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Abstract

Current self-paced learning (SPL) regimes adopt the greedy
strategy to obtain the solution with a gradually increasing
pace parameter while where to optimally terminate this in-
creasing process is difficult to determine. Besides, most SPL
implementations are very sensitive to initialization and short
of a theoretical result to clarify where SPL converges to with
pace parameter increasing. In this paper, we propose a novel
multi-objective self-paced learning (MOSPL) method to ad-
dress these issues. Specifically, we decompose the objective
functions as two terms, including the loss and the self-paced
regularizer, respectively, and treat the problem as the com-
promise between these two objectives. This naturally refor-
mulates the SPL problem as a standard multi-objective issue.
A multi-objective evolutionary algorithm is used to optimize
the two objectives simultaneously to facilitate the rational se-
lection of a proper pace parameter. The proposed technique
is capable of ameliorating a set of solutions with respect to a
range of pace parameters through finely compromising these
solutions inbetween, and making them perform robustly even
under bad initialization. A good solution can then be naturally
achieved from these solutions by making use of some off-
the-shelf tools in multi-objective optimization. Experimental
results on matrix factorization and action recognition demon-
strate the superiority of the proposed method against the ex-
isting issues in current SPL research.

Introduction
In the field of machine learning and artificial intelligence,
curriculum learning (CL) (Bengio et al. 2009) and self-
paced learning (SPL) (Kumar, Packer, and Koller 2010)
have been attracting increasing attention to deal with the
difficulty of training in the presence of non-convex training
criteria and complex data with heavy noises and outliers.
Both the learning paradigms are inspired by the learning
process of humans/animals, which learns with easier con-
cepts at first and then gradually involves more complex ones
into training. It has been proved that this learning paradigm
is beneficial in avoiding bad local minima and in achieving
a better generalization result (Khan, Mutlu, and Zhu 2011;
Basu and Christensen 2013; Tang, Yang, and Gao 2012).

A curriculum defines a set of training samples organized
in ascending order of learning difficulty. In CL, the curricu-
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lum is assumed to be given beforehand, and remains un-
changed thereafter. However, the curriculum design is de-
termined independently of the subsequent learning. Then
SPL was proposed by Kumar et al. to dynamically gener-
ate the curriculum according to what the learner has already
learned. In SPL, a regularization term is introduced into the
learning objective to jointly learn the curriculum and model
parameters, which is called self-paced (SP) regularizer.

In SPL, a binary variable is used in hard weight-
ing scheme (Kumar, Packer, and Koller 2010) to indicate
whether the sample is easy or not. Then Jiang et al. proposed
a soft weighting method (Jiang et al. 2014a), which assigns
real-valued weights to reflect the importance of samples and
presents three efficient SPL regularizers for different kinds
of data sets with different characteristics. SPL has been suc-
cessfully applied to various applications, such as segmenta-
tion (Kumar et al. 2011), domain adaption (Tang et al. 2012),
dictionary leaning (Tang, Yang, and Gao 2012), long-term
tracking (Supančič and Ramanan 2013), reranking (Jiang et
al. 2014a), action and event detection (Jiang et al. 2014b;
2015), and matrix factorization (Zhao et al. 2015).

Compared to traditional machine learning methods, SPL
exploits a weight variable to measure the easiness of sam-
ples and introduces a gradually increasing pace parameter
to control the pace at which the model learns new samples.
However, there are some weaknesses in these SPL methods.
First, the SPL implementation is generally very sensitive to
initialization, which has been indicated by previous investi-
gations (Jiang et al. 2014b; 2015). Second, it is difficult to
determine when to stop the iteration in real implementation
of a SPL regime. That is, it is hard to select a proper pace
where the self-paced learning process should be terminated.
Such selection issue is critical since when the pace parame-
ter is large, SPL is prone to get a bad solution in the presence
of noisy samples. Third, only a single solution with respect
to (wrt) a certain pace parameter can be obtained after SPL
calculation. This, however, loses insights for the entire so-
lution spectrum wrt different pace parameters to a certain
extent. We always expect to achieve the entire solution path
wrt the pace to observe the whole self-paced evolution pro-
cess and recover useful intrinsic patterns from it.

