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Abstract

We propose Veto-Consensus Multiple Kernel Learning
(VCMKL), a novel way of combining multiple kernels such
that one class of samples is described by the logical intersec-
tion (consensus) of base kernelized decision rules, whereas
the other classes by the union (veto) of their complements.
The proposed configuration is a natural fit for domain de-
scription and learning with hidden subgroups. We first pro-
vide generalization risk bound in terms of the Rademacher
complexity of the classifier, then a large margin multi-ν learn-
ing objective with tunable training error bound is formulated.
Seeing that the corresponding optimization is non-convex and
existing methods severely suffer from local minima, we es-
tablish a new algorithm, namely Parametric Dual Descent
Procedure(PDDP), that can approach global optimum with
guarantees. The bases of PDDP are two theorems that reveal
the global convexity and local explicitness of the parame-
terized dual optimum, for which a series of new techniques
for parametric program have been developed. The proposed
method is evaluated on extensive set of experiments, and the
results show significant improvement over the state-of-the-art
approaches.

1 Introduction
In recent years, multiple kernel learning (MKL) has shown
promising results in a variety of applications and has at-
tracted much attention in machine learning community.
Given a set of base kernels, MKL finds an optimal com-
bination of them with which an appropriate hypothesis
is determined on the training data. A large body of lit-
erature has been addressing the arising issues of MKL,
mainly from three perspectives and their intersections, i.e.
theoretical learning bound, related optimization algorithm,
and alternative MKL settings. To list a few, the gener-
alization bounds for learning linear combination of mul-
tiple kernels have been extensively studied in (Ying and
Campbell 2009; Cortes, Mohri, and Rostamizadeh 2010;
Hussain and Shawe-Taylor 2011) by analyzing various com-
plexity metrics. Following the pioneer work (Lanckriet et al.
2004) that formulates linear MKL as a semi-definite pro-
gram (SDP), a series of work is devoted to improve the ef-
ficiency with various optimization techniques, such as re-
duced gradient (Rakotomamonjy et al. 2008), Newtown’s
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Figure 1: 2D VCMK with non-linear/all linear base kernels

method (Kloft et al. 2011), and mirror descent (Jagarla-
pudi et al. 2009). Also data related issues such as sam-
ple adaptability and missing channels (Liu et al. 2014;
2015) have been addressed. Despite the substantial theoret-
ical advancement and algorithmic progress made in linear
MKL, few of the results could be directly applied to MKL
that incorporates nonlinear combinations. Indeed non-linear
MKL is usually studied on a case-by-case basis, such as
polynomial combination (Cortes, Mohri, and Rostamizadeh
2009), hierarchical kernel (Bach 2009), hyperkernels (Ong,
Williamson, and Smola 2005), etc.

In this work we propose a novel non-linear combination
of multiple kernels. To motivate the configuration, Figure 1
illustrates a practical problem where part of the classes con-
tains hidden structures. In this example, the positive class is
labeled. In contrast, the negative class contains several sub-
groups but only a“single” label is provided. To compensate
for this implicit information, we propose to describe the pos-
itive class by the intersection of the acceptance region of
multiple base kernel decision rules, and the negative class
by the union of their complements. Hence a sample is clas-
sified as negative as long as one or more rules “votes” neg-
ative (Veto), and a positive assignment is made for a sample
if and only if all of the rules agree (Consensus). With this
intuition, VCMKL is a natural solution for applications in-
volving hidden structures. Moreover because the construc-
tion inherently emphasizes the sensitivity to negative class
and the specificity to positive class, it is also a promising
tool for domain description problems.

We discuss the proposed VCMKL from both theoreti-
cal and algorithmic perspectives. Firstly, we formalize the
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the construction of the classifier and provide Rademacher
complexity analysis. Then a large margin multi-ν learn-
ing formulation is proposed with training error controlled
by hyperparameters. Another main contribution of this pa-
per is a learning algorithm that can approach global opti-
mum for the non-convex learning objective. We first show
that the objective could be reformulated with hidden vari-
ables, and then we show that the dual solution is locally
explicit and globally convex piece-wise quadratic in hid-
den variables. Based on this, a subgradient algorithm is
proposed with guaranteed convergence to global optimum.
We call the overall framework Parametric Dual Descent
Procedure (PDDP). Although we develop it for the pur-
pose of VCMKL, the method can be readily adapted to
many other situations such as the training of latent struc-
tured SVM, ramp loss robust Regression/SVM and approx-
imate L0 regularized problems (Yu and Joachims 2009;
Xu, Crammer, and Schuurmans 2006). Please refer to the
supplementary material for details. To the best of our knowl-
edge, PDDP is the first method that is able to find global op-
timum for this class of non-convex learning problems with-
out resorting to combinatorial search.

