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Abstract

Recently, deep neural networks (DNNs) have outper-
formed traditional acoustic models on a variety of
speech recognition benchmarks. However, due to sys-
tem differences across research groups, although a
tremendous breadth and depth of related work has been
established, it is still not easy to assess the performance
improvements of a particular architectural variant from
examining the literature when building DNN acoustic
models.
Our work aims to uncover which variations among
baseline systems are most relevant for automatic speech
recognition (ASR) performance via a series of system-
atic tests on the limits of the major architectural choices.
By holding all the other components fixed, we are able
to explore the design and training decisions without be-
ing confounded by the other influencing factors.
Our experiment results suggest that a relatively sim-
ple DNN architecture and optimization technique pro-
duces strong results. These findings, along with previ-
ous work, not only help build a better understanding to-
wards why DNN acoustic models perform well or how
they might be improved, but also help establish a set
of best practices for new speech corpora and language
understanding task variants.

1 Introduction

DEEP neural network (DNN) acoustic models have driven
tremendous improvements in large vocabulary continuous
speech recognition (LVCSR) in recent years (Hinton, Osin-
dero, and Teh 2006; Vincent et al. 2010; Dahl et al. 2011;
Jaitly et al. 2012). However,the underlying principles for
understanding why DNNs work so much better remain not
well understood. Recent research on DNN acoustic models
for LVCSR have explored a great many variations different
in network architecture, optimization techniques, loss func-
tions and regulation methods to reduce overfitting.

Due to system differences across research groups it can
be difficult, for example, to determine whether a perfor-
mance improvement is due to a better neural network ar-
chitecture or a different optimization technique. Our work
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aims to address this concern by systematically exploring the
major strategies to improve DNN acoustic models.

This paper offers an empirical investigation of DNN per-
formance on two LVCSR tasks to understand best practices
and important design decisions when building DNN acous-
tic models.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews the previous work involved in building neu-
ral network acoustic models for LVCSR, and contextual-
izes the questions addressed by our investigations. Section
3 describes the neural network architectures and optimiza-
tion algorithms evaluated in this paper. Section 4 presents
our experiments on the Switchboard corpus, which focus on
regularization choices. We then present experiments on the
larger Fisher corpora in Section 5 which explore the perfor-
mance of larger and deeper DNN architectures. We conclude
in Section 6.

2 Related Work

To better contextualize previous work, and further convey
what parts of the process are not yet fully understood, we
break the discussion into the following 4 aspects of model-
ing and algorithmic choices:

2.1 Network Size and Depth

The total number of parameters used in modern DNNs is
typically 10 to 100 times greater than neural networks used
in the original hybrid HMM experiments. This increased
model size, which translates to increased representational
capacity, is critical to the success of modern DNN-HMM
system. Using DNNs with many hidden layers and many to-
tal parameters has generally found to be beneficial(Seide,
Li, and Yu 2011; Morgan 2012; Yu et al. 2013), but the
role of hidden layers and total network size is not generally
understood. In the work of Rich Caruana(Ba and Caruana
2013), it is stated that trained deep nets can be duplicated
with shallow nets, but perhaps the deep structure is bene-
ficial to learning. Whether deeper is always better, or how
deep a network must be to obtain good performance, is not
well understood both for speech recognition and DNN clas-
sification tasks more generally. We build DNNs with 5 to 10
times the total number of free parameters of DNNs used in
most previous work to investigate the question of how far
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we can push DNN model size or depth to continue increas-
ing LVCSR performance.

2.2 The Loss Function

The default choice for DNN acoustic models is the cross en-
tropy loss function, but it ignores the DNN as a component
of the larger ASR system. To account for more aspects of
the overall system, discriminative loss functions were intro-
duced for ASR tasks(Kingsbury, Sainath, and Soltau 2012;
Veselỳ et al. 2013; Su et al. 2013). We can view discrimina-
tive training as a task-specific loss function which produces
a DNN acoustic model to better act as a sub-component of
the overall ASR system.

The cross entropy loss function does not consider each
utterance in its entirety. Instead it is defined over individual
samples of acoustic input x and senone label y. The cross
entropy objective function for a single training pair (x, y) is,

−
K∑

k=1

1{y = k} log ŷk; (1)

Where K is the number of output classes, and ŷk is the prob-
ability that the model assigns to the input example taking on
label k. Cross entropy is a convex approximation to the ideal
0-1 loss for classification.