In this study, we clarify that the SPL model can be equiva-
lently understood as a multi-objective model. It is interesting
that by employing multi-objective evolutionary algorithms
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(MOEAs) (Deb 2001; Coello, Van Veldhuizen, and Lamont
2002) for solving the model, all of the aforementioned is-
sues for current SPL research can be naturally explained and
resolved. Recently, researchers have proved that MOEAs
can overcome the difficulty that limits the greedy algo-
rithm in some NP-hard problems (Yu, Yao, and Zhou 2013;
Qian, Yu, and Zhou 2013). Specifically, MOEAs aim at find-
ing a set of Pareto optimal solutions and then obtain a knee
solution to represent the best trade-off of multiple objectives
(Branke et al. 2004; Li et al. 2014). And thus it is natural to
take the learning objective term and the SP regularizer term
as two objectives of multi-objective optimization and embed
the traditional SPL problem into this long-term-investigated
area to facilitating more known tools to be utilized for better
exploring the SPL insight.

Along such research methodology, we establish a novel
multi-objective self-paced learning (MOSPL) paradigm to
alleviate the deficiencies existed in SPL research. The learn-
ing objective and the SP regularizer are optimized by
MOEAs simultaneously. Then the entire solution path wrt
the pace can approximately be obtained by finding the Pareto
optimal front. Each solution in the solution path is obtained
by compensating its intra-population neighboring and pre-
population solutions. MOSPL is not sensitive to initializa-
tion because each solution has the chance to compensate
its neighboring solutions and be automatically self-rectified.
Furthermore, MOSPL can achieve the entire solution path
wrt the pace to gain more insights into the SPL prob-
lem. It is easy to determine the final pace, which is natu-
rally achieved at the knee position of this solution path wrt
the pace variable by employing some off-the-shelf tools in
multi-objective optimization. The aforementioned issues ex-
isted in current SPL regime can thus be entirely alleviated.

The rest of the paper is organized as follows. We first
briefly introduce the related background knowledge on SPL
and multi-objective optimization. Then we propose the
model and algorithm of MOSPL. Finally, the experimental
results and conclusions are given.

Related Background
Self-paced Learning
Formally, we denote the training dataset as D =
{(x1, y1), · · · , (xn, yn)}, where xi ∈ R

m denotes the
ith observed sample, and yi represents its label. Let
L(yi, g(xi,w)) denote the loss function which calculates
the cost between the ground truth label yi and the estimated
label g(xi,w). Here w represents the model parameter in-
side the decision function g. In SPL, variable v is introduced
into the learning objective to indicate whether the ith sample
is easy or not. The target of SPL is to jointly learn the model
parameter w and the latent weight variable v = [v1, · · · , vn]
by minimizing:

min
w,v

E(w,v;λ) =

n∑
i=1

viL(yi, g(xi,w)) + f(v;λ), (1)

where v ∈ [0, 1]n and f(v;λ) is the SPL regularizer. λ is
a gradually increasing pace parameter for controlling the

learning pace. The parameter λ plays an important role in
the process of learning new samples. When λ is small, only
“easy” samples with small losses will be considered into
training. As λ grows, more samples with larger losses will
be gradually appended to training a more “mature” model.

The original SPL (Kumar, Packer, and Koller 2010) is
to minimize the weighted training loss together with the
negative l1-norm regularizer −‖v‖1 = −∑n

i=1 vi, where
vi is a binary variable. Afterwards, (Jiang et al. 2014a;
Zhao et al. 2015) proposed an axiomatic understanding the
SP regularizer and further extended more efficient formula-
tions of SP regularizer as follows.