2 Related Work

With only linear kernels, VCMKL is reduced to construct-
ing convex polyhedrons in the original feature space for
classification, as is shown in the right subplot of Fig-
ure 1. Recently several attempts were made for this pur-
pose: Based on the AND-OR model, (Dundar et al. 2008)
proposed an alternating algorithm, assuming some sub-
class labels are available. In (Manwani and Sastry 2010;
2011) the author proposed two methods, one with logistic
link function and the other based on perception algorithm.
In (Kantchelian et al. 2014) a Stochastic Gradient Descent
(SGD) method is applied with a notion of “entropy” to alle-
viate collapsed solutions. Improved SGD with better initial-
ization method is proposed in (Zhou, Li, and Spanos 2015;
Zhou, Jin, and Spanos 2015). However, all of these methods
only deal with the primal, which cannot be directly adopted
in a general MKL setting. Moreover, even with searching
heuristics these learning methods still suffer severely from
local minimums.

As will be shown in section 3, with a slight reformula-
tion, the VCMKL objective resembles a multi-kernel ex-
tension of SVMs with hidden/latent variables. Although
the idea of including hidden variables in SVM variations
has been suggested in literature (Yu and Joachims 2009;
Felzenszwalb et al. 2010), the proposed VCMKL is novel
in that multiple base kernels are combined and each hid-
den subgroup is dealt with by an optimal one. Regarding
the learning algorithm, the aforementioned work uses ei-
ther group alternating optimization or Concave-Convex Pro-
cedure (CCCP). Again these methods only converge to lo-
cal minimas and the solution could be very deteriorated
with large number of latent variables (Stephen Boyd 2004;
Floudas 1995).

3 Problem Formulation

3.1 The Classifier and Generalization Bound

Let S = {xi, yi}li=1 be a training data set, where x ∈ R
d

and d is the dimension of features. Without loss of gener-
ality let y ∈ {+1,−1} indicate class labels, with negative
class contains hidden subgroups. Consider a feature map-
ping φ : Rd → H, in the new Hilbert space a hyperplane
can be written as f(x) = 〈w, φ(x)〉H + b. A decision rule
for data x′ is given by the sign of f(x′). Formalizing the
idea of using intersections of M base kernel mappings for
positive class and the union of their complement for nega-
tive class, the composed classifier g(·) is such that

{g(x) > 0} = {f1(x) > 0} ∩ · · · ∩ {fM (x) > 0}

=

{
min

1,··· ,M
{f1(x), · · · , fM (x)} > 0

}
On the other hand, the acceptance region for negative class is
{min1,··· ,M{f1(x), · · · , fM (x)} ≤ 0}. For short notation,
let us denote 〈w, φ(x)〉H = w · φ(x) as the inner product
and ||·|| as the corresponding norm inH. Then the combined
classifier is simply

g(x) = min{w1 · φ(x) + b1, · · · ,wM · φ(x) + bM}
Before proceeding to any method to learn this classi-

fier, we conduct complexity analysis in MKL framework
for generalization bound and model selection purpose. Let
the function class of g be denoted as G, and that of fj be
denoted as Fj . As a classic measure of richness, the Em-
pirical Rademacher Complexity for a function class F is
defined as R̂(F(xl

1)) � Eσ

[
supf∈F

∣∣∣ 2l ∑l
i=1 σif(xi)

∣∣∣]
where σ1, · · · , σl are i.i.d. Rademacher variables such that
P(σi = +1) = P(σi = −1) = 1/2. The definition mea-
sures the complexity/richness of function class F in terms
of its ability to “match” Rademancher variables. With Tala-
grand’s Lemma and an induction argument, we show that

Theorem 1. The function class G of VCMKL has

R̂(G (
xl
1)
) ≤ 2

M∑
j=1

R̂ (Fj(x
l
1)
)

Further assume Fj forms a bounded function class
with kernel κj(·, ·) and kernel matrix Kj such that

Fj =
{
x �→∑l

i=1 αiκj(xi,x) | αTKjα ≤ Bj

}
then

R̂ (G(xl
1)
) ≤ 4

l

∑M
j=1 Bj

√
tr(Kj).