2.3 Optimization Algorithm

While stochastic gradient descent (SGD) provides a robust
default choice for optimizing DNNs, recent work has shown
that more advanced quasi-Newton methods can yield bet-
ter results for DNN tasks generally (Martens 2010; Ngiam
et al. 2011)as well as DNN acoustic modeling(Kingsbury,
Sainath, and Soltau 2012). Quasi-Newton and similar meth-
ods tend to be more computationally expensive per update
than SGD methods, but the improved optimization perfor-
mance can sometimes be distributed across multiple proces-
sors more easily, or necessary for loss functions which are
difficult to optimize well with SGD techniques.

Recently algorithms like AdaGrad (Duchi, Hazan, and
Singer 2011) and Nesterovs Accelerated Gradient (NAG)
were applied to DNNs for tasks outside of speech recogni-
tion, and tend to provide superior optimization as compared
to SGD while still being computationally inexpensive com-
pared to traditional quasi-Newton methods(Sutskever et al.
2013).

2.4 The Regularization Technique

Regularization is especially important for DNNs where we
can easily increase models representational capacity. The
simplest form of regularization widely applied to DNNs is
a weight norm penalty, most often used with an l2-norm
penalty.

Dropout regularization(Hinton et al. 2012) was recently
introduced as a more effective regularization technique for
DNN training. Several experiments demonstrate dropout as
a good regularization technique for tasks in computer vision
and natural language processing (Krizhevsky, Sutskever,
and Hinton 2012; Wager, Wang, and Liang 2013). (Dahl,

Sainath, and Hinton 2013) found a reduction in WER when
using dropout on a 10M parameter DNN acoustic model for
a 50 hour broadcast news LVCSR task.

The modifications to improve the generalization perfor-
mance of large DNNs evaluated in our experiments include
dropout, as well as early stopping, which has been used in
neural network training for many years.

3 Neural Network Computations

We describe briefly here the specifics of the architecture,
along with the loss function and optimization algorithms we
use.

3.1 Cross Entropy Loss Function

All of our experiments utilize the cross entropy classification
loss function. We choose to focus only on cross entropy be-
cause training with cross entropy is almost always the first
step, or an additional loss function criterion, when exper-
imenting with more task-specific loss functions. Addition-
ally, the cross entropy loss function is a standard choice for
classification tasks, and using it allows our experiments to
serve as a case study for large scale DNN classification tasks
more generally.

However, when training acoustic models perfect classifi-
cation at the level of short acoustic spans is not our ultimate
goal. Instead, we wish to minimize the WER of the final
LVCSR system.

WER measures mistakes at the word level, and it is pos-
sible to perfectly transcribe the words in an utterance with-
out perfectly classifying the HMM state present at each time
step. Constraints present in the HMM and word sequence
probabilities from the language model can correct minor er-
rors in state-level HMM observation estimates. Conversely,
not all acoustic spans are of equal importance in obtain-
ing the correct word-level transcription. The relationship
between classification accuracy rate at the frame level and
overall system word error rate (WER) is complex and not
well understood. In our experiments we always report both
frame-level error metrics and system-level WER to elicit
insights about the relationship between DNN loss function
performance and overall system performance.

3.2 Hidden Layer Computation

Traditional approaches to neural networks typically use a
sigmoidal function. However, in this work we use rectified
linear units which were recently shown to lead to better per-
formance in hybrid speech recognition as well as other DNN
classification tasks(Zeiler et al. 2013; Maas, Hannun, and Ng
2013).

The rectifier nonlinearity is defined as,

σ(z) = max(z, 0) =

{
zi, zi > 0

0, zi ≤ 0
(2)

The choice of rectifier nonlinearities is a new one, but
their benefit has been reproduced by several research groups.
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3.3 Optimization Algorithms

We consider two of the most popular stochastic gradient
techniques for our neural network training. The first one is
stochastic gradient with classical momentum (CM), which is
the most standard choice in modern neural network research.
To minimize a cost function f(θ) classical momentum up-
dates amount to,{

vt = μvt−1 − ε∇f(θt−1)

θt = θt−1 + vt
(3)

where vt denotes the accumulated gradient update, or
velocity, ε > 0 is the learning rate, and the momentum con-
stant μ ∈ [0, 1] governs how we accumulate the velocity
vector over time.

