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Abstract

The quality of K-Means clustering is extremely sen-
sitive to proper initialization. The classic remedy is
to apply k-means++ to obtain an initial set of cen-
ters that is provably competitive with the optimal solu-
tion. Unfortunately, k-means++ requires k full passes
over the data which limits its applicability to massive
datasets. We address this problem by proposing a sim-
ple and efficient seeding algorithm for K-Means cluster-
ing. The main idea is to replace the exact D2-sampling
step in k-means++ with a substantially faster approx-
imation based on Markov Chain Monte Carlo sam-
pling. We prove that, under natural assumptions on the
data, the proposed algorithm retains the full theoreti-
cal guarantees of k-means++ while its computational
complexity is only sublinear in the number of data
points. For such datasets, one can thus obtain a prov-
ably good clustering in sublinear time. Extensive exper-
iments confirm that the proposed method is competi-
tive with k-means++ on a variety of real-world, large-
scale datasets while offering a reduction in runtime of
several orders of magnitude.

1 Introduction

The goal of K-Means clustering is to find a set of k cluster
centers for a dataset such that the sum of squared distances
of each point to its closest cluster center is minimized. It is
one of the classic clustering problems and has been stud-
ied for several decades. Yet even today, it remains a relevant
problem: Lloyd’s algorithm (Lloyd, 1982), a local search al-
gorithm for K-Means, is still one of the ten most popular
algorithms for data mining according to Wu et al. (2008)
and is implemented as a standard clustering method in most
machine learning libraries. In the last few years, K-Means
clustering has further been studied in various fields of ma-
chine learning such as representation learning (Coates, Lee,
and Ng, 2011; Coates and Ng, 2012) and Bayesian nonpara-
metrics (Kulis and Jordan, 2012).

It is well-known that K-Means clustering is highly sen-
sitive to proper initialization. The classical remedy is to use
a seeding procedure proposed by Arthur and Vassilvitskii
(2007) that together with Lloyd’s algorithm is known as
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k-means++. In the seeding step of k-means++, the clus-
ter centers are sampled iteratively using D2-sampling: First,
a cluster center is chosen uniformly at random from the data
points. Then, in each of k iterations, a data point is selected
as a new cluster center with probability proportional to its
distance to the already sampled cluster centers. Even without
assumptions on the data, the resulting solution is in expec-
tation O(log k)-competitive with regards to the optimal so-
lution (Arthur and Vassilvitskii, 2007). While k-means++
is easy to implement, it is non-trivial to apply it to large
problems. k-means++ has to make a full pass through
the data for every cluster center sampled. This leads to a
complexity of Θ(nkd) where n is the number of data points,
k the number of cluster centers and d the dimensionality of
the data. Even if k is moderate, this can be computationally
infeasible for massive datasets. This motivates our search
for a seeding method with a lower, potentially even sub-
linear, complexity in the number of data points that retains
both the empirical and theoretical benefits of k-means++.

But is it even worth pursuing a fast seeding algorithm?
After all, both evaluating the quality of such a seeding and
running one iteration of Lloyd’s algorithm exhibit the same
Θ(nkd) complexity as the seeding step of k-means++.
Hence, one might argue that there is no benefit in reducing
the complexity of the k-means++ seeding step as it is
dominated by these two other operations. There are two
shortcomings to this argument: Firstly, k-means++ is an
inherently sequential algorithm of k dependent iterations
and, as such, difficult to parallelize in a distributed setting.
Evaluating the quality of a K-Means solution, however,
can be done in parallel using a single MapReduce step.
Similarly, Lloyd’s algorithm can also be implemented in
MapReduce (Zhao, Ma, and He, 2009). Secondly, there
are many use cases where one requires fast seeding without
evaluating the quality of the seeding or running Lloyd’s
algorithm subsequently. For example, the quality of such
a solution can be improved using fast algorithms such as
online (Bottou and Bengio, 1994) or mini-batch K-Means
(Sculley, 2010) which may be run for less than O(n) iter-
ations in practice. Furthermore, various theoretical results
such as coreset constructions (Bachem, Lucic, and Krause,
2015) rely on the theoretical guarantee of k-means++.
Hence, a fast seeding algorithm with a strong theoretical
guarantee would have an impact on all these applications.
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Our Contributions. In this paper, we propose a sim-
ple, but novel algorithm based on Markov Chain Monte
Carlo (MCMC) sampling to quickly obtain a seeding for
the K-Means clustering problem. The algorithm can be run
with varying computational complexity and approximates
the seeding step of k-means++ with arbitrary precision
as its complexity is increased. Furthermore, we show that
for a wide class of non-pathological datasets convergence is
fast. Under these mild and natural assumptions, it is suffi-
cient to run our algorithm with complexity sublinear in the
number of data points to retain the same O(log k) guarantee
as k-means++. This implies that for such datasets, a prov-
ably good K-Means clustering can be obtained in sublinear
time. We extensively evaluate the proposed algorithm empir-
ically and compare it to k-means++ as well as two other
approaches on a variety of datasets.

