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Abstract

In many learning tasks with structural properties,
structured sparse modeling usually leads to better in-
terpretability and higher generalization performance.
While great efforts have focused on the convex reg-
ularization, recent studies show that nonconvex reg-
ularizers can outperform their convex counterparts in
many situations. However, the resulting nonconvex op-
timization problems are still challenging, especially for
the structured sparsity-inducing regularizers. In this pa-
per, we propose a splitting method for solving noncon-
vex structured sparsity optimization problems. The pro-
posed method alternates between a gradient step and
an easily solvable proximal step, and thus enjoys low
per-iteration computational complexity. We prove that
the whole sequence generated by the proposed method
converges to a critical point with at least sublinear con-
vergence rate, relying on the Kurdyka-Łojasiewicz in-
equality. Experiments on both simulated and real-world
data sets demonstrate the efficiency and efficacy of the
proposed method.

Introduction

Learning or mining from high dimensional data is an impor-
tant issue (Hastie, Tibshirani, and Friedman 2009). In this
paper we are especially concerned with variable selection
problems. Generally, the colinearity among the variables im-
plies that the underlying model lies on an intrinsic low di-
mensional subspace. Thus, it is interesting and challenging
to find a sparse representation for high dimensional data.

To achieve sparsity, regularization methods have been
widely used in the literature. It admits a tradeoff between
the empirical loss and regularization as:

min
x∈Rd

f(x) + g̃(x), (1)

where f is the loss, and g̃ is a regularizer on the parameter x.
A principled approach is learning with the �1 norm such as
lasso (Tibshirani 1996), which encourages sparse estimate
of x. When the parameter has some intrinsic structures, it
needs to use more sophisticated structured sparsity-inducing
regularizers such as the (overlapping) group lasso (Yuan and
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Lin 2006; Zhao, Rocha, and Yu 2009), the generalized lasso
(Tibshirani and Taylor 2011), etc. However, it is usually not
easy to solve the structured sparsity optimization problem
(1) directly, since the structured sparsity-inducing regular-
izers g̃ are often composite. For example, when solving the
overlapping group lasso by using the proximal gradient al-
gorithm (Yuan, Liu, and Ye 2013), the underlying proximal
operator for g̃ is not easily computed, see Eq. (3).

Observe that in many cases, the composite regulariza-
tion function can be decomposed into a simple regulariza-
tion function g and a linear transformation D, i.e., g̃(x) =
g(Dx) where D ∈ R

p×d. In this paper, we consider the fol-
lowing general optimization problem:

min
x∈Rd

f(x) + g(Dx), (2)

where the linear operator D encodes the structural informa-
tion of the parameter. The problem (2) can be convex or non-
convex.

Developing efficient algorithm for (2) is a hot area of re-
search focus. Most of existing algorithms are mainly de-
signed for the convex optimization problems with global
optimal solution. Among the most successful ones are Nes-
terov’s optimal first-order method (Nesterov 2007; Argyriou
et al. 2011) and the alternating direction method of multi-
pliers (ADMM) (Boyd et al. 2011). However, these meth-
ods can not be directly extended to the nonconvex case due
to lack of convergence guarantee. Existing nonconvex ap-
proaches for (1) usually take the idea of concave-convex pro-
cedure (CCCP) (Yuille and Rangarajan 2001), majorization-
minimization (MM) (Hunter and Li 2005), and concave du-
ality (Zhang 2010b; Zhang et al. 2013), etc. For example,
the iterative reweighted �1 and �2 methods (Candès, Wakin,
and Boyd 2008; Daubechies et al. 2010) employ the idea
of majorization-minimization; the DC programming method
(Gasso, Rakotomamonjy, and Canu 2009) shares the same
spirit with the concave-convex procedure. All these methods
have a point in common that they solve the nonconvex opti-
mization problem by solving a sequence of solvable convex
problems. As a result, these methods are often computation-
ally expensive for large scale problems. It is thus desirable to
develop efficient algorithms that are scalable for large scale
problems. In the spirit of the proximal algorithm, a general
iterative shrinkage and thresholding (GIST) framework was
recently proposed for a class of nonconvex sparisty opti-
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mization problems (Gong et al. 2013), which enjoys low per-
iteration computational complexity. However, this method
can not handle with the structured sparse learning problems
such as the overlapping group lasso and generalized lasso,
since the proximal maps for these regularizers are difficult
to solve.