By setting μ close to one, one can expect to accumu-
late the gradient information across a larger set of past
updates. However, it can be shown that for extremely ill-
conditioned problems, a high momentum for classical mo-
mentum method might actually cause fluctuations in the pa-
rameter updates. This in turn can result in slower conver-
gence.

Recently the Nesterovs accelerated gradient (NAG) (Nes-
terov 1983) technique was found to address some of the is-
sues encountered when training neural networks with CM.
Both methods follow the intuition that accumulating the gra-
dient updates along the course of optimization will help
speed up convergence. NAG accumulates past gradients us-
ing an alternative update equation that finds a better ob-
jective function value with less sensitivity to optimization
algorithm hyper-parameters on some neural network tasks,
which is defined as,{

vt = μt−1vt−1 − εt−1∇f(θt−1 + μt−1vt−1)

θt = θt−1 + vt
(4)

Intuitively, this method avoids potential fluctuation in the
optimization by looking ahead to the gradient along the up-
date direction. For a more detailed explanation of the intu-
ition underlying NAG optimization for neural network tasks
see Figure 7.1 in (Sutskever 2013).

4 33 Hour Switchboard Corpus

We first carry out LVCSR experiments on an 33 hour sub-
set of the Switchboard conversational telephone speech cor-
pus (LDC97S62). The baseline GMM system and forced
alignments are created using the Kaldi open-source toolkit1
(Povey et al. 2011).

The baseline recognizer has 3,986 sub-phone states and
20k Gaussians. Input features for the DNNs are MFCCs with
a context of ±10 frames. Per-speaker CMVN is applied and
speaker adaptation is done using fMLLR. The features are
also globally normalized prior to training the DNN.

For evaluation, we report on a test set consisting of both
the Switchboard and CallHome subsets of the HUB5 2000
data (LDC2002S09) as well as a subset of the training set
consisting of 5,000 utterances.

1http://kaldi.sf.net

4.1 Varying DNN Model Size

We explore three different model sizes by varying the num-
ber of hidden units in each layer while the number of hid-
den layers is fixed to 5 and all hidden layers in a single
network have the same number of hidden units. The hidden
layer sizes are 648, 1250 and 2992 which respectively yield
models with approximately 3.6 million (M), 10M and 50M
parameters.

There are 3,986 output classes which results in the output
layer being the largest single layer in all our 3 networks. In
DNNs of the size typically studied in the literature this out-
put layer often consumes a majority of the total parameters
in the network. For example in our 3.6M parameter model
the output layer comprises 72% of all parameters. In con-
trast, the output layer in our 50M model is only 24% of total
parameters.

For larger models we experiment with the standard input
of ±10 context frames and additionally models trained with
±20 context frames.

For optimization, we use Nesterovs accelerated gradient
with a smooth initial momentum schedule which we clamp
to a maximum of 0.95(Sutskever et al. 2013). The stochas-
tic updates are on mini-batches of 512 examples. After each
epoch, or full pass through the data, we anneal the learning
rate by half. Training is stopped after improvement in the
cross entropy objective evaluated on held out development
set falls below a small tolerance threshold.

We train models for this paper in a model-parallel fashion
by distributing the parameters across 4 GPUs using the dis-
tributed neural network infrastructure proposed by (Coates
et al. 2013). A single pass through the training set for a 50M
parameter DNN takes approximately 3.5 hours.

Results: Table 1 shows results for DNN systems in terms
of frame-wise error metrics on the development set as well
as word error rates on the training set and HUB5 2000 eval-
uation sets. The HUB5 set (EV) contains the Switchboard
(SWBD) and Callhome (CH) evaluation subsets. Frame-
wise error metrics were evaluated on 1.7m frames held out
from the training set.

We find that substantially increasing DNN size shows
clear improvements in frame-level metrics. Our 50M param-
eter DNN halves the development set cross entropy cost of
the smaller 3.6M parameter DNN – a substantial reduction.
For each increase in DNN model size there is approximately
a 10% absolute increase in frame classification accuracy.