Note that in general it is hard to tighten the additive na-
ture of the complexity1. With the above results at hand, the
generalization guarantee of the MKVCL can be obtained
immediately from the classic results in the PAC learning
framework. Let L(g) = ES [1sgn(g(x)) �=y] be the general-
ization error of the MKVC classifier g, and let L̂ρ(g) �
1
l

∑l
i=1 Ψρ (yig(xi)) be the empirical ρ−margin loss with

1In fact in the case of all linear kernels, it is shown in (Zhou, Li,
and Spanos 2015) that the VC dimension has additive lower bound.

2408



Ψρ(t) = [min{1, 1− t/ρ}]+. Then we have with probabil-
ity at least 1− δ

L(g) ≤ L̂ρ(g) +
8

ρ

M∑
j=1

Bj

√
tr(Kj)

l
+ 3

√
log(2/δ)

2l

3.2 Large Margin Learning Objective

To learn the multi-kernels classifier from data, we adopt a
learning objective that maximize the total margin defined
in (Kantchelian et al. 2014) while minimize the hinge loss
of misclassifications. Inspired by the advantages of νSVM
(Scholkopf B 2000), the following large margin multi-ν
learning formulation is proposed:

min
wm,bm,ρm

1

2

M∑
m=1

||wm||2 −
M∑

m=1

νmρm

+
γ

l

∑
i∈I+

max
m
{[ρm − yi(wm · xi + bm)]+}

+
1− γ

l

∑
i∈I−

min
m
{[ρm − yi(wm · xi + bm)]+}

(OPT1)
where I+ and I− are index sets for positive and nega-
tive class, respectively. The hyperparameters ν1, · · · , νM ∈
[0, 1] weight the margins, and two types of losses are treated
differently by introducing γ ∈ [0, 1]. The multi-ν formula-
tion still reflects the Veto-Consensus intuition: the loss for
positive class is the maximum over all decision boundaries,
while for negative class only the one with minimum loss
is counted. The first three terms in the above minimization
problem are convex, however the last term is non-convex as
the minimum of M truncated hyperplanes. We handle this
term by introducing new variables. Consider a weighted ver-
sion of the M losses over a simplex:

Lavg(w,xi,λi) =

M∑
m=1

λim[ρm−yi(wm ·xi+bm)]+ (1)

with λi ∈
{
λi :

∑M
m=1 λim = 1, λim ≥ 0

}
� S

M , a row

vector in the |I−| ×M matrix λ containing the loss weight-
ing parameters of negative samples. Denote Lmin(w,xi) =
minm {[ρm − yi(wm · xi + bm)]+} as the original loss for
xi, it is straightforward that

Lmin(w,xi) = min
λi∈SM

Lavg(w,xi,λi) (2)

With this trick we reformulate the learning objective as
Proposition 1. (OPT1) is equivalent to

min
λi∈SM

min
wm,bm,
ρm≥0

1

2

M∑
m=1

||wm||2 −
M∑

m=1

νmρm

+
γ

l

∑
i∈I+

max
m
{[ρm − yi(wm · xi + bm)]+}

+
1− γ

l

∑
i∈I−

M∑
m=1

λim[ρm − yi(wm · xi + bm)]+

(Primal)

The newly introduced variables λ can be viewed as hid-
den subgroup indicators, hence VCMKL can indeed be
thought of as a multi-kernel extension of learning with la-
tent variables. Considering the form of OPT1 and Primal, it
is tempting to apply CCCP and alternating heuristics. Yet in
this work a rigorous optimization algorithm will be devel-
oped to approach global optimum. But before that let’s look
into the relation between training error and the hyperparam-
eters νm, γ in the learning formulation. Replacing the inner
optimization of the Primal with its dual, we obtain that the
Primal is equivalent to

min
λi∈SM

Jd(λ) where

Jd(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α

1
2

∑M
m=1

∑l
i,j=1 αimyiκm(xi,xj)yjαjm

subject to

αim ≥ 0 ∀i, ∀m
αim ≤ 1−γ

l
λim ∀i ∈ I−, ∀m∑M

m=1 αim ≤ γ
l

∀i ∈ I+∑l
i=1 αim ≥ νm ∀m∑l
i=1 αimyi = 0 ∀m

(Dual)

To see the effect of hyperparameters, it is useful to define
partition of samples similar to the classical SVM:
Definition 1. Partition of Samples : Based on the value of
αim at optimal, the ith sample is called
• positive support vector if i ∈ I+ and

∑
m αim > 0.