2 Background & Related Work

K-Means clustering. Let X denote a set of n points in R
d.

The K-Means clustering problem is to find a set C of k clus-
ter centers in R

d such that the quantization error φC(X ) is
minimized, where

φC(X ) =
∑
x∈X

d(x,C)2 =
∑
x∈X

min
c∈C

‖x− c‖22.

In this paper, we implicitly use the Euclidean distance func-
tion; however, any distance function d(x, x′) may be used.
The optimal quantization error is denoted by φk

OPT (X ).
k-means++ seeding. The seeding step of k-means++

(Arthur and Vassilvitskii 2007) works by sampling an initial
cluster center uniformly at random and then adaptively sam-
pling (k − 1) additional cluster centers using D2-sampling.
More specifically, in each iteration i = 2, . . . , k, the data
point x ∈ X is added to the set of already sampled cluster
centers Ci−1 with probability

p(x) =
d(x,Ci−1)

2∑
x′∈X d(x′, Ci−1)2

. (1)

The algorithm’s time complexity is Θ(nkd) and the result-
ing seeding Ck is in expectation O(log k) competitive with
respect to the optimal quantization error φk

OPT (X ) (Arthur
and Vassilvitskii, 2007), i.e.

E [φCk
(X )] ≤ 8(log2 k + 2)φk

OPT (X ).

Related work. Previously, the same idea as in
k-means++ was explored in Ostrovsky et al. (2006) where
it was shown that, under some data separability assump-
tions, the algorithm provides a constant factor approxima-
tion. Similar assumptions were analyzed in Balcan, Blum,
and Gupta (2009), Braverman et al. (2011), Shindler, Wong,
and Meyerson (2011), Jaiswal and Garg (2012) and Agar-
wal, Jaiswal, and Pal (2013). Without any assumption on the
data, it was shown that D2-sampling leads to a constant fac-
tor approximation if Ω(k log k) (Ailon, Jaiswal, and Mon-
teleoni, 2009) or Ω(k) (Aggarwal, Deshpande, and Kannan,
2009) centers are sampled. Bad instances for k-means++

were considered in the original paper (Arthur and Vassilvit-
skii, 2007) as well as in Brunsch and Röglin (2011). A poly-
nomial time approximation scheme for K-Means using D2-
sampling was proposed in Jaiswal, Kumar, and Sen (2014)
and Jaiswal, Kumar, and Yadav (2015).

Several ideas extending k-means++ to the streaming
setting were explored: A single-pass streaming algorithm
based on coresets and k-means++ was proposed in Ack-
ermann et al. (2012). The main drawback of this approach
is that the size of the coreset is exponential in the dimen-
sionality of the data. Ailon, Jaiswal, and Monteleoni (2009)
suggest a streaming algorithm based on Guha et al. (2003)
that provides the same O(log k) guarantee as k-means++
with a complexity of O(ndk log n log k).

Bahmani et al. (2012) propose a parallel version of
k-means++ called k-means‖ that obtains the same
O(log k) guarantee with a complexity of Θ(ndk log n). The
main idea is to replace the k sequential sampling rounds of
k-means++ by r = Θ(log n) rounds in each of which
l = Θ(k) points are sampled in parallel. In a final step,
the Θ(k log n) sampled points are clustered again using
k-means++ to produce a final seeding of k points. As
a result, the computational complexity of k-means‖ is
higher than k-means++ but can be efficiently distributed
across different machines. In Section 6, we will compare
k-means‖ with our proposed method on various datasets.

3 Approximate D2-sampling

In each iteration of D2-sampling, the k-means++ algo-
rithm has a computational complexity of Θ(nd) as it needs
to calculate the sampling probabilities p(x) in (1) for ev-
ery data point. We aim to reduce the complexity by approx-
imating the D2-sampling step: we strive for a fast sampling
scheme whose implied sampling probabilities p̃(x) are close
to p(x). To formalize this notion of closeness, we use the to-
tal variation distance which measures the maximum differ-
ence in probabilities that two distributions assign to an event.
More formally, let Ω be a finite sample space on which two
probability distributions p and q are defined. The total vari-
ation distance between p and q is given by

‖p− q‖TV =
1

2

∑
x∈Ω

|p(x)− q(x)|. (2)

In Section 5 we will show that using total variation distance
we can bound the solution quality obtained by our algo-
rithm. Informally, if the total variation distance is less than
ε, we are able to to retain the same theoretical guarantees as
k-means++ with probability at least (1− ε).