Moreover, to the best of our knowledge, none of the
nonconvex methods mentioned above established the global
convergence property, i.e., the whole sequence generated by
the method converges to a critical point. These schemes only
guarantee that the objective function value is monotonically
decreasing over the iterations, and thus there exists a sub-
sequence converging to the critical point if the sequence is
bounded. Therefore, it is of great significance to develop
nonconvex methods with global convergence, not only for
theoretical importance, but also for practical computation as
many intermediate results are useless for a method without
global convergence property.

In this paper, we propose a splitting method for solv-
ing (2). Inspired by the great success of the Forward-
Backward splitting method (also known as the proximal gra-
dient method) for convex sparsity optimization (Beck and
Teboulle 2009; Combettes and Pesquet 2011), we develop
an alternating Forward-Backward splitting scheme by com-
binning the idea of the alternating minimization and proxi-
mal algorithm. The proposed method alternates between two
minimization subproblems that reduce to a gradient step and
an easily solvable proximal step, and thus enjoys low per-
iteration computational complexity. Furthermore, we prove
that the whole sequence generated by the proposed method
converges to a critical point. We also show that the conver-
gence rate of the proposed method is at least sublinear.

It is worth pointing out that when g in (2) is the �0 norm,
the proposed method can solve the �0 norm based structured
sparsity optimization problems. In this paper, we propose
the �0 norm penalized overlapping group lasso and the �0
norm penalized graph-guided fused logistic regression. To
the best of our knowledge, our work is the first study in this
issue. Moreover, with different choices of the loss f and the
linear operator D, this also can induce other kind of struc-
tured sparse modelings based on the �0 norm.

Problem Formulation
The following assumptions are made on the problem (2)
throughout the paper:
(A1) DDT � μ0I.
(A2) f is a continuously differentiable function with Lips-

chitz continuous gradient, i.e.,

||�f(x)− �f(y)|| ≤ Lf ||x− y||, ∀x,y ∈ R
d.

g is a proper lower semi-continuous function, and the as-
sociated proximal operator

proxλg (u) = argmin
z

1

2
||z− u||22 + λg(z) (3)

can be solved efficiently and exactly ∗.
∗It was pointed out in (Bolte, Sabach, and Teboulle 2014) that

for proper lower semicontinuous functions, the proximal maps are
well defined: the set proxλ

g is nonempty and compact.

(A3) f(x) + g(Dx) → ∞ iff ||x|| → ∞.

Based on different choices of f, g,D, the problem (2)
covers many applications in machine learning, statistical es-
timation, signal processing, and computer vision literatures.
For the choice of f , the least square and logistic loss func-
tions are two most widely used ones satisfying (A2):

f(x) =
1

2
||Ax− y||22, or

n∑
i=1

log(1 + exp(−yia
T
i x)),

where A = [a1, . . . ,an]
T is the data matrix and y =

[y1, . . . , yn] is the response vector. It is easy to show that
the Lipschitz constants in (A2) of the least square and lo-
gistic loss are lower bounded by ||ATA||2 and

∑n
i=1 ||ai||22

respectively.
For the choice of g, the most natural one is the �0 norm.

But it is difficult to solve the �0 norm based optimization
problems (NP-hard). A popular choice is the �1 norm, which
is the tightest convex relaxation of the �0 norm. However, the
convex models based on the �1 norm have been shown to be
suboptimal in many cases (Candès, Wakin, and Boyd 2008;
Zhang 2010b). Indeed, the �1 norm often leads to over-
penalization, since it is a loose approximation of the �0
norm. To overcome this issue, many nonconvex regularizers
have been proposed, including the smoothly clipped abso-
lute deviation penalty (SCAD) (Fan and Li 2001), the log-
sum penalty (LSP) (Candès, Wakin, and Boyd 2008), the
minimax concave plus penalty (MCP) (Zhang 2010a), the
capped-�1 penalty (Zhang 2010b), etc. These penalties are
demonstrated to have attractive theoretical properties and
wide practical applications, and can outperform their convex
counterparts. Here we give two important structured sparsity
examples below.