• positive bounded support vector if i ∈ I+ and∑
m αim = γ

l .
• negative support vector of class m if i ∈ I− and αim > 0.
• negative bounded support vector of class m if i ∈ I− and
αim = 1−γ

l .
All the other samples are called non-support vectors. The

following proposition relates the choice of hyperparameters
to the training error tolerance.

Proposition 2. Define ν+ =
l
∑

m νm

2γ|I+| and ν−m = lνm

2(1−γ)|I−| ,
and denote Nsv+, Nsv−

m , N bsv+, N bsv−
m as the number

of all postive/negative support vectors, positive/negative
bounded support vectors, respectively, then

N bsv+

|I+| ≤ ν+ ≤ Nsv+

|I+|
N bsv−

m

|I−| ≤ ν−m ≤
Nsv−

m

|I−|

(3a)

(3b)

Form the right hand side, ν+ and ν−m give a lower bound
on the fraction of positive support vectors and negative sup-
port vectors of class m, respectively. The left hand side up-
per bound is more interesting: by definition, N bsv+/|I+|
and N bsv−

m /|I−| are respectively the training false negative
error and false positive error of class m. Hence the bound
implies that one can impose smaller training error of dif-
ferent types by decreasing corresponding ν. The role of γ
is also significant: it can incorporate an uneven consider-
ation of training errors committed in two classes, which
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can be harnessed to handle imbalanced availability of posi-
tive/negative samples. In short, the advantage of the multi-ν
formulation is that the training result can be controlled sim-
ply by tuning bounds as a function of hyperparameters.

4 PDDP Learning Method

We introduce the new global optimization method PDDP in
this section with VCMKL as a special case. The first step
involves writing the optimal solution α∗ and the optimal
value J ∗

d as a locally explicit function of λ. In the termi-
nology of mathematical programming, this non-trivial task
is referred to as parametric program, or sensitivity analysis.
For the ease of notation, we write Jd(λ) in a more compact
matrix form

min
α1,··· ,αM

J (α) =
1

2

M∑
m=1

αT
mQmαm

subject to

Group I: Cααm ≤ Cλλm +Cm ∀m
Group II: [1, · · · , 1]αT

i ≤
γ

l
∀i ∈ I+

OHP: yTαm = 0 ∀m

(OPT2)

(4a)

(4b)

(4c)

where Qm = Km ◦ yyT with Km the Gram matrix
for mth base kernel. The inequalities addressing each sub-
group m are contained in Group I, and constant matrices
Cα,Cλ,Cm encapsulate the coefficients. Group II includes
the third inequality in the dual. The equality constraint (4c)
is called orthogonal hyperplane property due to its geomet-
ric interpretation. With the solution α∗(λ), the ith row of the
mth constraint (4a) is active if Cα

i α
∗
m(λ) = Cλ

i λm +Cm
i ,

and inactive if Cα
i α

∗
m(λ) < Cλ

i λm + Cm
i . We have used

column vector convention for αm,λm, and row/column se-
lection of a matrix with subscripts.

In order to determine the relation between the optimum
of OPT2 and its “parameters” λ, we develop a series of new
techniques for parametric program. Interested readers are re-
ferred to supplementary material for detailed proofs of the
main theorems in this section. In particular, we find that the
existence of local explicit expression is guaranteed if the fol-
lowing sample partition property is satisfied.
Definition 2. (Non-degeneracy) A solution of the dual is
called Non-degenerate if there exist at least one positive un-
bounded support vector and one negative unbounded sup-
port vector for each class m.