Linear soft weighting regularizer: This scheme is to lin-
early discriminate samples wrt their losses, which can be
realized by the following function:

f(v;λ) = λ(
1

2
‖v‖22 −

n∑
i=1

vi), (2)

where λ > 0.
Logarithmic soft weighting regularizer: This approach is

to penalize the loss logarithmically, which can be achieved
by the following function:

f(v;λ) =

n∑
i=1

(ζvi − ζvi

log ζ
), (3)

where ζ = 1− λ and 0 < λ < 1.
Mixture weighting regularizer: Mixture scheme is a hy-

brid of the “soft” and the “hard” scheme, which can be stated
by the following function:

f(v;λ) = −ζ
n∑

i=1

log(vi +
1

λ1
ζ), (4)

where ζ = λ1λ2

λ1−λ2
and λ1 > λ2 > 0.

The closed-form solutions of the SPL model under the
above SP regularizers can be easily deduced. For example,
the solution under the linear soft weighting regularizer can
be written as:

v∗i =

{
1− Li

λ Li < λ
0 Li ≥ λ.

(5)

In this paper, we prefer to utilize the linear SP regularizer
due to its simplicity and efficiency in calculation.

Multi-objective optimization
A multi-objective optimization problem (MOP) with m de-
cision variables and l objectives can be described as

min F (x) = (f1(x), f2(x), · · · , fl(x))T (6)
s.t. x = [x1, x2, · · · , xm] ∈ Ω,

where x is the decision vector, Ω is the decision space,
F : Ω → Rl consists of l real-valued objective functions
and Rl is called the objective space. The attainable objective
set is defined as the set {F (x)|x ∈ Ω}. In most instances,
the objectives in an MOP are contradictory to each other,
which means no point in feasible space can minimize all the
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objectives simultaneously. Hence, multi-objective optimiza-
tion (Deb 2001; Coello, Van Veldhuizen, and Lamont 2002)
are designed to find the best trade-off relationship among
them simultaneously.

Considering a minimization problem for each objective,
it is said that a decision vector xu ∈ Ω dominates another
vector xv ∈ Ω if and only if

∀i = 1, 2, · · · , n fi(xu) ≤ fi(xv)

∧∃j = 1, 2, · · · , n fi(xu) < fi(xv). (7)

And a point x∗ in Ω is called a Pareto optimal solution to Eq.
(6) in case that there is no such point x in Ω that makes F (x)
dominate F (x∗). Then F (x∗) is termed as Pareto optimal
vector. The objectives in a Pareto optimal vector have such
relationship: a decrease in one objective causes an increase
in the others. All the Pareto optimal points constitute a set
called Pareto optimal set (Miettinen 1999), and their cor-
responding Pareto optimal objective vectors are called the
Pareto optimal front (PF) (Miettinen 1999).

For multi-objective optimization, it has been recognized
that evolutionary algorithms (EAs) are well suited because
EAs can deal with a set of possible solutions simultaneously
(Fonseca and Fleming 1995; Deb 2001). Various EAs to deal
with MOPs have been proposed (Deb et al. 2002; Coello,
Pulido, and Lechuga 2004; Zhang and Li 2007) and these
EAs are termed as multi-objective evolutionary algorithms
(MOEAs). MOEAs seek to obtain a set of Pareto optimal
solutions for approximating the true PF in a single run.

Multi-objective Self-paced Learning
MOSPL Model
Through taking the original learning objective (imposed
with weights) term and the SP regularizer term as two ob-
jectives, the SPL problem (1) can be naturally reformulated
as a standard bi-objective optimization problem. A certain
SPL model under the pace parameter can then be consid-
ered as a certain scalar aggregation between these two terms
through the compromising parameter. The weaknesses of
such scalarized approach to handle competitive objective in
machine learning have been discussed (Matsuyama 1996;
Jin and Sendhoff 2008). Specifically, such simplification
makes the model hard to determine the compromising (pace)
parameter. Under such understanding, the original SPL im-
plementation can just be seen as a greedy strategy through
increasing the pace and gradually evaluating the model per-
formance to find an appropriate pace to terminate the itera-
tion.

