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Abstract

Instead of using a uniform metric, instance specific distance
learning methods assign multiple metrics for different locali-
ties, which take data heterogeneity into consideration. There-
fore, they may improve the performance of distance based
classifiers, e.g., kNN. Existing methods obtain multiple met-
rics of test data by either transductively assigning metrics for
unlabeled instances or designing distance functions manually,
which are with limited generalization ability. In this paper,
we propose ISMETS (Instance Specific METric Subspace)
framework which can automatically span the whole metric
space in a generative manner and is able to inductively learn
a specific metric subspace for each instance via inferring the
expectation over the metric bases in a Bayesian manner. The
whole framework can be solved with Variational Bayes (VB).
Experiment on synthetic data shows that the learned results
are with good interpretability. Moreover, comprehensive re-
sults on real world datasets validate the effectiveness and ro-
bustness of ISMETS.

Introduction

Many classifiers depend significantly on distances between
examples, e.g., kNN and Gaussian kernel methods. Distance
metric learning approaches are typically investigated with
the purpose of learning a good Mahalanobis distance met-
ric to pull similar instances together and push different ones
away. With the learned metric, classifiers can make better
predictions on test data. Most distance metric learning meth-
ods, such as LMNN (Weinberger, Blitzer, and Saul 2006)
and ITML (Davis et al. 2007), focus on learning a uniform
metric to measure distance between all pairs of instances.

However, in some applications, data heterogeneity need to
be taken into consideration. Thus instead of learning a uni-
form distance metric for some concerned tasks, it is more
reasonable for each instance to claim its own instance spe-
cific distance so that it can measure the distance to oth-
ers from its own perspective. Although some instance spe-
cific distance learning methods have achieved advantages,
they predict unlabeled instances transductively (Zhan et al.
2009), or model the instance specific distance for test data
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manually (Frome, Singer, and Malik 2007). Transductive ap-
proaches lack flexibility on predicting unlabeled data, i.e.,
unlabeled data should be included during the training phase,
which is often violated in real cases. Manually designed dis-
tance functions make too much model assumptions which
increase the risk of instability. In particular, Shi, Bellet, and
Sha (2014) utilize fixed bases to form metrics by linear com-
bination, and obtain the combination coefficients by opti-
mizing a parametric model with arbitrary pre-defined func-
tions. Both manually chosen bases and pre-defined functions
may result in unstable performance.

In this paper, we focus on representing the instance spe-
cific distance by a generative model, where all parameters
of instance specific distance can be learned/inferred auto-
matically. We assume each instance x, either labeled or un-
labeled, has its own instance specific metric Mx for calcu-
lating distance to others. Each Mx is constructed within a
subspace of metric space M, i.e., each metric for a partic-
ular instance is within its own subspace spanned by only
a portion of metric bases. In order to represent the instance
specific metric subspace, we need to learn global bases M =
{Mk}Kk=1 of metric space, and span the metric subspace in
a K-simplex for each instance. Therefore, we name the pro-
posed model ISMETS (Instance Specific METric Subspace
learning). In ISMETS, we embed the bases of metric space
M into a generative process to learn the bases and metric
subspace simultaneously in a Bayesian manner. We intro-
duce latent allocation variables combining the bases to form
the metric subspace. Besides, they can also bridge the latent
information with a linear classifier, and therefore, incorpo-
rate the model with side information. The whole model is
trained by variational Bayes and the posterior of metric for
a specified instance can be inductively inferred in an effec-
tive and robust way. To the best of our knowledge, we are
the first to learn the instance specific metric subspace with
Bayesian model. In summary, we claim our method has two
main advantages:

• ISMETS is a Bayesian generative model. It provides ro-
bust specific metric subspace for each instance by learn-
ing bases and combination coefficients at the same time;

• ISMETS can handle both labeled and unlabeled data, and
can inductively infer instance specific metric for unseen
test data as well.
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The rest of this paper starts with a review of related work.
Then the ISMETS framework is presented in detail, which is
followed by the experiments and conclusion.