Since the unbounded support vectors are essentially the
sample points that lie on the margin boundaries, except for
deliberately designed cases, in practice with large sample
size the non-degeneracy is expected to be satisfied. With that
we provide the local explicitness theorem.
Theorem 2. Assume that the solution of the VCMKL inner
optimization is non-degenerate, then

1. For all m, the optimal solution α∗
m is a continuous piece-

wise affine (PWA) function of λ = [λ1, · · · ,λM ]

2. The optimal objective J (α∗) is a continuous piece-wise
quadratic (PWQ) function of λ.

3. At optimal, let the index set of group I active constraints
be denoted as Am, ∀ m = {1, · · · ,M}, and the index
set of group II active constraints be denoted as B. Then
in the critical region defined by inequalities (5) – (8), the
optimal solution α∗ admits a closed form

α∗
m =Fm(Cα

Am
)TG−1

m

(
Cλ

Am
λ∗
m +Cm

Am

)
− R̃mU−1

(
M∑

m=1

HBm

(
Cλ

Am
λ∗
m +Cm

Am

)
− γ

l
1B

)

where the involved matrices are computed by

Fm � Q−1
m yyTQ−1

m

yTQ−1
m y

−Q−1
m ; Gm � Cα

Am
Fm(Cα

Am
)T ;

Hm � Fm(Cα
Am

)TG−1
m ; Rm � Fm(Cα

Am
)TG−1

m Cα
Am

Fm − Fm;

U �
M∑

m=1

[Rm]B×B ; R̃m � [Rm0]•B ;

and Rm0 is obtained from matrix Rm by setting rows that
are not in B to 0

In essence the theorem indicates that each time the in-
ner optimization OPT2 of the dual is solved, full informa-
tion (closed form solution) in a well-defined neighborhood
(critical region) can be retrieved as a function of outer op-
timization variable λ. Besides this local explicitness result,
we characterize the overall geometric structure of the opti-
mality, and show in the next theorem that globally the opti-
mal objective is convex in λ, which serves as the underpin-
ning for PDDP to be a global optimization algorithm.

Theorem 3. Assuming non-degeneracy, then

1. The dual optimization has finite number of polyhedron
critical regions CR1, · · · , CRNr

which constitute a par-
tition of the feasible set of λ, i.e. each feasible λ belongs
to one and only one critical region.

2. The optimal objective J (α∗(λ)) is a convex PWQ func-
tion of λ, and is almost everywhere differentiable.

Now the learning problem is reduced to minimizing a
non-smooth but convex function J (α∗(λ)). Projected sub-
gradient based method is a natural choice. At each step,
OPT2 is solved with current λ, and with Theorem 2 one
can directly compute the critical region boundaries (5)–(8),
as well as the gradients with respect to λm:

∇λmJ (α∗) = DT
mQmα∗

·m −ET
m

∑
m′ �=m

R̃
T

m′Qm′α
∗
·m′

Em = U−1HBmCλ
Am; Dm = Fm(Cα

Am
)TG−1

m Cλ
Am

− R̃mEm

The function is not differentiable only on the boundary of
critical regions. In this case the subgradient set is the con-
vex hull of the gradients of adjacent regions, as the dual
can be viewed as point-wisely optimizing α with each λ
(Stephen Boyd 2004). Thus for both cases one can simply
use the gradient induced by current optimal objective and
proceed to update λ. Since each λi is a M dimensional sim-
plex, the updated value is projected row by row onto this
space. By theorem 2, if λt is in the critical regions that have
been explored before, all information could be retrieved in
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G−1
m

(
Cλ

Am
λ∗
m +Cm

Am

)
− [

G−1
m Cα

Am
Fm

]
•B U−1

(∑M
m=1 HBm

(
Cλ

Am
λ∗
m +Cm

Am

)
− γ

l 1B
)
≥ 0 (5)

Cα
Ac

m
Fm(Cα

Am
)TG−1

m

(
Cλ

Am
λ∗
m +Cm

Am

)
−Cα

Ac
m
R̃mU−1

(∑M
m′=1 HBm′

(
Cλ

Am′λ
∗
m′ +Cm′

A′m

)
− γ

l 1B
)
−Cλ

Ac
m
λ∗
m +Cm

Ac
m
≤ 0 (6)