MCMC approximation. The Metropolis-Hastings algo-
rithm (Hastings 1970) (with an independent, uniform pro-
posal distribution) applied to a single step of D2-sampling
works as follows: We uniformly sample an initial state x0

from the point set X and then iteratively build a Markov
chain. In each iteration j, we uniformly sample a candidate
point yj and calculate the acceptance probability

π = min

(
1,

p(yj)

p(xj−1)

)
= min

(
1,

d(yj , C)2

d(xj−1, C)2

)
. (3)
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With probability π we then set the state xj to yj and with
probability 1−π to xj−1. For a Markov chain of total length
m, we only need to calculate the distance between m data
points and the cluster centers since the normalization con-
stants of p(yj) and p(xj−1) in (3) cancel. By design, the
stationary distribution of this Markov chain is the target dis-
tribution p(x). This implies that the distribution p̃m(x) of
the m-th state xm converges to p(x) as m → ∞. Further-
more, the total variation distance decreases at a geometric
rate with respect to the chain length m (Cai, 2000) as

‖p̃m − p‖TV = O
((

1− 1

γ

)m)

where
γ = nmax

x∈X
p(x). (4)

This implies that there is a chain length m = O(
γ log 1

ε

)
that achieves a total variation distance of at most ε. Intu-
itively, γ measures the difficulty of approximately sampling
from p(x) and depends on the current set of centers C and
the dataset X . We remark that the total variation distance in-
creases with γ. For now, we assume γ to be given and defer
the detailed analysis to Section 5.

4 Approximate K-Means++ using K-MC
2

It is straightforward to extend this MCMC-based sampler to
approximate the full seeding step of k-means++: We first
sample an initial cluster center uniformly at random. Then,
for each of the remaining k− 1 iterations, we build an inde-
pendent Markov chain of length m and use the last element
as the new cluster center. We call this algorithm K-MC2 and
provide pseudo-code in Algorithm 1. The complexity of the
proposed algorithm is Θ

(
mk2d

)
. In particular, it does not

depend on the number of data points n.
Theorem 1 guarantees convergence of Algorithm 1 to

k-means++ in terms of total variation distance. Since the
(k−1) Markov chains are independent, we may use a union
bound: If the sampling induced by each chain has a total
variation distance of at most ε/(k − 1), then the total vari-
ation distance between the sampling induced by K-MC2 and
the sampling induced by k-means++ is at most ε (as shown
in the proof of Theorem 1).

Algorithm 1 K-MC2

Require: Dataset X , number of centers k, chain length m
c1 ← point uniformly sampled from X
C1 ← {c1}
for i = 2, 3, . . . , k do
x ← point uniformly sampled from X
dx ← d(x,Ci−1)

2

for j = 2, 3, . . . ,m do
y ← point uniformly sampled from X
dy ← d(y, Ci−1)

2

if
dy

dx
> Unif(0, 1) then

x ← y, dx ← dy
Ci ← Ci−1 ∪ {x}

return Ck

Theorem 1. Let k > 0 and 0 < ε < 1. Let p++(C) be
the probability of sampling a seeding C using k-means++
and pmcmc(C) the probability using K-MC2 (Algorithm 1).
Then,

‖pmcmc − p++‖TV ≤ ε

for a chain length m = O(
γ′ log k

ε

)
where

γ′ = max
C⊂X ,|C|≤k

max
x∈X

n
d(x,C)2∑

x′∈X d(x′, C)2
.

The resulting complexity of Algorithm 1 is O(
γ′k2d log k

ε

)
.

The proof is given in Section B of the Appendix. This re-
sult implies that we can use K-MC2 to approximate the seed-
ing step of k-means++ to arbitrary precision. The required
chain length m depends linearly on γ′ which is a uniform
upper bound on γ for all possible sets of centers C. In the
next section, we provide a detailed analysis of γ′ and quan-
tify its impact on the quality of seeding produced by K-MC2.

5 Analysis
In the previous section, we saw that the rate of convergence
of K-MC2 depends linearly on γ′. By definition, γ′ is trivially
bounded by n and it is easy to construct a dataset achieving
this bound: Consider the 2-Means clustering problem and
let (n − 1) points be in an arbitrarily small cluster while
a single point lies at some distance away. With probability
(1 − 1

n ), a point from the first group is sampled as the ini-
tial cluster center. In the subsequent D2-sampling step, we
are thus required to sample the single point with probabil-
ity approaching one. For such a pathological dataset, it is
impossible to approximate D2-sampling in sublinear time.
Our proposed algorithm is consistent with this result as it
would require linear complexity with regards to the number
of data points for this dataset. Fortunately, such pathological
datasets rarely occur in a practical setting. In fact, under very
mild and natural assumptions on the dataset, we will show
that γ′ is at most sublinear in the number of data points.

To this end, we assume that the dataset X is sampled i.i.d.
from a base distribution F and note that γ′ can be bounded
by two terms α and β, i.e.

γ′ ≤ 4
maxx∈X d(x, μ(X ))2

1
n

∑
x′∈X d(x′, μ(X ))2︸ ︷︷ ︸

α

φ1
OPT (X )

φk
OPT (X )︸ ︷︷ ︸

β

(5)

where μ(X ) denotes the mean of X and φk
OPT (X ) denotes

the quantization error of the optimal solution of k centers
(see Section C of the Appendix for a proof).