Example 1 (Overlapping Group Lasso) The group lasso
is a way to select groups of features. Given some an a priori
groups that may overlap, we can construct a binary matrix
D for group configuration. By different setting of D, the
model (2) can handle non-overlapping group lasso and over-
lapping group lasso. When the size of D is large, it can be
efficiently implemented by a sparse matrix. This kind of in-
dexing matrix was previously used in (Argyriou et al. 2011).
Let z = Dx. We can get a new groups partition G := {gk}
of z that do not overlap. Now we can choose the �2,1 norm as
regularizer, i.e., g(z) =

∑K
k=1 ||zgk ||2. However, the convex

approach does not possess the group level selection consis-
tency. To overcome this drawback, we can choose g from
other nonconvex regularizers such as LSP, MCP, SCAD,
and capped-�1 mixed with the �2 norm; please also refer to
(Wang, Chen, and Li 2007; Huang, Wei, and Ma 2012). Very
recently, Xiang, Shen, and Ye (2015) proposed the �0 norm
constrained non-overlapping group lasso. In this paper, we
propose the �0 norm penalized (overlapping) group lasso by
setting g(z) =

∑K
k=1 I(||zgk ||2 �= 0). I(·) denotes the indi-

cator function. In this example f is the least square loss.
Now we show how to solve the proximal map (3) with

mixed regularizers. We take g(z) = r(h(z)) where h(z) =
[||zg1 ||2; . . . ; ||zgK ||2], and r is the penalty function such as
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Table 1: Examples of one-dimensional regularizers and their corresponding proximal maps.

Regularizer ζ(wi) proxλ
ζ (si)

�1-norm |wi| sign(si)max(|si| − λ, 0)

�0-norm I(|wi| �= 0)

⎧⎨
⎩

si if |si| >
√
2λ

{0, si} if |si| =
√
2λ

0 if |si| <
√
2λ

capped-�1 min(|wi|, θ), (θ > 0)

{
π1 = sign(si)max(θ, |si|) when |wi| ≥ θ if li(π1) ≤ li(π2)
π2 = sign(si)min(θ,max(0, |si| − λ)) when |wi| < θ otherwise

the �1 or �0 norm, LSP, SCAD, MCP and capped-�1. First we
assume that ||zgk ||2 is known. Then g(z) is also fixed. Let z∗
denote the optimal solution of (3). The optimality condition
of (3) implies that z∗gk and ugk are in the same direction.
Thus the optimal solution of (3) can be obtained as

z∗j =

{
uj j /∈ gk,
uj ||z∗

gk
||2

||ugk
||2 j ∈ gk.

(4)

When ||ugk ||2 = 0, we have z∗gk = ugk . From (4), we have
||z∗ −u||22 = (||z∗gk ||2 − ||ugk ||2)2. Let wk = ||z∗gk ||2, sk =
||ugk ||2. Then the proximal map (3) becomes the following
problem

min
w

{l(w) :=
1

2
||w − s||22 + λr(w)}, (5)

where r(w) =
∑K

i=1 ζ(wi) and l(w) =
∑K

i=1 li(wi). Ta-
ble 1 lists the proximal solution of the �0, �1 norm and
the capped-�1 penalty function. The proximal map for other
nonconvex regularizers such as LSP, SCAD, MCP can be
found in (Gong et al. 2013).

Example 2 (Graph-guided Fused Logistic Regression)
The graph-guided fused logistic regression exploits some
graph structure to select relevant feature variables jointly
and improve classification performance. Assume that an a
priori graph G := {V,E} with nodes V and edges E is
given, where each node on the graph corresponds to a fea-
ture variable. We can construct an incidence matrix D whose
each row with two nonzero elements 1,−1 corresponds to
an edge on the graph. The regularizer g can be chosen as
the convex �1 norm or the nonconvex LSP, MCP, SCAD,
and capped-�1. In this paper, we propose the �0 norm pe-
nalized graph-guided fused logistic regression, which is not
discussed before. In this example f is the logistic loss.