U−1
(∑M

m=1 HBm

(
Cλ

Am
λ∗
m +Cm

Am

)
− γ

l 1B
)
≥ 0 (7)∑M

m=1 F Bm(Cα
Am

)TG−1
m

(
Cλ

Am
λ∗
m +Cm

Am

)
−∑M

m=1 R̃BmU−1
(∑M

m′=1 HBm′
(
Cλ

Am′λ
∗
m′ +Cm′

A′m

)
− γ

l 1B
)
− γ

l 1B ≤ 0 (8)

Algorithm 1 PDDP for VCMKL
Input S, ν, γ,K = {κ1, · · · , κ}
λ1 ← initLambda(S); {Q, C} ← calMatrix(S, ν, γ,K)
CRexplored ← ∅, n ← itermax, τ ← stepsize, t ← 1
while Improved & t ≤ n do

if λt ∈ R then
{α∗,AM

1 ,B} ← solOPT2(Q, C)
CRnew ← getRegion(Q, C,AM

1 ,B) % (5)-(8)
CRexplored ← CRexplored ∪ CRnew

else
α∗ ← alphaInsideR(λt,AM

1 ,B) % theorem 2
end if
g ← getGrad(α∗,AM

1 ,B) % (9)
λt+1 ← Proj(λt − τg); t ← t+ 1

end while
return α∗,λ

an explicit form and there is no need to solve OPT2 again.
However, when the variable goes to a new critical region, a
QP solver for OPT2 has to be invoked again for optimal so-
lution and sample partition. The overall PDDP for VCMKL
is summarized in Algorithm 1. The following convergence
result to the global optimal is a consequence of theorem 3:

Theorem 4. Convergence Guarantee
Let supλ ||λ1 − λ|| = B, and the Lipschitz constant of
J (α∗(λ)) be G, then algorithm I with iteration n and opti-
mal step size τi = B/G

√
n ∀i converges to global optimum

within O (1/
√
n). To be specific, let O∗ be the global opti-

mum of the learning objective (Dual form), then

J (α∗(λn
best))−O∗ ≤ BG√

n
, where

J (α∗(λn
best)) � min

{J (α∗(λ1)), · · · ,J (α∗(λn))
}

Hence in order to get J (α∗(λn
best)) −O∗ ≤ ε, the algo-

rithm needs O(1/ε2) iterations. B is bounded because the
feasible set of λ is simplexes. Also as J (α∗(λ)) is globally
convex (hence continuous) and locally quadratic (hence has
bounded gradient), G must be bounded as well. The con-
stant step size is optimal in the sense that it minimizes the
gap upper bound. Other choices, such as a diminishing step
size that is square summable but not summable, could also
be used if faster convergence is a concern.

The most computational expensive step is the inner QP
solver. However note that since OPT2 shares a similar struc-
ture as the classic SVM dual, variety of existing methods
could be reused for acceleration (Chang and Lin 2011). In
the functions getRegion(), alphaInsiderRegion(), and get-
Grad(), the computational overhead is mostly matrix inver-

Table 1: Comparison of algorithms

Method PDDP AM SGD CCCP
Objective (10−8) 6.247 10.21 13.55 8.784

Testing Accuracy (%) 78.91 70.17 67.54 71.38
# of Iterations 79 17 237 31

Elapsed Time (s) 417 166 34 226

sions of Q,G,U . Fortunately, from the proof of the theo-
rem 2 they are either symmetric positive definite or symmet-
ric negative definite matrices and various of decomposition
methods are thusly available for efficient inversion.

5 Experiment

5.1 PDDP Optimization Performance

Firstly we compare the performance of the proposed PDDP
with existing optimization methods, including alternating
minimization (Dundar et al. 2008), stochastic gradient de-
scent (Kantchelian et al. 2014), and concave-convex pro-
cedure (Yu and Joachims 2009). The public UCI (Lichman
2013) pima data set is used in this experiment, and the learn-
ing problem OPT1 is solved with different algorithms. Since
the other methods can only be applied to the primal, for
comparison purpose we restrict to all linear kernels. Hyper-
parameters are set with M = 5, νm = 0.02 ∀m and
γ = |I−|/l 2. For PDDP initialization a simple K-mean
is applied to the negative class and λ1 is assigned accord-
ing to cluster labels. The final value of the objective func-
tion, the corresponding testing accuracy, number of itera-
tions and the time consumed are shown in Table 1, for which
|Jt+1 − Jt|/Jt ≤ 10−4 is chosen as the stopping criteria.
We observer that PDDP achieves a much better objective
value, about 28.9% lower than the runner-up CCCP. The im-
proved training also leads to 7.53% increase in testing accu-
racy. As a global optimization algorithm, it is expected that
PDDP consumes more time than algorithms that only con-
verge to local minimums, as is shown in the last row of the
table. One possible acceleration is the design of approximate
“larger region” that can reduce the number of invocations of
the quadratic solver.