Tail behavior of distribution F . The first term α mea-
sures the ratio between the maximum and the average of the
squared distances between the data points and their empiri-
cal mean. In the pathological example introduced above, α
would approach (n − 1). Yet, under the following assump-
tion, α grows sublinearly in n as formally stated and proven
in Section A.1 of the Appendix.
(A1) For distributions F with finite variance and exponen-

tial tails1, α is independent of k and d and w.h.p.
α = O(

log2 n
)
.

1∃c, t such that P [d(x, μ(F )) > a] ≤ ce−at where x ∼ F .
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This assumption is satisfied by the univariate and multivari-
ate Gaussian as well as the Exponential and Laplace dis-
tributions, but not by heavy tailed distributions such as the
Pareto distribution. Furthermore, if α is sublinear in n for
all components of a mixture, then α is also sublinear for
the mixture itself. For distributions with finite variance and
bounded support, we even show a bound on α that is inde-
pendent of n.

Nondegeneracy of distribution F . The second term β
measures the reduction in quantization error if k centers are
used instead of just one. Without prior assumptions β can be
unbounded: If a dataset consists of at most k distinct points,
the denominator of the second term in (5) is zero. Yet, what
is the point of clustering such a dataset in practice if the
solution is trivial? It is thus natural to assume that F is non-
degenerate, i.e., its support is larger than k. Furthermore, we
expect β to be independent of n if n is sufficiently large: Due
to the strong consistency of K-Means the optimal solution on
a finite sample converges to the optimal quantizer of the gen-
erating distribution as n → ∞ (Pollard, 1981) and such an
optimal quantizer is by definition independent of n. At the
same time, β should be non-increasing with respect to k as
additional available cluster centers can only reduce the opti-
mal quantization error. This allows us to derive a very gen-
eral result (formally stated and proven in Section A.2 of the
Appendix) that for distributions F that are “approximately
uniform” on a hypersphere, β is independent of n.
(A2) For distributions F whose minimal and maximal den-

sity on a hypersphere with nonzero probability mass is
bounded by a constant, β is independent of n and w.h.p.

β = O(k).

This property holds for a wide family of continuous prob-
ability distribution functions including the univariate and
multivariate Gaussian, the Exponential and the Laplace dis-
tribution. Again, if β is bounded for all components of a
mixture, then β is also bounded for the mixture.

Solution quality of K-MC
2. These two assumptions do

not only allow us to bound γ′ and thus obtain favourable
convergence, but also to analyze the quality of solutions gen-
erated by K-MC2. In particular, we show in Section C of the
Appendix that the expected quantization error φK-MC2 of Al-
gorithm 1 is bounded by

E [φK-MC2 ] ≤ E [φk-means++] + 2εβφk
OPT (X ).

Hence, by setting the total variation distance ε = O(1/β),
the second term becomes a constant factor of φk

OPT (X ). By
applying Theorem 1 with m = O(αβ log βk), the solution
sampled from K-MC2 is in expectation O(log k)-competitive
to the optimal solution and we obtain the following theorem.
Theorem 2. Let k > 0 and X be a dataset with α =
O(

log2 n
)

and β = O(k), i.e. assume (A1) and (A2). Let
C be the set of centers sampled by K-MC2 (Algorithm 1)
with m = O(

k log2 n log k
)
. Then we have

E [φC(X )] ≤ O(log k)φk
OPT (X ).

The total complexity is O(
k3d log2 n log k

)
.

Table 1: Datasets with size n, dimensionality d and esti-
mated values for α and β

DATASET N D α β̃ (K=200)

CSN 80000 17 546.27 3.04
KDD 145751 74 1267.65 1.81
USGS 59209 3 2.68 51.67
WEB 45811883 5 2.33 57.09
BIGX 11620300 57 7.82 14.17
SONG 515345 90 525.67 1.23

The proof is provided in Section C of the Appendix. The
significance of this result is that, under natural assumptions,
it is sufficient to run K-MC2 with complexity sublinear in the
number of data points to retain the theoretical guarantee of
k-means++. Hence, one can obtain a provably good clus-
tering for K-Means in sublinear time for such datasets.

6 Experiments

Datasets. We use six different datasets: USGS (United States
Geological Survey, 2010), CSN (Faulkner et al., 2011), KDD
(KDD Cup, 2004), BIGX (Ackermann et al., 2012), WEB
(Yahoo! Labs, 2008) and SONG (Bertin-Mahieux et al.,
2011). Table 1 shows the size and number of dimensions
of these datasets as well as estimates of both α and β. We
directly calculate α using (5) and approximate β by replac-
ing the optimal solution φk

OPT (X ) in (5) with the solution
obtained using k-means++.