Proposed Method

Due to nonsmoothness and nonseparability of the regular-
izer, it is a challenge to solve (2) directly. We deal with the
regularizer by using the variable splitting and penalty tech-
niques.

By letting z = Dx, the problem (2) can be rewritten as

min
x,z

f(x) + g(z) s.t. z = Dx. (6)

Using the penalty method, we obtain an approximation of
the above problem as

min
x,z

{F (x, z) = f(x) + g(z) +
ρ

2
||z−Dx||22}, (7)

where ρ is either set as a large penalty value or takes a se-
quence of increasing values using the continuation scheme.
It is clear that when ρ tends to infinity, the solution of (7)
converges to (6) (Luenberger and Ye 2008).

We develop an alternating minimization algorithm solv-
ing (7), which consists of two steps. The first step calculates
x, with z fixed, via

xk = argmin
x∈Rd

f(x) +
ρ

2
||Dx− zk−1||22. (8)

When f is the least square loss, xk is the solution of the
following linear equation system:

(ATA+ ρDTD)x = ATy + ρDT zk−1. (9)

However, when f is other type of loss functions such as
the logistic loss, it involves a nonlinear optimization. Also,
when the dimensionality is high, solving (9) may be com-
putational heavy. To address this issue, we resort to the lin-
earization technique and solve the following surrogate opti-
mization problem:

xk = argmin
x∈Rd

〈�f(xk−1),x〉+ 〈ρDT (Dxk−1 − zk−1),x〉

+
η

2
||x− xk−1||22,

(10)
where η ≥ (Lf + ρ||DTD||2)/2 suggested by the analysis
next. Particularly, when the Lipschitz constant is not known
or computable for large scale problems, one may use the line
search method to estimate η (Beck and Teboulle 2009). The
above procedure reduces to a gradient descent step:

xk = xk−1 − 1

η
[�f(xk−1) + ρDT (Dxk−1 − zk−1)],

(11)

where 1/η plays the role of step size. The second step cal-
culates z, with x fixed, via

zk = argmin
z∈Rp

g(z) +
ρ

2
||z−Dxk||22, (12)

which has closed form solution for typical regularizers.
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Note that the above alternating scheme with update rules
(11) and (12) consists of a gradient step and a proximal step,
which bears a resemblance to the Forward-Backward split-
ting (FBS) algorithm. However, when dealing with the struc-
tured sparisty optimization problem (2), the traditional FBS
method can not attain exact minimization of the proximal
step. While our method can obtain an exact solution by in-
troducing an auxilliary variable. Hence we call our method
as the alternating Forward-Backward splitting (AFBS) algo-
rithm summarized in Algorithm 1. Indeed, the AFBS algo-
rithm is the coupling of the alternating minimization (also
block coordinate descent) method with the FBS method. In-
spired by FISTA (Beck and Teboulle 2009), we devise an
accelerated variant of the AFBS algorithm summarized in
Algorithm 2. The later experiments show that Algorithm 2
is more effective than Algorithm 1. The continuation scheme
often can further accelerate the algorithm. So we update ρ by
taking a sequence of increasing values, which is summarized
in Algorithm 3.

Algorithm 1 The AFBS Algorithm
1: Input: (x0, z0), D, ρ > 0, η ≥ (Lf + ρ||DTD||2)/2.
2: for k = 1, 2, . . . do
3: xk = xk−1 − 1

η
[�f(xk−1) + ρDT (Dxk−1 − zk−1)].

4: zk = proxρ
g(Dxk).

5: end for
6: Output: (x, z).

Algorithm 2 The Accelerated AFBS Algorithm
1: Input: (u1,v1) = (x0, z0), D, ρ > 0, α1 = 1,

η ≥ Lf + ρ(||DTD||2 + 1).
2: for k = 1, 2, . . . do
3: xk = uk − 1

η
[�f(uk) + ρDT (Duk − vk)].

4: zk = proxρ
g(Dxk).

5: αk+1 =
1+

√
1+4α2

k
2

.

6: uk+1 = xk + αk−1
αk+1

(xk − xk−1).