In this paper, a novel multi-objective self-paced learning
(MOSPL) model is proposed to address the drawbacks ex-
isted in current SPL implementations. Specifically, we can
first reformulate the SPL problem in Eq. (1) as the following
MOP:

min
w,v

(f1, f2)
T =

{
f1 = 1

2‖v‖22 −
∑n

i=1 vi,
f2 =

∑n
i=1 viL(yi, g(xi,w)).

(8)

Then, we can revisit SPL in a entirely new viewpoint of
MOP: In SPL, the pace parameter λ represents the “age”
of the learning paradigm, which weighs the two objectives.
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Figure 1: The schematic diagram of MOSPL. MOSPL starts
with training in region A, which is the easiest one. Then
region B is involved into training. MOSPL stops when all
regions have been trained. The evolutive process of the so-
lution path gradually iterating from easy to complex regions
is also demonstrated.

However, in the MOSPL model, we minimize the objectives
simultaneously by using evolutionary algorithms to obtain a
set of solutions. Therefore the “age” of MOSPL can be an-
alyzed in objective space, which can be divided into several
regions ranked in ascending order of learning difficulty. As
shown in Figure 1, MOSPL starts with training in the easy
region, and then gradually takes more complex regions into
consideration. Each solution can compensate its neighboring
solutions and has the chance to be self-rectified inbetween.
Finally, MOSPL stops until all regions have been trained and
obtains a solution sequence corresponding to the solution
path wrt pace of the original SPL model, which facilitates
us to use some off-the-shelf tools in MOP to select a proper
knee point along the path as the final model parameters.

MOSPL Algorithm
Instead of extracting the solution path of SPL wrt λ, the task
can be transformed to an easier one by searching the solu-
tion path wrt the sample number involved into training, i.e.,
the number of samples with non-zero importance weights vi
(Jiang et al. 2014a). Therefore we can predefine a sample
number sequence, we also call it pace sequence for conve-
nience, N̂ = {N̂1, N̂2, · · · , N̂p} (N̂i < N̂j for i < j) rep-
resenting the number of selected samples in the process of
SPL. Each N̂i denotes how many samples will be selected
in the ith SPL stage, and N̂p = n means finally all samples
are chosen into training. Then we use a weight sequence,
which corresponds to a population in MOEAs implementa-
tion, P = {v1,v2, · · · ,vp} to represent the solution path,
where vj is the weight variable. Obviously, the population
P with the pace sequence N̂ is the expected solution path at
the end of MOSPL. Specifically, for each element vj along
this solution path P , the number of its nonzero entries is N̂j .
The aim of our MOSPL algorithm is then to incrementally
rectify this solution path by employing certain off-the-shelf
MOEA tricks.

The key idea of the proposed MOSPL algorithm is to
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start training a population in easy regions, and then grad-
ually evolve the population to more complex regions. We
now introduce the implementation details of our MOSPL al-
gorithm. N(i) is used to represent how many samples will be
selected in the population of the ith iteration of MOSPL. At
the beginning evolution step, we enforce each number in the
pace sequence N(1) with comparably small values, i.e., we
let all N (1)

j = N̂1 (j = 1, 2, · · · , p) in N(1) in the first itera-
tion. With the evolution process continuing, we gradually in-
crease the backwards paces in N(i), progressively complete
the solution path especially wrt larger paces and evolve more
complex knowledge into the learning population. Therefore
in the next evolution steps, the pace sequence is defined as

N
(i)
j =

{
N̂j , j ≤ i

N̂i, others
for any j = 1, 2, ..., n. (9)

By increasing the pace sequence in this way, we have con-
structed a gradually evolutionary population from easy to
complex. In the last iteration, we obtain the solution path
with the expected pace sequence N̂. MOSPL gradually in-
volves more complex regions into training and stops until all
regions have been trained. Obviously, we need p iterations to
traverse the entire regions in objective space.