Related Work

The basic idea of distance metric learning is to find a dis-
tance metric such that the distance between data points in
the same class is smaller than that from different ones. Dif-
ferent methods use different criteria to achieve this goal,
such as constrained convex programming (Xing et al. 2003),
max-margin nearest neighbor (Weinberger, Blitzer, and Saul
2006), information theoretical approaches based on Breg-
man optimization (Davis et al. 2007). Generalization per-
formance of metric learning is analyzed in (Jin, Wang, and
Zhou 2010). Comprehensive reviews of metric learning can
be found in (Kulis 2012; Bellet, Habrard, and Sebban 2013).

In recent years, instance specific distance metric learning
becomes attractive, which adapts well to complex data pat-
terns. Instead of learning a uniform metric for all instances,
this kind of approach assumes that each instance should have
its own metric for measuring the distance to others. Zhan
et al. (2009) expand the idea of (Frome, Singer, and Malik
2007) to learn a specified metric for each instance by metric
propagation technique. However, it can only deal with un-
labeled data transductively. Weinberger and Saul (2009) use
local information to train multiple metrics for instances in
different data clusters. Shi, Bellet, and Sha (2014) propose a
sparse compositional method, which assumes metrics are the
combination of pre-defined bases and metrics for test data
are generalized with parametric functions. Either predicting
test data transductively or formulating the metric with arbi-
trary pre-defined distance functions might limit the general-
ization ability, and may eventually degenerate the classifica-
tion performance, since these strategies lack flexibilities to
handle polytropic data very well.

There are few Bayesian approaches for metric learning.
Yang, Jin, and Sukthankar (2007) propose an active metric
learning approach with probability model yet neither con-
siders local structures nor learns with Bayesian inference.
MMDML in (Babagholami-Mohamadabadi et al. 2014),
only uses Bayesian method for classification in multimodal
scenario while no metric is directly incorporated.

Different from these existing approaches, ISMETS is de-
signed to provide the instance specific metric by learning
metric bases and corresponding combination coefficients au-
tomatically. Within a unified Bayesian framework, ISMETS
can learn the metric bases to form the metric subspace for
each instance both transductively and inductively.

Our Proposed Approach

In this section, we first describe our Instance Specific MET-
ric Subspace (ISMETS) model in detail, and then put for-
ward the variational Bayes training process together with the
whole inductive inference process. Without loss of general-
ity, for a C-class problem, we suppose there are N training
instances represented as X = {xn ∈ R

d}Nn=1. First N1 of
X are labeled examples with label yn ∈ {1, · · · , C} for xn.
The latter N2 are unlabeled instances.

Instance Specific Metric Subspace Model

Common metric learning methods aim to learn a uniform
metric shared by all instances to compute distances with
others. Nevertheless, numerous real applications desire that
each instance should have its own distance metric (Hu et
al. 2015). In ISMETS, we treat the Instance Specific Met-
ric (ISM) as a mapping from instances to metric, i.e., the
distance metric for a specific instance xn can be formu-
lated as a function g : xn → Sd

+, which can be defined as
g(xn) = Mxn and Sd

+ represents a d× d positive semidefi-
nite matrix. The (squared) Mahalanobis distance from xn to
another instance xm can be denoted as:

D(xn,xm) = (xn − xm)�Mxn(xn − xm). (1)
It is notable that the instance specific distance in Eq. 1 is
non-symmetric and the metric used is based on the first in-
stance in the pair. In particular, the ISM Mxn is assumed to
be sampled from a global metric space M which is spanned
by metric bases M = {Mk ∈ Sd

+}Kk=1, following a latent
allocation distribution zn = [zn1, zn2, · · · , znK ] (Blei, Ng,
and Jordan 2003). We model the allocation variables zn as a
latent component of a mixture model. It is usually assumed
that zn ∈ {0, 1}K and follows a multinomial distribution.
znk is the kth element of zn and