Frame-level metrics are further improved by using larger
context windows. In all cases a model trained with larger
context window outperforms its smaller context counterpart.
Our best overall model in terms of frame-level metrics is a
50M parameter DNN with context window of 20 frames.

However, frame-level performance is not always a good
proxy for WER performance of a final system. Large DNN
acoustic models substantially reduce WER on the train-
ing set. Indeed, our results suggest that further training set
WER reductions are possible by continuing to increase DNN
model size. However, the gains observed on the training set
in WER do not translate to the evaluation sets.

While there is a small benefit of using models larger than
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Table 1: Results for DNNs of varying size and varying amounts of input context

Model Size Layer Size Context Dev
CrossEnt

Dev
Acc(%) Train WER SWBD

WER CH WER EV WER

GMM — 0 — — 24.93 21.7 36.1 29.0
3.6M 648 ±10 1.23 66.20 17.52 15.1 27.1 21.2

10M 1250 ±10 0.77 78.56 13.66 14.5 27.0 20.8
±20 0.50 85.58 12.31 14.9 27.7 21.4

50M 2992 ±10 0.51 86.06 11.56 15.0 26.8 20.9
±20 0.26 93.05 10.09 15.4 28.5 22.0

Figure 1: Train and test set WER as a function of training
epoch for systems with DNN acoustic models of varying
size

the 3.6M baseline size, building models larger than 10M pa-
rameters does not prove beneficial for this task.

Discussion: Figure 1 shows WER performance for the
10M and 50M parameter DNNs after each epoch of cross en-
tropy training. We find that training WER reduces fairly dra-
matically at first and then continues to decrease at a slower
but still meaningful rate. In contrast, nearly all of evaluation
set performance is realized within the first few epochs. Al-
though the training error rate is substantially lower for large
models, there is no gain in test set performance.

This dynamics has two important practical implications
for large DNN training in speech recognition.

First, large acoustic models are not beneficial but do not
exhibit a strong over-fitting effect where evaluation set per-
formance improves for a while before becoming increas-
ingly worse.

Second, it may be possible to utilize large DNNs with-
out prohibitively long training times by utilizing our finding
that most performance comes from the first few epochs, even
with models at our scale.

Finally, although increasing context window size im-
proves all training set metrics, those gains do not translate
to improved test set performance. It seems that increasing
context window size provides an easy path to better fitting
the training function, but does not result in the DNN learn-
ing a meaningful, generalizable function.

Table 2: Test set WER performance of DNN trained with
dropout

Model Dropout SWBD CH EV
GMM — 21.7 36.1 29.0

3.6M — 15.1 27.1 21.2
DO 14.7 26.7 20.8

10M — 14.5 27.0 20.8
DO 14.6 26.3 20.5

50M — 15.0 26.8 20.9
DO 14.9 26.3 20.7

4.2 Dropout Regularization

The dropout technique randomly masks out hidden unit ac-
tivations during training, which prevents co-adaptation of
hidden units. For each example observed during training,
each unit has its activation set to zero with probability p ∈
[0, 0.5].

While networks which employ dropout during training
were found effective in a number of different studies, the au-
thors did not perform control experiments to measure the im-
pact of dropout alone. We directly compare a baseline DNN
to a DNN of the same architecture trained with dropout. This
experiment tests whether dropout regularization can miti-
gate the poor generalization performance of large DNNs ob-
served in Section 4.1.

Results: Table 2 shows that DNNs trained with dropout
improve over the baseline for all model sizes we evaluate.
The improvement is a consistent 0.2% to 0.4% reduction
in absolute WER on the test set. While beneficial, dropout
seems insufficient to fully harness the representational ca-
pacity of the largest models.

4.3 Early Stopping

We evaluate early stopping as another standard DNN regu-
larization technique which may improve the generalization
performance of large DNN acoustic models. By analyzing
the training and test WER curves in Figure 1 we can ob-
serve the best-case performance of an early stopping ap-
proach to improving generalization. If we select the lowest
test set WER the system achieves during DNN optimization,
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Table 3: Frame level accuracy for the same 3.6M DNN
trained with different optimization algorithms

μmax Acc(%) SWBD CH EV RT03
GMM — — 21.9 31.9 26.9 39.5

CM
0.90 52.51 18.3 27.3 22.8 39.0
0.95 54.20 17.1 25.6 21.4 38.1
0.99 55.26 16.3 24.8 20.6 37.5

NAG
0.90 53.18 18.0 26.7 22.3 38.5
0.95 54.27 17.2 25.8 21.5 39.6
0.99 55.39 16.3 24.7 20.6 37.4

the 50M parameter DNN achieves 20.7% WER on the EV
subset C only 0.1% better than the 10M parameter baseline
DNN system. This early stopped 50M model achieves only a
0.5% absolute WER reduction over the much smaller 3.6M
parameter DNN. This suggests that early stopping is bene-
ficial, but perhaps also insufficient to yield the full possible
benefits of large DNN acoustic models.