For each iteration, it is a fundamental optimization prob-
lem, which can be solved by certain off-the-shelf MOEAs.
The optimal solutions in ith iteration can be obtained by op-
timizing the following MOP:

min(f1, f2)
T (10)

s.t.‖vj‖0 = N
(i)
j , j = 1, 2, · · · , p.

where vj is the jth individual of P and ‖vj‖0 counts
the number of nonzero entries in vj . To solve this MOP,
MOEA/D (Zhang and Li 2007) is used as the fundamental
optimization tool to simultaneously optimize the objectives
(Eq. (8)) with the predefined pace sequence. The proposed
MOSPL is shown in Algorithm 1. In the initialization, P is
randomly initialized with a few number of samples, which
is in the easy region of objective space. During iterations,
most individuals of P involve more samples into training to
consider more complex regions of objective space. For each
iteration, the learning objective and the SPL regularizer are
optimized by MOEA/D simultaneously. Each individual in
P is initiated by the output of the corresponding individual
of the population obtained in the last iteration, and optimized
by using information from its several neighboring individu-
als. MOEA/D uses a differential evolution (DE) operator for
producing an offspring, which generates the offspring from
several parent solutions. Then the offspring is used to update
the neighboring solutions.

By utilizing such an algorithm, the population in each
evolution step is capable of not only making use of the help-
ful population knowledge of the last evolution step, but also
compensating all solutions inbetween. A good solution path
wrt various pace number N̂ is thus expected to be recur-
sively ameliorated during this evolution process through its
full intra- and inter-population interactive manner. Then an
angle-based method proposed in (Branke et al. 2004) is used

Algorithm 1 Algorithm of Multi-objective Self-paced
Learning.

Input: The pace sequence: N̂ = {N̂1, N̂2, · · · , N̂p}, the
training dataset D.

Output: The knee solution.
1: Initialize the population P = {v1, · · · ,vp} constrained

with ‖vj‖0 = N
(1)
j , j = 1, 2, · · · , p.

2: for i=1 to p do
3: if i > 1 then The new region is involved into

training. Therefore individuals of P are initiated by the
model parameters from the last population and updated
with the pace sequence N(i).

4: end if
5: //Update P by minimizing Eq. (10) using MOEA/D.
6: for j=1 to p do
7: Reproduce new offspring v̂j and update the

neighboring solutions. For more information, please re-
fer to (Zhang and Li 2007).

8: end for
9: end for

10: Obtain the solution path wrt the pace N̂ and an angle-
based method (Branke et al. 2004) is used to obtain the
knee solution.

11: return the knee solution.

to obtain the knee solution from the solution path, where
further improvement in one objective causes a rapid degra-
dation in other objectives. The knee solution represents the
best trade-off between the learning objective and the SPL
regularizer.

The proposed method addresses the issues existing in cur-
rent SPL implementations. MOSPL is robust to initialization
because each solution can use information from its neigh-
boring solutions and be automatically self-rectified. More-
over, MOSPL guides the solutions to converge to the Pareto
optimal front and approaches the entire solution path wrt the
pace to gain more insights into the SPL problem. A good
solution can be obtained by employing an off-the-shelf tool
in multi-objective optimization, which is naturally achieved
at the knee position of this solution path wrt the pace.

Experiments
In order to validate the advantages of the proposed MOSPL,
matrix factorization and action recognition are considered in
our experiments.

Matrix Factorization
Matrix factorization aims to factorize an m× n data matrix
Y, whose entries are denoted as yijs, into two smaller fac-
tors U ∈ Rm×r and V ∈ Rn×r, where r 
 min(m,n),
such that UVT is possibly close to Y (Chatzis 2014;
Zhao et al. 2015). Matrix factorization has many appli-
cations in various disciplines (Tomasi and Kanade 1992;
Mnih and Salakhutdinov 2007). Here we test the proposed
MOSPL scheme on synthetic matrix factorization problems.
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Figure 2: Relationships between f1, f2, RMSE and MAE with the LS loss. (a) shows the variation of f2, RSME and MAE with
change in f1. (B) shows 3-D plot of RSME, f1 and f2. (c) shows 3-D plot of MAE, f1 and f2.
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Figure 3: Relationships between f1, f2, RMSE and MAE with the LAD loss. (a) shows the variation of f2, RSME and MAE
with change in f1. (B) shows 3-D plot of RSME, f1 and f2. (c) shows 3-D plot of MAE, f1 and f2.