∑
k znk = 1. In this paper,

we claim that each ISM Mxn can be constituted as
Mxn

= Ezn
[M ], (2)

i.e., the Mxn
is an expectation over bases M on distribu-

tion zn. Since in allocation distributions all znk ∈ zn are
nonnegative, Mxn

is ensured to be positive semidefinite as
a valid metric. Different from the assumption made in (Shi,
Bellet, and Sha 2014), ISMETS can learn the metric bases
M and the compositional latent distribution zn at the same
time. This reduces the influence of the disagreement be-
tween assumptions and ground-truth distribution. In order
to incorporate with supervision information, instead of em-
ploying pairwise or triplet constraints as general distance
metric learning approaches, we directly embed a classifier
related to zn for simplification of modeling. This setting cor-
responds to the fully supervised metric learning in (Bellet,
Habrard, and Sebban 2013).

We present the Probabilistic Graphical Model (PGM) of
ISMETS in Fig. 1, where the left and right parts are genera-
tion process of two instances xn and xm respectively. Vari-
ables in the dotted box are only for labeled examples, i.e., for
unlabeled ones there is no variable f related to z. In particu-
lar, the whole model can be summarized as follows: instance
xn is drawn from a local distribution which is related to its
own ISM subspace Mxn

⊆ M. This subspace shares global
metric bases M = {Mk}Kk=1 with others and is sampled ac-
cording to a latent allocation distribution zn. Note that the
locality is closely related to its neighbors xm (m �= n).
Given bases M , it is assumed that the local property of in-
stance xn is coded by zn which should be closely related to
the class information. The variable fn ∈ {−1, 1}C , which
indicates the label yn of xn, is consequently sampled follow-
ing the distribution of zn, and is controlled by classifier w
and b. To simplify the discussion, we illustrate the model for
binary classification (C = 2), and it can be easily extended to
multi-class cases as in our experiments.
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Figure 1: Probabilistic Graphical Model (PGM).

Key Components of The PGM

There are 3 key components in ISMETS, i.e., (1). the part of
latent allocation for ISM subspace, which is about the choice
of zn and its conjugate prior; (2). the part of data generation
from ISM subspace related to M , zn and xn; (3). the part of
label information injection depending on fn, zn, w and b.

In ISMETS, each instance xn has an ISM Mxn
from its

own perspective, and then the distance from xn to others
can be calculated by Eq. 1. It is notable that each Mxn

is
drawn from metric space M with respect to a distribution
defined by latent allocation vector zn, and all metric sub-
spaces from M share the metric bases M . znk = 1 reveals
the choice of metric base Mk for xn, so the overall con-
ditional probability on the collection of all latent allocation
variables Z = {zn}Nn=1 is Z|π ∼ ∏N

n=1

∏K
k=1 π

znk

k . Pa-
rameter π = [π1, · · · ,πK ] and πk is the kth element of π.
We further assume π with prior: π ∼ Dir(π|απ), where
Dir(·) specifies a Dirichlet distribution with parameter π
and hyper-parameter απ .

Inspired by the relationship between matter density and
distances of molecules in physics, we assume the probabil-
ity of sample points is determined by data density to a great
extent, and the data density is defined by a distance-related
function like Kernel Density Estimation (Chen, Chen, and
Weinberger 2014). Therefore, in ISMETS, the conditional
probability likelihood of instance xn can be denoted as:

p(xn|Mxn
,x−n) =

1

N − 1

∑
i�=n

N (
xn|xi,M

−1
xn

)
,

where x−n denotes all instances except xn. The quadratic
term in Gaussian distribution N uses the ISM Mxn

to de-
termine the distance from xn to xi. The impact of lo-
cality simultaneously depends on the location of xi and
Mxn

. Combined with the i.i.d. property of X , we have
p(xn|M)

def
= p(xn|Mxn ,x−n). The overall conditional

probability p(X|Z,M) on all training data, consequently,
is:

p(X|Z,M) =

N∏
n=1

p(xn | M) =

N∏
n=1

K∏
k=1

p(xn|Mxn ,x−n)
znk .