Figure 2 shows the corresponding objective value, gradi-
ent norm, λ value, and testing accuracy of PDDP in each
iteration. Note that for clear presentation only a subset of λ
with same initial value is shown. We see that the iterative

2Here the choice of these hyperparameters is not a concern, as
the primary goal is to compare optimization algorithms.
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Table 2: Testing Cost = c1 · FP · P (y = −1) + c2 · FN · P (y = +1) and their rankings
Data Set c2:c1 l-VCML rbf-VCML csrbf-SVM 2LMKL Lasso-LR NN AdaBoost

Robot
1:1 0.197 (5) 0.144 (1) 0.176 (3) 0.169 (2) 0.210 (7) 0.189 (4) 0.206 (6)
1:4 0.289 (2) 0.245 (1) 0.315 (4) 0.314 (3) 0.337 (5) 0.366 (7) 0.352 (6)

Music
1:1 0.277 (4) 0.229 (1) 0.250 (2) 0.264 (3) 0.317 (7) 0.297 (5) 0.315 (6)
1:4 0.443 (4) 0.330 (1) 0.410 (3) 0.398 (2) 0.514 (5) 0.519 (6) 0.556 (7)

Vetebral
1:1 0.131 (2) 0.121 (1) 0.140 (4) 0.133 (3) 0.168 (7) 0.152 (5) 0.157 (6)
1:4 0.214 (4) 0.156 (1) 0.218 (5) 0.211 (3) 0.239 (6) 0.192 (2) 0.332 (7)

Vowel
1:1 0.132 (5) 0.025 (1) 0.113 (3) 0.122 (4) 0.159 (7) 0.111 (2) 0.142 (6)
1:4 0.184 (3) 0.051 (1) 0.181 (2) 0.199 (4) 0.276 (6) 0.228 (5) 0.293 (7)
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Figure 2: PDDP Convergence Results

result is similar to the general subgradient descent for non-
smooth convex functions (Alber, Iusem, and Solodov 1998):
The learning objective is in general decreasing, with some
fluctuations due to non-smoothness between two critical re-
gions. The pattern of gradient norm and λ evolution also re-
flects this character of insider region “exploitation” and be-
yond region “exploration”. Note that although the algorithm
takes 79 steps to converge, only 38 calls of the quadratic
solver is involved, as in the critical region that has been ex-
plored before, explicit computation can be done with theo-
rem 2. The testing accuracy in each iteration is shown at the
bottom right of Figure 2, which increases correspondingly
with the decrease of learning objective.

5.2 VCMKL Classification Performance

We test VCMKL with the PDDP solver on various data set.
To begin with, two data sets (i.e. the UCI robot execution
and vowel) are used to demonstrate the effect of number of
kernels M on classification performance. Note that labels of
the raw data are transformed into a binary case, e.g. for the
robot data we set y = +1 if the label is NM, and all the other
samples with label LP1-LP4 are pooled together as y = −1.
Similar for the vowel data, y = +1 if the label is ’hOd’ or
‘hod’, and y = −1 for the rest of 8 classes. Figure 3 shows
the testing accuracy versus the number of kernels with 3
commonly used kernel families (linear, polynomial with dif-
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Figure 3: Testing Accuracy vs. M number of kernels.
Left:Robot, Right:Vowel

ferent orders and RBF with various σ). Interestingly, in all
cases it is seen that the testing accuracy is improved in the
first few steps as M increases, however, further combining
more kernels does not help, or even lead to a degraded per-
formance due to overfitting (for linear and nonlinear kernels,
respectively). In particular, the saturated point for linear ker-
nels is just the number of hidden subgroups, i.e. M = 4
for robot data and M = 8 for vowel data, while for nonlin-
ear kernels the optimal M is smaller as in the transformed
space the subgroups may merge. This observation not only
justifies the veto-consensus intuition to describe hidden sub-
groups, but also is consistent with the implications of the-
orem 1, which provides additive upper bound and does not
encourage the use of many kernels.