5 A Larger Fisher Corpus

We next explore DNN performance using a substantially
larger training corpus by extracting a 210 hours subset from
the Fisher corpus (Cieri, Miller, and Walker 2004). The
Fisher corpus contains approximately 2,000 hours of train-
ing data, but has transcriptions which are slightly less accu-
rate than those of the Switchboard corpus.

This set of experiments explores how we expect DNN
acoustic models to behave when training set size is not a
limiting factor. In this setting, overfitting with large DNNs
should be less of a problem and we can more thoroughly
explore architecture choices in large DNNs rather than regu-
larization techniques to reduce over-fitting and improve gen-
eralization with a small training corpus.

Our baseline GMM acoustic model was trained on fea-
tures that are obtained by splicing together 7 frames (3 on
each side of the current frame) of 13-dimensional MFCCs
(C0-C12) and projecting down to 40 dimensions using lin-
ear discriminant analysis (LDA). After obtaining the fea-
tures with LDA, we also use a single semi-tied covariance
(STC) transform on the features. Moreover, speaker adap-
tive training (SAT) is done using a single feature-space max-
imum likelihood linear regression (fMLLR) transform esti-
mated per speaker.

The models trained on the 210hr Fisher set contain
872 tied triphone states and 320k Gaussians. Kneser-Ney
smoothing was applied to fine-tune the back-off probabili-
ties to minimize the perplexity on a held out set of 1K tran-
script sentences from Fisher transcripts.

We use two evaluation sets for all experiments on this cor-
pus. First, we use the same Hub500 (Eval2000) corpus used
to evaluate systems on the Switchboard 33hr task previously
in Section 4. This evaluation set serves as a reference point to
compare systems built on our larger corpus to those trained
on Switchboard. Second, we use the RT-03 evaluation set

which is more frequently used in the literature to evaluate
Fisher-trained systems.

Performance of the baseline HMM-GMM system2 is
shown in Table 3 and Table 4.

5.1 Optimization Algorithm Choice

We apply here the same 3.6M DNN (5 hidden layers, 648
hidden units each layer) as in Section 4.1, which is a typi-
cal size for acoustic models used for conversational speech
transcription in the research literature. For both the classi-
cal momentum and Nesterovs accelerated gradient optimiza-
tion techniques the two key hyper-parameters are the initial
learning rate ε and the maximum momentum μmax.

Table 3 shows that, in terms of frame level accuracy, the
NAG optimizer narrowly outperforms the CM optimizer, but
WER performance across all evaluation sets are nearly iden-
tical.

For both optimization algorithms a high value of μmax is
important for good performance. Note most previous work
in hybrid acoustic models use CM with μmax = 0.90, which
does not appear to be optimal in our experiments.

We also found that a larger initial learning rate was bene-
ficial. We ran experiments using ε ≥ 0.05 but do not report
results because the DNNs diverged during the optimization
process. Similarly, all models trained with ε = 0.001 had
WER more than 1% absolute higher on the EV test set as
compared to the same architecture trained with ε = 0.01.
We thus omit the results for models trained with ε = 0.001
from our results table.

For the remainder of our experiments we use the NAG
optimizer with μmax = 0.99 and ε = 0.01. These settings
achieve the best performance overall in our initial experi-
ments, and generally we have found the NAG optimizer to
be somewhat more robust than the CM optimizer in produc-
ing good parameter solutions.

5.2 Number of Hidden Layers

We next compare performance of DNN systems while keep-
ing total model size fixed and varying the number of hidden
layers in the DNN. The optimal architecture for a neural net-
work may change as the total number of model parameters
changes. There is no a priori reason to believe that 5 hidden
layers is optimal for all model sizes. Furthermore, there are
no good general heuristics to select the number of hidden
layers for a particular task.