(3)
Since the ISM Mxn

is sampled according to the latent allo-
cation variable zn in a metric subspace spanned by metric
bases, the final representation of Mxn

can be turned into an
expectation of metric bases over zn. Given an instance, la-
beled or unlabeled, we need to determine the ISM Mxn

. To

guarantee Mxn a valid distance metric, we model Mk sub-
ject to a Wishart distribution, and thus the whole probability
distribution of metric bases is:

M ∼
∏K

k=1
W(Mk|WM,k, νM,k), (4)

where WM,k is a positive semidefinite matrix and νM,k is
freedom degree of the distribution.

The latent allocation variable {zn}N1
n=1 of labeled data,

which bridges Mk and Mxn
, should concentrate on local

properties of instance xn, and consequently can be em-
ployed in a classifier. It is noteworthy that although zn ∈
{0, 1}K , the linear classifier really relies on the expectation
of zn in the inference procedure. Moreover, zn can retain
the classification information especially when K is relatively
large. Therefore, we use a linear classifier w based on the
latent variable zn for labeled examples. In addition, a linear
classifier w with respect to the latent allocation variable can
be a nonlinear classifier from the aspect of the instance fea-
ture space. In general, w can be generated from a Gaussian
distribution with its precision matrix Λ setting as a Wishart
distribution prior. Similarly, the bias b of the classifier fol-
lows a Gaussian distribution with a gamma prior σ:

w|Λ ∼ N (w|0,Λ−1), Λ ∼ W(Λ|WΛ, νΛ),

b|σ ∼ N (b, |0, σ−1), σ ∼ G(σ|ασ, βσ),

where ασ and βσ are shape and scale parameters in gamma
distribution respectively. Both w and b have zero mean for
symmetry. Combining the classifier above, we can get the
label distribution (Mcauliffe and Blei 2008):

p(F |w, b, Z) =
∏N1

n=1
N (

fn|w�zn + b, 1
)
,

where F is the collection of label indicator fn. Intuitively,
supervision part makes instances from the same class share
similar latent allocation variable z. This would yield similar
ISMs for instances from the same class. This part also can
inject supervision of labeled data and will guide the training
phase. Therefore, ISMETS can work in a semi-supervised
scenario. Moreover, by setting fn as a label dummy vec-
tor and training C classifiers wi, bi, i = 1, · · · , C, one for
each class (Xiang et al. 2012; Gönen and Margolin 2014),
ISMETS can be easily extended to multi-class cases.

For further discussions, we denote the set of all latent vari-
ables as Ω = {π, Z,M,w,Λ, b, σ}. The joint distribution of
the PGM can be represented by:

p(X,F,Ω) = p(π)p(Z|π)p(M)p(X|Z,M)p(Λ)

p(w|Λ)p(σ)p(b|σ)p(F |w, b, Z).

Variational Inference on Proposed Model

The joint probability of ISMETS is complex and makes exact
inference on the PGM intractable. Therefore, we use vari-
ational Bayes in model training phase. Concretely speak-
ing, a variational distribution q(Ω) is used to approximate
the true posterior distribution defined by p(Ω|X,F ). With
mean-field assumption (Jordan et al. 1999; Wainwright and
Jordan 2008; Zhao et al. 2014), the approximation can be
made as:

p(Ω|X,F ) ≈ q(Ω) = q(π)q(Z)q(M)q(w, b)q(Λ)q(σ),
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where the concrete forms of factors are:

q(M) =
∏K

k=1
q(Mk) =

∏K

k=1
W(Mk|ν̂k, Ŵk),

q(Z) =
∏N

n=1

∏K

k=1
γznk

nk ,

q(w, b) = N
([

w
b

]
| μ̂w, Σ̂w

)
,

q(Λ) = W(Λ|ŴΛ, ν̂Λ), q(σ) = G(σ|α̂σ, β̂σ).