The data were generated as follows: two matrices U and
V, both of which are of size 40×20, were first randomly
generated with each entry drawn from the Gaussian dis-
tribution N (0, 1), leading to a ground truth rank-4 matrix
Y0 = UVT . Then 40% of the randomly selected entries
were designed as missing data, 20% of the other randomly
selected entries were added to uniform noise on [-20,20],
and the rest entries were added to Gaussian noise drawn
from N (0, 0.01). Two commonly used loss functions are
considered in this paper: the LS loss L(yij , [UVT ]ij) =
(yij − [UVT ]ij)

2 and the LAD loss L(yij , [UVT ]ij) =
|yij − [UVT ]ij |. The loss values are calculated by modi-
fying the solver proposed by (Zheng et al. 2012) to solve
the trace-norm regularized matrix factorization with both
the LS and LAD loss. Two criteria were adopted for per-
formance assessment. (1) root mean square error (RMSE):

1√
mn
‖Y0 − ÛV̂T ‖F , and (2) mean absolute error (MAE):

1
mn‖Y0 − ÛV̂T ‖1, where Û, V̂ denote the outputs from a
utilized matrix factorization method.

Figure 2 and Figure 3 show the relationship among the
SPL regularizer (f1), the learning objective (f2), RMSE and
MAE. The values of f2 are normalized into [0, 1]. The val-
ues of RMSE and MAE are normalized into [0.5, 1] and
[0.3, 1], respectively. The left graphs show 2-D plots of the
variance of f2, RMSE and MAE with change in f1. The
middle graphs depict 3-D views of RSME, f1 and f2. The
right graphs provide 3-D views of MAE, f1 and f2. Fig-
ure 2(a) and Figure 3(a) show the Pareto fronts obtained

by the proposed method. The knee point does exist in the
Pareto front with the LS and LAD loss, which represents
the best compromise between the learning objective and the
SPL regularizer. If more entries are added into the process of
matrix factorization, the loss values will increase rapidly in
the presence of noise entries. Therefore the values of learn-
ing objective have fast growth beyond the knee point. As
shown in Figure 2(a) and Figure 3(a), the solution with the
smallest RMSE and MAE is next to the knee point. To bet-
ter understand of the convergence of the proposed MOSPL,
tendency curves of RMSE and MAE with respect to itera-
tions are shown in Figure 4. In the first several iterations,
SPL gradually takes more entries into consideration. When
the iteration continues, SPL cannot stop at the expected “po-
sition” with small RMSE and MAE, which is prone to get a
bad solution. The figure shows that the results obtained by
MOSPL is more stable than those obtained by SPL.

Then we compare the results provided by the proposed
technique with those obtained by three state-of-the-art MF
methods: RegL1ALM (Zheng et al. 2012), CWM (Meng et
al. 2013), and MoG (Meng and De la Torre 2013). Four
datasets with different noises are used here. The perfor-
mance of each competing method was evaluated in terms
of RMSE and MAE, as the average over the 50 realizations,
and reported in Table 1. Because SPL is prone to get a bad
solution with the gradually increasing pace parameter, both
the optimal and stable results are presented in the table. As
can be seen from Table 1, the proposed MOSPL performs
well in the presence of outliers and missing data.
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Table 1: Performance comparison of MF methods in terms of RMSE and MAE on synthetic data. The results are averaged over
50 runs. The best result in each experiment is highlighted in bold.