7: vk+1 = zk + αk−1
αk+1

(zk − zk−1).

8: end for
9: Output: (x, z).

Algorithm 3 (Accelerated) AFBS with Continuation
1: Input: D, ρ > 0, ρmax > 0, (x0, z0).
2: while ρ < ρmax do
3: (xm, zm) = argminx,z F (x, z).
4: ρ = α · ρ, α > 1.
5: end while
6: Output: (x, z).

Remark The ADMM algorithm is another popular approach
for solving the problem (2). Particularly, like AFBS, the lin-
earized ADMM variant also consists of a gradient step and
a proximal step for the primal variable updates (Ouyang et
al. 2015). The key difference between AFBS and ADMM
lies in that: AFBS is a primal method, while ADMM is a

primal-dual method solving a saddle-point problem. In addi-
tion, the current linearized ADMM only consider the convex
case. Our convergence analysis can be extended to establish
similar convergence property for the nonconvex linearized
ADMM.

Convergence Analysis

The convergence of the alternating minimization algorithm
with update rules (8) and (12) is guaranteed by the conver-
gence result for the Gauss-Seidel method, assuming that the
minimum in each step is uniquely attained (Zangwill 1969).
The rest of this section consider the convergence perfor-
mance of the AFBS algorithm. The following theorem es-
tablishes the convergence property in terms of limit points.

Theorem 1 Suppose that the assumptions A1-3 hold. Let
{(xk, zk)}k∈N be the sequence generated by the AFBS al-
gorithm. Then the following assertions hold.

(i) The sequence {F (xk, zk)}k∈N is nonincreasing and in
particular

F (xk, zk)− F (xk+1, zk+1) ≥ C1||xk+1 − xk||22,
where C1 = η − (Lf + ρ||DTD||2)/2.

(ii)
∑∞

k=0 ||xk+1 − xk||22 + ||zk+1 − zk||22 ≤ ∞. In par-
ticular, limk→∞ ||xk+1 − xk||2 + ||zk+1 − zk||2 = 0.

(iii) Any limit point of {(xk, zk)}k∈N is a critical point of
F in (7).

Now we present the global convergence property of the
AFBS algorithm. It should be noticed that the global con-
vergence means that the sequence {(xk, zk)}k∈N converges
to a critical point of F in (7). Our global convergence analy-
sis is an extension of (Attouch and Bolte 2009), which relies
on the Kurdyka-Łojasiewicz inequality (refer to the supple-
mental material for details).

Theorem 2 Suppose that the assumptions A1-3 hold, and
furthermore that the objective function F in (7) satisfies
the Kurdyka-Łojasiewicz property. Then the following asser-
tions hold.

(i) The sequence {(xk, zk)}k∈N has finite length. That is,

∞∑
k=0

||xk+1 − xk||2 + ||zk+1 − zk||2 < ∞.

(ii) The sequence {(xk, zk)}k∈N converges to a critical
point of F .

Theorem 3 The sequence {(xk, zk)}k∈N converges to a
critical point (x∗, z∗) of F in (7) with at least the sublin-
ear convergence rate. Specifically, there exists C > 0 such
that

||(xk, zk)− (x∗, z∗)||2 ≤ C k−
1−θ
2θ−1

where θ ∈ ( 12 , 1).
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Remark It is well established that subanalytic functions sat-
isfy the Kurdyka-Łojasiewicz property (Bolte, Daniilidis,
and Lewis 2007), which includes real analytic and semi-
algebraic functions as typical examples. Moreover, the sum
of a real analytic function and a subanalytic function is sub-
analytic (Bochnak, Coste, and Roy 1998). Thus, it admits the
Kurdyka-Łojasiewicz property. The functions involved in
this paper are all subanalytic. For example, the least square
and logistic loss are real analytic; the �0 or �1 norm, capped-
�1, MCP and SCAD are all semi-algebraic. Please refer to
the supplemental material for more details and the proofs of
Theorem 1,2,3.

Experiments

In this section, we demonstrate the efficiency and efficacy
of the proposed method on the overlapping group lasso and
the graph-guided fused logistic regression. Experiments are
performed on a workstation with Intel Xeon E5-2690 × 2
CPU and 128GB memory.