Methods. We compare the algorithm K-MC2 to four alter-
native methods (k-means++, RANDOM, HEURISTIC and
k-means‖). We run K-MC2 with different chain lengths,
i.e. m ∈ {1, 2, 5, 10, 20, 50, 100, 150, 200}. As the main
baselines, we consider the seeding step of k-means++
as well as RANDOM, a seeding procedure that uniformly
samples k data points as cluster centers. We further pro-
pose the following HEURISTIC: It works by uniformly
sampling s points and then running the seeding step
of k-means++ on this subset. Similar to K-MC2, we
set s ∈ {100, 200, 500, . . . , 10′000, 15′000, 20′000}. Fi-
nally, we also compare to k-means‖. We use r = 5
rounds and a variety of oversampling factors, i.e. l ∈
{0.02k, 0.05k, 0.1k, 0.2k, 0.5k, 1k, 2k}.

Experimental setup. For the datasets USGS, CSN and
KDD, we set k = 200 and train all methods on the full
datasets. We measure the number of distance evaluations
and the quality of the solution found in terms of quantiza-
tion error on the full dataset. For the datasets BIGX, WEB
and SONG, we set k = 2000 and train on all but 250′000
points which we use as a holdout set for evaluation. We con-
sider both training error and holdout error for the following
reason: On one hand, the theoretical guarantees for both K-
MC2 and k-means++ hold in terms of training error. On
the other hand, in practice, one is usually interested in the
generalization error.

As all the considered methods are randomized proce-
dures, we run them repeatedly with different initial random
seeds. We average the obtained quantization errors and use
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Table 2: Experimental results.

RELATIVE ERROR VS. K-MEANS++ SPEEDUP VS. K-MEANS++ (DISTANCE EVALUATIONS)

CSN KDD USGS BIGX WEB SONG CSN KDD USGS BIGX WEB SONG

K-MEANS++ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
RANDOM 394.50% 307.44% 315.50% 11.45% 105.34% 9.74% - - - - - -

K-MC2 (m = 20) 63.58% 32.62% 2.63% 0.05% 0.77% 0.38% 40.0× 72.9× 29.6× 568.5× 2278.1× 13.3×
K-MC2 (m = 100) 14.67% 2.94% -0.33% 0.13% -0.00% -0.02% 8.0× 14.6× 5.9× 113.7× 455.6× 2.7×
K-MC2 (m = 200) 6.53% 1.00% -0.83% -0.03% 0.01% -0.02% 4.0× 7.3× 3.0× 56.9× 227.8× 1.3×
HEURISTIC (s = 2000) 94.72% 73.28% 5.56% 0.38% 2.12% 0.69% 40.0× 72.9× 29.6× 568.5× 2278.1× 13.3×
HEURISTIC (s = 10000) 29.22% 9.55% 0.20% 0.10% 0.15% 0.15% 8.0× 14.6× 5.9× 113.7× 455.6× 2.7×
HEURISTIC (s = 20000) 13.99% 2.22% 0.27% 0.02% 0.07% 0.05% 4.0× 7.3× 3.0× 56.9× 227.8× 1.3×
K-MEANS‖ (r = 5, l = 0.02k) 335.61% 118.03% 2356.06% 223.43% 562.23% 40.54% 9.6× 9.0× 8.9× 10.0× 9.5× 9.8×
K-MEANS‖ (r = 5, l = 0.2k) 2.12% 0.71% 19.13% 1.74% 11.03% -0.34% 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
K-MEANS‖ (r = 5, l = 2k) -3.75% -6.22% -3.78% -2.43% -2.04% -5.16% 0.1× 0.1× 0.1× 0.1× 0.1× 0.1×

the standard error of the mean to construct 95% confidence
intervals. For each method, we further calculate the relative
error and the speedup in terms of distance evaluations with
respect to our main baseline k-means++.

Discussion. The experimental results are displayed in
Figures 1 and 2 and Table 2. As expected, k-means++
produces substantially better solutions than RANDOM (see
Figure 1). For m = 1, K-MC2 essentially returns a uniform
sample of data points and should thus exhibit the same solu-
tion quality as RANDOM. This is confirmed by the results in
Figure 1. As the chain length m increases, the performance
of K-MC2 improves and converges to that of k-means++.
Even for small chain lengths, K-MC2 is already competitive
with the full k-means++ algorithm. For example, on BIGX,
K-MC2 with a chain length of m = 20 exhibits a relative er-
ror of only 0.05% compared to k-means++ (see Table 2).
At the same time, K-MC2 is 586.5× faster in terms of dis-
tance evaluations.

K-MC2 significantly outperforms HEURISTIC on all
datasets (see Figure 1). For the same number of distance
evaluations K-MC2 achieves a smaller quantization error: In
the case of BIGX, HEURISTIC with s = 2000 exhibits a rel-
ative error of 0.38% compared to the 0.05% of K-MC2 with
a chain length of m = 20. In contrast to HEURISTIC, K-MC2

further offers the theoretical guarantees presented in Theo-
rems 1 and 2.

Figure 2 shows the relationship between the performance
of k-means‖ and the number of distance evaluations. Even
with five rounds, k-means‖ is able to match the perfor-
mance of the inherently sequential k-means++ and even
outperforms it if more computational effort is invested.
However, as noted in the original paper (Bahmani et al.,
2012), k-means‖ performs poorly if it is run with low com-
putational complexity, i.e. if r · l < k.

