthetic and real-world
data to evaluate the proposed IBM. The state-of-the-art ap-
proaches are compared to demonstrate its superiority.
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Method EMLL MISD BHawk  IBM(CRP)  IBM(Wind)
Diff 0.46 0.41 0.45 0.40 0.36
LogLik —1063 —917 —1121 —862 —736

Table 1: Results of Diff and LogLik.

1

Parent index
Parent index

5 10

15 20 25
(2) Child index

10 15 20 25
(1) Child index

Figure 1: Estimated branching structure matrices.

Synthetic Data

In this section, we use the synthetic data generated from
traditional Hawkes process to evaluate the IBM. Two trig-
gering kernels, exponential and Weibull kernels, are used
to generate the data. Immigrant intensities are set to 0.8
for both kernels. For each kernel, 130 synthetic temporal
samples are generated on time interval [0,20]. The sim-
plified IBM with all points sharing the same offspring in-
tensity is applied to the first 100 samples. Both the tra-
ditional CRP and the ddCRP with window decay func-
tion are adopted as branching structure prior for the IBM.
Bayesian model averaging is applied to the estimated mod-
els obtained from the first 100 samples. The final model
is used to (1) measure the difference between the true
and estimated triggering kernels, and (2) measure the log-
likelihood on the rest 30 samples. A relative distance called
Diff defined by (Zhou, Zha, and Song 2013) is used to
measure the difference between kernels. Three state-of-the-
art approaches are compared with the proposed method:
Hawkes process with expectation maximization on a lower
bound of log-likelihood function (EMLL) (Yan et al. 2013),
model independent stochastic declustering (MISD) (Marsan
and Lengliné 2008) and Bayesian inference approach for
Hawkes process (BHawk) (Rasmussen 2013). The compari-
son results for Diff and log-likelihood are given in Table 1.
As we can see that the IBM can achieve the best performance
for both Diff and log-likelihood. The ddCRP prior with win-
dow decay function outperforms the traditional CRP prior.
Besides, we select a synthetic sample from exponential
kernel to visualize and demonstrate the IBM’s performance
on branching structure estimation. A matrix called branch-
ing structure matrix is used to demonstrate the estimation
of branching structure. Fig. 1 (1) and Fig. 1 (2) show
the branching structure matrices for the ddCRP prior and
the CRP prior respectively. For these matrices, column in-
dices represent child points and row indices represent parent
points. The element in row ¢ and column j represents the es-
timated probability of the parent-child relationship ¢; = i.
Bright color in the matrices indicates higher probability. As
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Figure 2: Estimated point types.

Method [ HPP SGCP EMLL MISD BHawk CPP IBM
MSE 69.3 64.5 60.3 57.5 60.8 57.0 52.8
Fl 0.70 0.75 0.71 0.76  0.79
SC - - - - - - 0.76

Table 2: Results of MSE and F1

we can see that both matrices show strong clustering behav-
iors. The ddCRP prior gives more clusters with fewer points
in each cluster, while the CRP prior gives fewer clusters with
more points in each cluster. Correspondingly, Fig. 2 (1) and
Fig. 2 (2) show the results of point type estimation. In these
figures, the vertical bars on time line denote the simulated
points and the lines show the overall intensity. The circles
on bars indicate that the points are estimated as offspring
and the circles at higher positions indicate that the points are
estimated as immigrants. As we can see in Fig. 2 (2), the
CRP prior tends to underestimate the number of immigrants
and exhibits strong “rich gets richer” behavior. The ddCRP
prior, shown in Fig. 2 (1), gives a more accurate estimation
for the number of immigrants. Both priors can detect tempo-
ral clustering behaviors. The CRP prior tends to find coarser
clusters, while the ddCRP prior tends to find finer clusters.

Real-world Application

For the real-world application, we apply our method to
the water pipe failure prediction problem. Domain experts
have observed that water pipe failures exhibit strong spa-
tiotemporal clustering behaviors (Kleiner and Rajani 2001;
Yan et al. 2013; Liet al. 2014; Lin et al. 2015; Li et al. 2015).
One failure can cause other failures in adjacent spatiotempo-
ral space. As a result, pipe failures can be categorized into
two types: background failure that occurs due to material
fatigue or corrosion, and triggered failure that is caused by
another failure. It is desired for water utilities to accurately
estimate both the type and amount of pipe failures.

In this experiment, we collected 922 failures from a
metropolitan water supply network. The failures occurred in
a district during 8 years. We treat each pipe failure as a point
in spatiotemporal space. Hence, we can use our model for
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both failure type estimation and failure amount prediction.
For the branching structure prior, we adopt a decay function
considering both spatial and temporal distances:

f(ds,dr) = I(ds < as) - I(dr < ar)
-5) 7
p b

d2
(L)

where dg and dp represent spatial and temporal distances
respectively. o and p are pre-determined parameters. I(-) de-
notes a indicator function that returns 1 if the input condition
satisfies and 0 otherwise. ag and a7 are constants that deter-
mine the window sizes for spatial and temporal spaces. They
can be set by domain experts as hard constraints to quickly
filter out unrealistic branching structures. The hierarchical
IBM is used for modeling the failures. It can automatically
discover the failure clusters that share the similar failure trig-
gering pattern.

In additional to EMLL, MISD and BHawk, homogeneous
Poisson process (HPP), sigmoidal Gaussian Cox process
(SGCP) (Adams, Murray, and MacKay 2009) and cascades
of Poisson process (CPP) (Simma and Jordan 2010) are
also compared with the IBM for failure amount prediction.
We use 4, 5, 6 and 7 years data for training and the ob-
tained models are used to predict the amount of the fail-
ures in the coming year. The mean square error (MSE) is
used to measure the difference between the true and pre-
dicted failure amounts. For failure type categorization, the
IBM, EMLL, MISD, BHawk and CPP are applied to all the
failures to estimate their types. F1 score is used to measure
the performances. Additionally, we use silhouette coefficient
(SC) (Rousseeuw 1987), to measure the clustering perfor-
mance for the hierarchical IBM’s hyper-clusters. The spatial
and temporal distances between the triggering and triggered
failures are used to calculate silhouette coefficient. The other
approaches do not have the ability to discover the hidden
hierarchical structure. The results of MSE, F1 and SC are
shown in Table 2. As we can see, the proposed method out-
performs others for both MSE and F1 score and it can also
achieve an accurate clustering on top of the failure clusters.

Conclusion and Future Directions

In this paper, we proposed the IBM, a Bayesian statistical
model that generalizes and extends popular IPPs. It con-
siders point intensity, interaction mechanism and branch-
ing structure simultaneously. The experimental results on
both synthetic and real-world data demonstrate its superi-
ority. There are also many potential venues for future work.
It will be interesting to consider high order point interac-
tion (Baddeley and Van Lieshout 1995), the connection be-
tween branching structure and causality measure of point
processes (Kim et al. 2011) and the extension for multivari-
ate IPPs.
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