Note that comparing to the original PGM in Fig. 1, the vari-
ational version only makes some moderate independent as-
sumptions on variables, and the approximation distributions
remain the same distribution family as the original ones.
E.g., q(M) and q(Z) are Wishart and multinomial distri-
bution respectively with parameter ν̂k, Ŵk and γnk. These
guarantee the consistency between the original PGM and
the variational model as well as the convergence of infer-
ence (Watanabe and Watanabe 2006). In our implementa-
tions, ISMETS gets satisfactory results in 20 iterations. By
minimizing the KL-divergence between the approximation
q(Ω) and the true posterior p(Ω|X,F ), update rules for dis-
tribution parameters in the supervision injection part can be
summarized as:

α̂σ = ασ + 0.5, β̂−1
σ = β−1

σ + 0.5 ∗ E[b2],
ν̂Λ = νΛ + 1, Ŵ−1

Λ = W−1
Λ + E[ww�],

Σ̂−1
w =

[
E[Λ] +

∑N1

n=1 E[znz
�
n ]

∑N1

n=1 E[zn]∑N1

n=1 E[z
�
n ] E[σ] +N1

]
,

μ̂w = Σ̂w ·
[∑N1

n=1 E[zn]fn∑N1

n=1 fn

]
,

where E[·] denotes the expectation w.r.t. the approximate
posterior q(Ω). It is difficult to get closed form update rules
for parameters in q(M), since inference on M is related to
kernel density estimation in Eq. 3, and the expectation of the
log-likelihood of this distribution contains a series of sum-
mations in the ln(·) term. Hence we use Jensen’s inequality
to get a lower bound of q(M) and finally obtain the follow-
ing update rules:

ν̂k = νM,k +
∑N

n=1
E[znk],

Ŵ−1
k = W−1

M,k +
1

N − 1

N∑
n=1

E[znk]
∑
i �=n

(xn − xi)(xn − xi)
�,

where the degree of freedom is updated by the effective
number of instance for each basis and the inverse of Ŵk

is updated by the covariance matrix between instances,
weighted by the latent allocation. Since the independency
between updates of metric bases M , the whole training pro-
cess can be conducted parallelly.
q(π) is also a Dirichlet distribution, i.e., q(π) =

Dir(π|α̂). α̂ ∈ R
K with element updated by α̂k = απ,k +∑N

n=1 E [znk], where απ,k is the kth element of απ .
For the latent variable Z, we should treat the labeled and

unlabeled parts with different strategies, since Z not only
depends on x and M but also is related to the supervision

injection part for labeled data. For each instance xn, we first
get the unnormalized term ρnk and then get the normalized
parameter γnk = ρnk∑

j ρnj
. For unlabeled data, the expecta-

tion over logarithm in Eq. 3 makes difficulties on inference.
Therefore, we approximate the results of ρnk with

ln(ρnk) = E[ln(πk)] + E

[
ln

(
1

N−1

∑
i�=n N

(
xn|xi,M

−1
k

))]

≈ E[ln(πk)] + ln

⎛
⎝ 1

N − 1

∑
i�=n

exp

(
−d

2
ln 2π + Ui

)⎞
⎠ ,

Ui =
1

2
E [ln |Mk|]− 1

2
(xn − xi)

T
E[Mk](xn − xi).

In addition, the ln(ρnk)
lb for labeled data should also absorb

the label indicator information from classifier:

ln(ρnk)
lb = ln(ρnk)−

∑
j �=k

AkjE[znj ]− 1

2
Akk +Bn

k ,

where A = E[ww�] ∈ R
K×K , Bn = fnE[w] ∈ R

K , and
Akj is the (k, j)-entry of matrix A, Bn

k is the kth element
of Bn. A and Bn reveal the label information. It is obvious
that the update of Z for the labeled examples is combined
with w, b and label assignments.