As such, K-MC2 and k-means‖ have different use sce-
narios: k-means‖ allows one to run the full k-means++
seeding step in a distributed manner on a cluster and poten-
tially obtain even better seedings than k-means++ at the
cost computational effort. In contrast, K-MC2 produces ap-
proximate but competitive seedings on a single machine at a
fraction of the computational cost of both k-means++ and
k-means‖.

7 Conclusion

We propose K-MC2, an algorithm to quickly obtain an ini-
tial solution to the K-Means clustering problem. It has sev-
eral attractive properties: It can be used to approximate the
seeding step of k-means++ to arbitrary precision and, un-
der natural assumptions, it even obtains provably good clus-
terings in sublinear time. This is confirmed by experiments
on real-world datasets where the quality of produced clus-
terings is similar to those of k-means++ but the runtime
is drastically reduced. K-MC2 further outperforms a heuris-
tic approach based on subsampling the data and produces
fast but competitive seedings with a computational budget
unattainable by k-means‖. We posit that our technique can
be extended to improve on other theoretical results for D2-
sampling as well as to other clustering problems.
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Figure 1: Average quantization error vs. number of distance evaluations for K-MC2 and HEURISTIC as well as the average
quantization error (without the number of distance evaluations) for k-means++ and RANDOM. K-MC2 quickly converges to
full k-means++ and outperforms HEURISTIC. Shaded areas denote 95% confidence intervals.
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obtains competitive solutions significantly faster than both k-means++ and k-means‖.
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A Formal Statement of Natural Assumptions

We state the theorems related to the assumptions introduced
in Section 5 and provide the corresponding proofs.

A.1 Tail behavior of F

The following theorem corresponds to Assumption (A1) in
Section 5.
Theorem 3. Let F be a probability distribution over R

d

with finite variance that has at most exponential tails, i.e.
∃ c, t such that

P [d(x, μ) > a] ≤ ce−at.

Let X be a set of n points independently sampled from F .
Then, with high probability, for n sufficiently large, α is in-
dependent of k as well as d and depends polylogarithmically
on n, i.e.

α =
maxx∈X d(x, μ(X ))2

1
n

∑
x′∈X d(x′, μ(X ))2

= O(
log2 n

)
.

Proof. Let μ̃ =
∫
x∈S xdF (x). Since F has exponential

tails, μ̃ is well defined and Ex∼F [(d(x, μ̃)] < ∞. As a re-
sult, by the strong law of large numbers, we have almost
surely that μ(X ) → μ̃, or d(μ(X ), μ̃) → 0 as n → ∞. Fur-
thermore, since F has at most exponential tails P[d(x, μ̃) >
(2 lnn+ ln c)/t] ≤ n−2. Therefore, using the union bound,
with probability at least 1− 1/n we have that ∀x ∈ X

d(x, μ̃) ≤ (2 lnn+ ln c)/t.

Hence, maxx∈X d(x, μ̃)2 = O(log2 n). Applying the trian-
gle inequality, we obtain that

max
x∈X

d(x, μ(X ))2 ≤ max
x∈X

(d(x, μ̃) + d(μ̃, μ(X )))2

≤ 2max
x∈X

d(x, μ̃)2 + 2d(μ̃, μ(X ))2

w.h.p.
= O(log2 n).

If F has finite variance and bounded support, we can ob-
tain a constant bound for α which is formalized by the fol-
lowing theorem.

1465



Theorem 4. Let F be a probability distribution over R
d

with finite variance whose support is almost-surely bounded
by a d-dimensional sphere with radius R. Let X be a set
of n points independently sampled from F . Then, with high
probability, if n is sufficiently large, α is independent of n, k
and d.

Proof. The distance between any point x ∈ X and the mean
μ(X ) is clearly bounded by 2R. Hence, we always have
maxx∈X d(x, μ(X ))2 ≤ 4R2. Also, let μ̃ =

∫
x∈S xdF (x)

and σ2 =
∫
x
d(x, μ̃)2F (x). By using the triangle inequality,

we get

1

n

∑
x∈X

d(x, μ(X ))2 ≤ 1

n

∑
x∈X

(d(x, μ̃) + d(μ̃, μ(X )))2

≤ 2 d(μ̃, μ(X ))2 +
2

n

∑
x∈X

d(x, μ̃)2.

Then, by the strong law of large numbers (note that F has a
bounded variance), as n grows large, we have almost surely
that μ(X ) → μ̃ and 1/n

∑
x∈X d(x, μ̃)2 → σ2 which con-

cludes the proof.

A.2 Nondegeneracy of F

The following theorem corresponds to Assumption (A2) in
Section 5.
Theorem 5. Let F be a probability distribution over
R

d with finite variance. Assume that there exists a d′-
dimensional sphere B with radius R, s.t. d′ ≥ 2, F (B) > 0,
and ∀x, y ∈ B : F (x) ≤ cF (y) for some c ≥ 1 (F is
sufficiently non-degenerate). Then, w.h.p.