Overlapping Group Lasso

We apply the �1, �0 norm, and capped-�1 penalty function as
regularizer to the overlappling group lasso. This leads to the
following optimization problems:

min
x∈Rd

1

2
||y −Ax||22 + λ

K∑
k=1

||xgk ||2, (13)

min
x∈Rd

1

2
||y −Ax||22 + λ

K∑
k=1

min(||xgk ||2, θ), (14)

min
x∈Rd

1

2
||y −Ax||22 + λ

K∑
k=1

I(||xgk ||2 �= 0). (15)

We generate the simulated datasets according to y =
Ax+w, where w ∼ N(0, σ2I) is the random noise. We set
the noise level σ = 1e−3 for all experiments next. Each ele-
ment of the design matrix A is drawn i.i.d. from the normal
distribution with normalized columns. The K overlapping
groups are defined as:

{1, . . . , 50}, {41, . . . , 90}, . . . , {d− 49, . . . , d},
where d = 40K + 10. We generate the ground truth pa-
rameter x∗ with each entry sampled i.i.d. from a standard
Gaussian distribution. We randomly select K/2 predefined
groups and set the remaining entries of x∗ to be zeros.

In the first experiment, we compare the AFBS and accel-
erated AFBS algorithms with several state-of-the-art meth-
ods for solving the convex optimization problem (13). The
following algorithms will be compared in the experiment:
1. AFBS: The AFBS algorithm with continuation.
2. AFBS ACC: The accelerated AFBS algorithm with con-

tinuation.
3. Picard: A general algorithm based on FISTA (Beck and

Teboulle 2009) solves the convex optimization prob-
lem (2) (Argyriou et al. 2011). The proximal step is
solved by a fixed point method. We use the code from
http://ttic.uchicago.edu/ argyriou/code/index.html.
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Figure 1: Convergence performance of objective function
value with respect to iterations (left column) and running
times (right column). First row: n = 4000,K = 120, d =
4810. Second row: n = 10000,K = 300, d = 12010.

4. SLEP: An algorithm based on FISTA solves the overlap-
ping group lasso problem (13) (Yuan, Liu, and Ye 2013).
The proximal step is computed by solving its dual prob-
lem. The code can be found in the SLEP package (Liu,
Ji, and Ye 2009) (http://www.yelab.net/software/SLEP/).

5. ADMM: The alternating direction method of multipli-
ers for solving the overlappling group lasso problem (13)
(Deng, Yin, and Zhang 2011). We use the code from the
YALL1 group package (http://yall1.blogs.rice.edu/).

All the algorithms above are implemented in MATLAB, ex-
cept that the proximal map in SLEP is computed by the C++
code. Thus, we choose the Picard algorithm to be compared
with other algorithms when evaluated with respect to the
running time. To be fair, all methods start from zero ini-
tialization and terminate when the relative change of the
objective function is less than 1e − 4. We initiate ρ = 1
in AFBS and AFBS ACC and set the penalty parameter
λ = K/100. Figure 1 illustrates the convergence behavior
of these method (notice that just part of all iterations are il-
lustrated in figure 1 left column, and the listed iterations of
AFBS and AFBS ACC belong to the first stage approxima-
tion with respect to ρ). Overall, the Picard and SLEP algo-
rithms achieves the fastest convergence rate, since they are
based on the optimal proximal gradient method. However,
in terms of running time, the AFBS and AFBS ACC algo-
rithms are the most efficient ones. This is because of that our
methods have lower per-iteration computational complexity,
while the Picard and SLEP methods needs to solve more dif-
ficult proximal maps that lead to higher per-iteration com-
putation computational complexity. Therefore, our methods
achieve a better tradeoff between convergence rate and com-
putational complexity and are more scalable for large size
problems.