Noise Criteria RegL1ALM CWM MoG SPL(LS) SPL(LAD) MOSPL MOSPL
Optimal Stable Optimal Stable (LS) (LAD)

[-20,20] RMSE 8.9788 2.7574 5.5509 1.7837 8.1222 1.6219 8.8914 1.6170 1.7227
(0,0.01) MAE 4.5626 1.5974 2.7340 1.0068 4.2949 0.9031 4.3996 0.8837 0.9449
[-20,20] RMSE 9.1648 2.8366 5.3706 1.8944 9.1874 1.8839 8.9963 1.7995 1.7603
(0,0.1) MAE 4.6833 1.6663 2.6400 1.1169 4.7714 1.1108 4.3023 1.0377 1.0045

[-40,40] RMSE 18.6236 4.9154 11.4176 1.5654 17.7414 1.6596 18.2794 1.5961 1.5909
(0,0.01) MAE 8.4375 2.1360 5.5225 0.7503 7.8657 0.7876 8.4553 0.7668 0.7738
[-40,40] RMSE 18.1732 4.9530 11.5925 1.7116 18.0802 1.7531 18.5029 1.6364 1.5144
(0,0.1) MAE 8.5308 2.2056 5.7110 0.8537 8.0022 0.8363 8.5951 0.8109 0.7374
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Figure 4: Tendency curves of RMSE and MAE with respect
to iterations.

Action Recognition

The goal of action recognition is to recognize human actions
in videos. Hollywood2 was collected from 69 different Hol-
lywood movies (Marszalek, Laptev, and Schmid 2009). It
contains 1707 videos belonging to 12 actions, splitting into a
training set (823 videos) and a test set (884 videos). The per-
formance was evaluated on the Hollywood2 dataset by the
Mean Average Precision (MAP). The improved dense trajec-
tory features are extracted and represented by fisher vector
(Perronnin and Dance 2007). Then the spatial and temporal
extension is applied to the improved dense trajectory (Lan,
Li, and Hauptmann 2014). The linear kernel matrix is precal-
culated to accelerate the experiments. For more information,
please refer to (Jiang et al. 2014b).

Table 2 lists the MAP comparison obtained by Batch-
Train, SPL and MOSPL. BatchTrain represents a standard
train approach in which a model is trained simultaneously
using all samples. Here we use kernel SVM as the stan-
dard train approach (Jiang et al. 2014a; 2014b; 2015). As
shown in Table 2, MOSPL has a better performance than

Table 2: Performance comparison of all competing methods
in terms of MAP on Hollywood2.

ID BatchTrain SPL MOSPLOptimal Stable
H01 18.775 33.719 19.583 39.646
H02 95.790 95.790 95.790 95.790
H03 71.750 71.750 71.750 71.750
H04 81.960 81.960 81.960 81.960
H05 62.787 62.786 62.786 62.786
H06 42.988 42.982 42.982 42.982
H07 16.716 34.378 11.441 37.509
H08 63.340 60.567 60.539 60.874
H09 85.751 79.454 79.276 80.279
H10 53.595 81.530 81.323 82.055
H11 35.860 38.870 38.870 38.870
H12 65.657 80.861 80.841 81.445
MAP 58.164 63.720 60.595 64.662

SPL. MOSPL is more robust to the initialization than SPL
and gets relatively satisfactory results.

Conclusion

In this study, we have proposed a novel multi-objective self-
paced learning (MOSPL) method for SPL calculation. This
method provides a new viewpoint to see SPL, and evidently
alleviates the deficiencies existed in current SPL regime.
Specifically, the MOSPL method not only largely enhances
the robustness of SPL calculation to different initializations,
but also outputs an entire solution path for the SPL so-
lution wrt different pace parameters, facilitating a overall
understanding to the entire SPL solution spectrum. Based
on this information, some off-the-shelf multi-objective opti-
mization techniques can be readily employed to set a ratio-
nal knee point for a proper tuning of the terminating pace,
which simplifies this fairly hard issue in the previous SPL
research. In the future, we will explore more SPL regular-
izers to be suitable for various problems and pay interest in
improving the multi-objective evolutionary algorithms to re-
duce the time complexity.
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