β =
φ1
OPT (X )

φk
OPT (X )

≤ c1k
min{1,4/d′}, (6)

where c1 is a constant inversely proportional to cF (B)R2.

Proof. Consider picking n i.i.d. points according to distri-
bution F . Among such points, w.h.p m � nF (B)/2 points
fall into B. Note that these m points are i.i.d. samples from
B according to distribution F̂ (x) = F (x)/F (B). Partition
these points into m/k′ subsets of size k′ = 15k. Each such
subset is also an i.i.d. sample from B according to F̂ . Con-
sider one of the partitions X = {x1, · · · , xk′} and let Y
be a randomly chosen subset of X of size k′/5. Let C =
{c1, c2, · · · , ck} ⊂ R

d be an arbitrary set of k centers and
assume that for center ci there are 	 points yi1 , · · · , yi� ∈ Y
which have ci as their nearest neighbor. We can then write
using the triangle inequality

�∑
j=1

d
(
yij , ci)

)
2 ≥

� �
2 �∑

j=1

d
(
yi2j−1 , ci

)
2 + d

(
yi2j , ci

)
2

≥ 1/2

� �
2 �∑

j=1

(d(yi2j−1 , ci) + d(yi2j , ci))
2

≥ 1/2	/2� min
y,y′∈Y :y 	=y′

d(y, y′)2.

By summing over all the centers, we obtain that

5

k′R2

k′/5∑
j=1

d(yj , C)2 ≥ min
y,y′∈Y,y 	=y′

d(y, y′)2/(3R2).

Recall that we have partitioned the m points into m/k′
groups of k′ points. By applying Lemma 1 (see below) and
Hoeffding’s inequality, with high probability we have that

1

m

m∑
j=1

d(xj , C)2 ≥ c1R
2 c2/d

′
k−min{1,4/d′}/30. (7)

Since F has bounded variance then w.h.p. φ1
OPT (X )/n con-

verges to the variance of F . Hence, by (7), we have w.h.p.

φk
OPT (X )/n ≥ k−min{1,4/d′}(c1R2F (B)c2/d

′
)/30.

We conclude that w.h.p. β ≤ c2R
2F (B)c2/d

′
kmin{1,4/d′}.

Lemma 1. Let F be a probability distribution defined on a
d > 2-dimensional sphere B with radius R. Assume that for
any two points x, y ∈ B we have F (x) ≤ cF (y) for some
constant c. Let X = {x1, · · · , xk} be a sample of k i.i.d.
points from F . Then we have

E[ max
Y⊂X
|Y |=k/5

min
x,y∈Y
x 	=y

d(x, y)] ≥ c1Rc−
1
d k−min{ 1

2 ,
2
d}.

Proof. Fix a value ε > 0 and denote the ball of radius ε with
a center y by Bε(y). Consider the following covering of B
using balls of radius ε. We center the first ball at the center
of B. At the i-th iteration, if B \ ∪j<iBε(yj) �= ∅, we pick
an arbitrary point in the difference and continue the process.
Clearly, this process ends in finite time as B is compact and
each pair of the chosen centers have distance at least ε. We
now prove that any ball Bε(y) can have a non-empty in-
tersection with at most 5d other balls. This is because the
centers of the intersecting balls should all lie inside the ball
B2ε(y). Also, any two centers have distance at least ε. There-
fore, if we draw a ball of radius ε/2 around all the centers
of the intersecting balls, then these balls are all disjoint from
each other and are all inside a bigger ball B5ε/2(y). There-
fore, by a simple division of the volumes, we see that there
can be at most 5d centers whose corresponding ε-ball inter-
sects with Bε(y).

We now bound the probability that two points chosen ran-
domly according F in B have distance less than ε. Assume
that the first chosen point is inside the ball Bε(y). In order
for the second point to be less than ε away from the first one,
the it should fall inside Bε(y) or one of the intersecting balls
with Bε(y). Since we have at most 5d balls and each have
measure (under F ) less than c( ε

R )d, then the probability that
two randomly chosen balls have distance less than ε is upper
bounded by c( 5εR )d. By the union bound, the probability that
among the k/5 i.i.d. points sampled from F at least two have
distance less than ε is bounded upper bounded by ck2( 5εR )d.
As a result, denoting the minimum distance among the k/5
i.i.d. points by dmin, we obtain

Pr(dmin > ε) ≥ 1− ck2
(
5ε

R

)d

,
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and since dmin ≥ 0 we have that

E[dmin] =

∫ 2R

0

Pr(dmin > x)dx

≥
∫ R/(5(ck2)

1
d )

0

(
1− ck2(

5x

R
)d
)
dx

=
d

d+ 1

R

5 (ck2)
1
d

which concludes the proof for d ≥ 4. As for the cases where
d = 2, 3 one can recover a similar result using a finer cover-
ing of the sphere.