Table 4 shows performance for DNNs with 1, 3, 5, and 7
hidden layers at multiple total parameter counts.

The most striking distinction in terms of both frame clas-
sification and WER is the performance gain of deep models
versus those with a single hidden layer. Single hidden layer
models perform much worse than DNNs with 3 hidden lay-
ers or more.

Among deep models there are much smaller gains as a
function of depth. Models with 5 hidden layers show a clear
gain over those with 3 hidden layers, but there is little to no
gain from a 7 hidden layer model when compared with a 5

2The implementation is available in the Kaldi project repository
as example recipe fisher swbd (revision: r4340).
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Table 4: Results for DNNs of varying total model size and DNN depth

# Params # Layers Layer Size Acc(%) SWBD CH EV RT03
GMM — — — 21.9 31.9 26.9 39.5

3.6M

1 1203 49.38 21.0 30.4 25.8 43.2
3 784 54.78 17.0 25.8 21.4 38.2
5 648 55.37 16.2 24.7 20.6 37.4
7 568 54.99 16.3 24.7 20.7 37.3

10M

1 3306 50.82 19.8 29.1 24.6 42.4
3 1562 56.02 16.3 24.8 20.6 37.3
5 1224 56.62 15.8 23.8 19.8 36.7
7 1046 56.59 15.7 23.8 19.8 36.4

50M

1 10453 51.29 19.6 28.7 24.3 42.8
3 3869 56.58 16.0 24.0 20.1 37.0
5 2946 57.36 15.3 23.1 19.3 36.0
7 2487 57.28 15.3 23.3 19.3 36.2

hidden layer model. These results suggest that for this task
5 hidden layers may be deep enough to achieve good perfor-
mance, but that DNN depth taken further does not increase
performance.

Its also interesting to note that DNN depth has a much
larger impact on performance than total DNN size. For this
task, it is much more important to select an appropriate num-
ber of hidden layers than it is to choose an appropriate total
model size.

For each total model size there is a slight decrease in
frame classification in 7 layer DNNs as compared with 5
hidden layer DNNs. This trend of decreasing frame-level
performance is also present in the training set, which sug-
gests that as networks become very deep it is more difficult
to minimize the training objective function.

This is evidence for a potential confounding factor when
building DNNs. In theory deeper DNNs should be able to
model more complex functions than their shallower coun-
terparts, but in practice we found that depth can act as a
regularizor due to the difficulties in optimizing very deep
models.

6 Conclusion
The multi-step process of building neural network acoustic
models comprises a large design space with a broad range
of previous work. Our work sought to answer the question
of which of the most fundamental DNN design decisions are
most relevant for final ASR system performance. We found
that increasing model size and depth are simple but effective
ways to improve WER performance, but only up to a certain
point.

For the Switchboard corpus, we found that regularization
can improve the performance of large DNNs which other-
wise suffer from over-fitting problems. However, a much
larger gain was achieved by utilizing the larger 210hr train-
ing corpus as opposed to applying regularization with less
training data. When trained with the simple NAG optimiza-
tion procedure, these large DNNs achieved clear gains on

both frame classification and WER when the training corpus
was large.

Overall, total network size, not depth, was the most crit-
ical factor we found in our experiments. Depth is certainly
important with regards to having more than one hidden layer,
but differences among DNNs with multiple hidden layers
were fairly small with regards to all metrics we evaluated. At
a certain point it appears that increasing DNN depth yields
no performance gains, and may indeed start to harm perfor-
mance.

When applying DNN acoustic models to new tasks it ap-
pears sufficient to use a fixed optimization algorithm, we
suggest NAG, and cross-validate over total network size us-
ing a DNN of at least three hidden layers, but no more than
five.

Based on our results, this procedure should instantiate a
reasonably strong baseline system for further experiments,
by modifying whatever components of the acoustic model
building procedure researchers choose to explore.

We trained DNNs using approximately 300 lines of
Python code, demonstrating the feasibility of fairly simple
architectures and optimization procedures to achieve good
system performance. We make our DNN training code avail-
able online3, hoping that this serves as a reference point
to improve communication and reproducibility in the now
highly active research area of neural networks for speech
and language understanding.
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