In the second experiment, we compare the AFBS and ac-
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celerated AFBS algorithms with a CCCP based algorithm
in (Yuan, Liu, and Ye 2013) for solving (14). The CCCP
based algorithm solve the nonconvex problem (14) by solv-
ing a sequence of convex overlapping group lasso problems
(13). Here we use the SLEP algorithm to solve the inner
convex problem. The thresholding parameter in the capped-
�1 regularizer is set as θ = 0.1. Figure 2 demonstrates that
in terms of running time, the AFBS and AFBS ACC algo-
rithms are more efficient than the CCCP based algorithm for
large size problems. In addition, we observe that AFBS and
AFBS ACC converge to a smaller objective function value
than CCCP. It means that our methods achieve more accu-
racy approximation to the original problem (2).
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Figure 2: Convergence performance of objective function
value with respect to iterations (left column) and running
times (right column). First row: n = 4000,K = 120, d =
4810. Second row: n = 10000,K = 300, d = 12010.

In the third experiment, we show the sparse pattern re-
covery performance of the models (13), (14), and (15). We
solve (13) by SLEP, and solve (14) and (15) by AFBS. We
use two criteria to evaluate the recovery performance: vari-
able selection error (VSE) and group selection error (GSE).
And the VSE and GSE are the proportion of wrongly se-
lected variables and groups respectively in the estimator x̂
based on the true x∗. Figure 3 reports the result with 10 re-
peatitions. Clearly, the nonconvex approach outperforms its
convex counterpart.

Graph-guided Fused Logistic Regression

We apply the �1,�0 norm, and capped-�1 penalty to the
graph-guided fused logistic regression. It leads to the fol-
lowing problems:

min
x

f(x) + λ
∑

(i,j)∈E

|xi − xj |, (16)

min
x

f(x) + λ
∑

(i,j)∈E

min(|xi − xj |, θ), (17)
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Figure 3: Sparse patten recovery performance of the models
(13), (14), and (15). n = 500,K = 60, θ = 0.1, lambda=
logspace(−3, 2, 40).

min
x

f(x) + λ
∑

(i,j)∈E

I(|xi − xj | �= 0), (18)

where f is the logistic loss and E is the set of edges for the
graph. We construct the graph G := {V,E} by using the
sparse inverse covariance selection on the training data set
(Banerjee, Ghaoui, and d’Aspremont 2008).

We conduct experiment on the 20newsgroup † data set.
The 20newsgroup data set contains 16, 242 samples with
100 binary features (words). There are four classes of the
20newsgroup data set: computer, recreation, science, talks.
We divide the classification task into four one v.s. all classi-
fiers. The samples are randomly divided into three subsets:
1% as the training data, 70% as the testing data, and the rest
as the validation data. Our main goal here is to demonstrate
that the nonconvex approach performs better than its convex
counterpart. Thus we choose the convex method as the base-
line. Table 2 shows the classification accuracy of the AFBS
algorithm on the 20newsgroup dataset with 10 repetitions.
We can see that the �0 norm based approach achieves the
best performance.

Table 2: Classification accuracy (%) with graph-guided
fused logistic regression on the 20newsgroup dataset. “ggflr-
�0” denotes the proposed graph-guided fused logistic regres-
sion with the �0 norm. “ggflr-capped” is with the capped-�1
regularizer. “ggflr-�1” is with the �1 norm.

data set ggflr-�1 ggflr-capped ggflr-�0
com. vs rest 82.32(±0.013) 84.83(±0.014) 84.93(±0.013)
rec. vs rest 86.34(±0.017) 87.35(±0.013) 90.07(±0.009)
sci. vs rest 79.53(±0.016) 83.02(±0.01) 85.58(±0.005)
talk. vs rest 83.91(±0.02) 85.17(±0.016) 86.47(±0.01)

Conclusion

In this paper, we have proposed an alternating Forward-
Backward splitting method for solving structured sparsity
optimization problems. The AFBS method alternates be-
tween a gradient step and an easily solvable proximal step,
and thus enjoys low per-iteration computational complexity.

†http://www.cs.nyu.edu/∼roweis/data.html
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Furthermore, we have established the global convergence of
the AFBS method. We also have devised an accelerated vari-
ant of the AFBS method, which has better empirical perfor-
mance. Moreover, we have proposed the �0 norm penalized
overlapping group lasso and graph-guided fused logistic re-
gression for the first time, which can be solved by the AFBS
method and its accelerated variant.
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