B Proof of Theorem 1

Theorem 1. Let k > 0 and 0 < ε < 1. Let p++(C) be
the probability of sampling a seeding C using k-means++
and pmcmc(C) the probability using K-MC2 (Algorithm 1).
Then,

‖pmcmc − p++‖TV ≤ ε

for a chain length m = O(
γ′ log k

ε

)
where

γ′ = max
C⊂X ,|C|≤k

max
x∈X

n
d(x,C)2∑

x′∈X d(x′, C)2
.

The resulting complexity of Algorithm 1 is O(
γ′k2d log k

ε

)
.

Proof. Let c1, c2, . . . , ck denote the k sampled cluster cen-
ters in C and define for i = 1, 2, . . . , k

Ci = ∪i
j=1cj .

Let p++(ci|Ci−1) denote the conditional probability of
sampling ci given Ci−1 for k-means++. Similarly,
pm(ci|Ci−1) denotes the conditional probability for K-MC2

with chain length m. Note that

p++(C) =
1

n

k∏
i=2

p++(ci|Ci−1)

as well as

pmcmc(C) =
1

n

k∏
i=2

pm(ci|Ci−1).

By Corollary 1 of Cai (2000) and the definition of γ′, there
exists a chain length m = O(

γ′ log k
ε

)
such that for all

Ci−1 ⊂ X with |Ci−1| ≤ k − 1

‖p++(·|Ci−1)− pm(·|Ci−1)‖TV ≤ ε

k − 1
. (8)

Next, we show an auxiliary result: Consider two arbitrary
discrete probability distributions

pX,Y (x, y) = pX(x) · pY |X(y|x)
qX,Y (x, y) = qX(x) · qY |X(y|x)

with

‖pX − qX‖TV ≤ ε1 and
∥∥pX|Y − qX|Y

∥∥
TV

≤ ε2.

For all x and y, it holds that

|pX,Y − qX,Y | ≤pX · |pX|Y − qX|Y |+ qX|Y · |pX − qX |
and we have by definition of the total variation distance

‖pX,Y − qX,Y ‖TV ≤ ‖pX − qX‖TV +
∥∥pX|Y − qX|Y

∥∥
TV

≤ ε1 + ε2.

An iterative application of this result to (8) yields

‖pmcmc − p++‖TV ≤
k∑

i=2

ε

k − 1
≤ ε.

The same guarantee holds for the probabilities conditioned
on the first sampled center c1, i.e.

‖pmcmc(·|c1)− p++(·|c1)‖TV ≤ ε. (9)

C Proof of Theorem 2
Theorem 2. Let k > 0 and X be a dataset with α =
O(

log2 n
)

and β = O(k), i.e. assume (A1) and (A2). Let
C be the set of centers sampled by K-MC2 (Algorithm 1)
with m = O(

k log2 n log k
)
. Then we have

E [φC(X )] ≤ O(log k)φk
OPT (X ).

The total complexity is O(
k3d log2 n log k

)
.

Proof. We have
∑

x∈X d(x,C)2 ≥ φk
OPT (X ) for all sets of

centers C ⊂ X of cardinality at most k. Furthermore, for all
x ∈ X

d(x,C)2 ≤ 2 d(x, μ(X ))2 + 2d(μ(X ), C)2

≤ 4 max
x′∈X

d(x′, μ(P ))2.

Hence,

γ′ ≤ 4
maxx∈X d(x, μ(X ))2

1
n

∑
x′∈X d(x′, μ(X ))2︸ ︷︷ ︸

α

φ1
OPT (X )

φk
OPT (X )︸ ︷︷ ︸

β

= αβ.

Denote by φk-means++ the quantization error for
k-means++ and by φmcmc for K-MC2. Let z be the
random variable consisting of the sampled cluster cen-
ters c2, c3, . . . , ck. Let p++(z|c1) denote the conditional
probability of z given the initial cluster center c1 for
k-means++. Correspondingly, pm(z|c1) denotes the con-
ditional probability for K-MC2 with chain length m. We note
that pm(z|c1) ≤ p++(z|c1) + (pm(z|c1) − p++(z|c1))+
and E [φc1(X )] ≤ 2βφk

OPT (X ). Using Theorem 1.1 of
Arthur and Vassilvitskii (2007) and (9), we then have that

E [φmcmc] =
∑
c1∈X

1

n

∑
z∈Xk−1

φc1∪z(X )pm(z|c1)

≤
∑
c1∈X

1

n

∑
z∈Xk−1

φc1∪z(X )
(
p++(z|c1) + [pm(z|c1)− p++(z|c1)]+

)

≤ E [φk-means++] +
1

n

∑
c1∈X

φc1(X )
∑

z∈Xk−1

[pm(z|c1)− p++(z|c1)]+

≤ [8(log2 k + 2) + 2βε′]φk
OPT (X ).

The result then follows by setting ε′ = O(1/β).

1467