Finally, VCMKL with linear and RBF kernels is com-
pared to other methods, including cost sensitive SVM with
RBF kernel, Two-layer MKL (Zhuang, Tsang, and Hoi
2011), Lasso Logistic Regression, multi-layer Neural Net-
work, and AdaBoost. We compare a cost sensitive loss
with c1 and c2 the cost rate for false positive (FP) and
false negative (FN), respectively. Accordingly we set γ =
c1|I−|/(c1|I−|+c2|I+|). As is suggested by preceding dis-
cussion, an incremental CV is applied for selecting M . The
other hyperparameters for all methods are chosen with 10
folds CV. Due to page limits, only the results for 4 data sets
with hidden subgroups are shown in Table 2. Looking at the
testing error (c1 = c2 = 1), it is seen that rbf-VCMKL
outperforms all the other methods. Especially on the vowel
data set the improvement is quite significant (testing ac-
curacy from 88.9% to 97.5%). The performance of linear
VCMKL is somewhere among those existing methods (av-
erage rank � 4). When the cost of false positive is higher
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(c1 = 4, c2 = 1), the performance improvement in using
VCMKL is even more significant, as can be seen in the sec-
ond row for each experiment. This justifies our intuition that
the veto-consensus construction is sensitive to false positive
while is robust to false negative, making it a promising tool
for cost sensitive domain description problems.

6 Conclusion and Discussion
We study the veto-consensus combination of multiple ker-
nels for classification. Our contributions are three folds
(1) An upper bound on the Rademacher complexity of the
veto-consensus multi-kernel classifier is provided. Previous
bound obtained for polyhedron classifiers (Zhou, Jin, and
Spanos 2015) can be viewed as a special case with only lin-
ear kernels. (2) A large margin multi-ν learning objective
is formulated, which has provable training error bound in
terms of hyperparameters. (3) A new global optimization al-
gorithm, namly PDDP, is established. Sufficient conditions
and new techniques for parametric program have been de-
rived along the way. Although PDDP is developed in the
context of VCMKL, it is also adaptable for a class of learn-
ing problems with similar structures.

Experimental results demonstrate the effectiveness of
the proposed approach. Future work consists of (1) Apply
PDDP to other learning problems such as hidden structured
SVM, robust SVM, and piecewise linear function learning.
(2) Obtain data dependent convergence bound for PDDP, in
particular detailed bound for the Lipschtiz constant. (3) De-
sign accelerated algorithm that uses enlarged approximate
critical regions to reduce invocations of quadratic solver.
The key issue is the trade off between region approximation
and convexity of the dual optimality.

7 Appendix
The proof of Theorem I is given here. The proofs for PDDP
could be found in supplementary material.

Proof. For the first part, we need the following lemma

Lemma 1. Talagrand’s Lemma
Let Φ : R �→ R be η − Lipschitz, and Υ : R �→ R be
convex and nondecreasing. Then for any function class F of
real-valued functions, the following inequality holds:

R̂(Υ ◦ Φ ◦ F(xl
1)) ≤ ηR̂(Υ ◦ F(xl

1))

Now for the main theorem, consider the case M = 2. The
following inequality is straightforward:
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g∈G
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Noticing that −σ1, · · · ,−σl has the same distribution as
σ1, · · · , σl, we get
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Writing g = min{f1, f2} = 1
2 (f1 + f2) − 1

2 |f1 − f2|, the
last term yields[
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where (a) and (b) are due to the upper additive property
of sup and [·] = max{0, ·} function. Taking expectations
for this upper bound and applying Talagrand’s Lemma with
Υ = [·] and Φ = | · | yields
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Putting two inequalities together we have
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hence finally,
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l
1)
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Also it is straightforward to generalize the above argument
to M > 2 with simple induction. Finally we get

R̂(G (
xl
1)
) ≤ 2

M∑
j=1

R̂ (Fj(x
l
1)
)

The second part of the theorem can be obtained with a stan-
dard approach in bounding empirical Rademacher complex-
ity of Kernels.
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