Transductive and Inductive Prediction

ISMETS can handle both labeled and unlabeled data. So test
instances can be regarded as unlabeled instances in the train-
ing procedure, i.e., metrics for test instances can be assigned
transductively. In transductive configuration, each test in-
stance x∗ has its own allocation variable z∗ and the ISM
Mx∗ for test instance equals to the expectation over learned
metric bases, i.e., Mx∗ is calculated according to Eq. 2.

In real world problems where generalization ability is de-
sired, however, the model should output ISM for unseen test
instances x∗. Therefore, we need to figure out the posterior
distribution of the ISM Mx∗ , by integrating out other latent
variables. In detail, we can use the approximate distribution
achieved in the training update process to help integrate the
latent random variables. By substituting the approximations,
it yields the posterior:

p(Mx∗ |x∗, X, Y ) =

K∑
k=1

α̂k

α̂

1

N

N∑
n=1

W(Mk,n|W ∗
k,n, ν

∗
k,n),

α̂ =
∑

k
α̂k, ν∗k,n = ν̂k + 1,

W ∗
k,n

−1 = Ŵ−1
k + (x∗ − xn)(x

∗ − xn)
T . (5)

It is noteworthy that the computation of the matrix parameter
W ∗

k,n
−1 in Eq. 5 depends not only on the matrix parameter

Ŵ−1
k from Wishart distribution of trained metric bases but

also the relationship between training instance xn and test
instance x∗. To simplify the computation in Eq. 5, we can
use Woodbury Matrix Identity to get an equivalent update
form: W ∗

k,n = Ŵk−Ŵk(x
∗−xn)(1+(x∗−xn)

�Ŵk(x
∗−

xn))
−1(x∗ − xn)

�Ŵk. The distance from x∗ to a training
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instance xn is (x∗ −xn)
�
E[Mx∗ ](x∗ −xn). The term with

most cost substantially relies on the repeated computation of
distance between new instance x∗ and all the training data,
which is measure by E[Mk], i.e., the expectation of distribu-
tion over metric bases. The overall complexity of comput-
ing the nearest neighbor for x∗, consequently, is O(NKd2).
With parallel computing, it can be reduced to O(d2) by in-
ferring each instance/local basis separately.

It is remarkable that the posterior expectation over spe-
cific metric for an unseen instance is a combination of in-
formation from both trained metric bases and the posterior
of z. This agrees with the previous statement that ISMETS
learns metric subspace Mx∗ spanned by metric bases. More
importantly, z is drawn from a Dirichlet prior and can be
sparse, therefore limited metric bases are substantially used
in consisting of the Mx. In other words, each ISM is sampled
from a subspace Mx ⊆ M, and thus contains local prop-
erties of data. Eq. 5 also indicates that the posterior p(Mx∗)
is related to the distances from x∗ to all others, so Mx∗ can
imply some global information of the metric space as well.

Experiments

In this section, we first illustrate the mechanism of ISMETS
with synthetic data, and then compare ISMETS with other
distance metric learning methods. In order to investigate the
abilities of handling unlabeled data and the robustness of
ISMETS, we conduct more experiments to discover the in-
fluence on label ratio and the number of metric bases.

Experiments on Synthetic Data

A two-moon synthetic data with two classes (Haykin 2009)
is used to show that the learned results of ISMETS are with
good interpretability. Each class contains 1000 instances.
We randomly choose 70% of the data as labeled and the
remains are unlabeled. The number of metric bases is set
as 20. Only labeled synthetic data is plotted in Fig. 2 (a).
ISMETS first learns all metric bases, and in Fig. 2 (c), 4 typi-
cal plots of metric basis are plotted. The size and rotation of
each ellipsoid depend on the inverse of a metric basis. Val-
ues of bases are shown in the right-bottom of each subplot of
(c) and all ellipsoids are centered at (0, 0). It can be clearly
found that these 4 bases are different. The specific metric
Mx for each instance x in a small part of the two-moon
data (in Fig. 2 (a), marked with black rectangle) is plotted in
Fig. 2 (b); each ellipsoid in (b) depends on the inverse of the
concerned instance specific metric, and its center is located
on the corresponding instance. The blue dot-curve in (b) re-
flects part of the decision boundary in local area. The rota-
tion directions of metrics for instances from both classes are
obviously consistent with the decision boundary. Instances
in each class near the blue dot-curve are with smaller el-
lipsoids and are marked in bold, while those instances far
away from the dot-curve are with larger ellipsoids. This indi-
cates the points around the boundary are with larger specific
metrics. Therefore, ISMETS trends to push instances around
the boundary farther and makes lower density area around
boundary for better classification performance.

Experiments on Real Datasets

We test ISMETS on 8 UCI datasets and 4 real Bioinformatic
datasets1 (GDS3286, GSE4115, GDS2771, GDS531). 3 of
8 UCI datasets are multi-class tasks and marked with “∗” in
Table 1. ISMETS is compared with 8 state-of-the-art met-
ric learning methods, i.e., SCMLG, SCMLL (Shi, Bellet,
and Sha 2014), ISD-L1, ISD-L2 (Zhan et al. 2009), LMNN,
mmLMNN (Weinberger and Saul 2009), DNE (Zhang et al.
2007), SDA (Cai, He, and Han 2007). Among compared
methods, SCMLG/L refer to the global and local sparse
compositional metric learner respectively, ISD-L1/L2 are
methods with different losses, and mmLMNN is a multiple
metric version of LMNN. kNN with Euclidean distance is
also listed as Euclid in Table 1. As researchers did in al-
most all distance metric learning literatures, all compared
methods invoke kNN as the classifier and then use classifi-
cation errors for evaluating the quality of learned metrics to
compare with each other. In our implementation, k is con-
figured as 5. We run each method 30 random trials per data.
The mean and standard derivation of classification errors are
listed in Table 1. In each trial, we randomly split the data into
training set (67%) and test set (33%). In the training set, 30%
data are labeled examples and the remains are unlabeled. For
Bioinformatic data, PCA is employed for projecting the data
into a low dimensional feature space with the dimensionality
equals the number of instances. Since ISMETS can predict
both transductively and inductively, we denote the results
as ISMETSt and ISMETSi respectively in following tables
and figures. The maximum training iteration for ISMETSt/i
is fixed as 20. We use non-informative hyper-parameters in
the training process (Gönen and Margolin 2014; Zhao et al.
2014), i.e., we set ασ , βσ and elements in απ all as 1.

In Table 1, the last two rows give the Win/Tie/Lose counts
of t-test results at a significant level 95% for ISMETSt/i vs.
others. From the results, it can be found that ISMETSt/i
achieve the best performance among all methods on 6
datasets, while SCMLG/L outperform others on 3 datasets,
ISD-L1/L2 achieve the best on 2, LMNN series and SDA
are superior to others on 1 dataset respectively. According
to t-test results, it reveals that both ISMETSt/i can yield bet-
ter performance than compared methods. In particular, com-
pared with ISD-L1/L2, mmLMNN, DNE, SDA and Euclid,
ISMETSt never loses and similarly, ISMETSi never loses to
ISD-L1/L2, mmLMNN, DNE and Euclid according to t-test
at 95% significance level. We have marked the correspond-
ing 0 loss results with “�” in Table 1, and the wins num-
ber of ISMETSt/i are bolded. Results in Table 1 reveals the
effectiveness of ISMETS. The probable reason for the bet-
ter performance of ISMETS to the global methods may be
the consideration of the local structure and its superiority
to the local ones may be due to the simultaneous learned
bases/coefficients in the model. Moreover, experiments run-
ning on computational servers with 2.66GHz 2 cores and
4GB memory show that ISMETS can be trained faster than
some other ISM type methods. E.g., on mfeat-mor dataset,
ISMETSi is on average 7.82 and 1.72 times faster than ISD-
L1 and mmLMNN respectively.

1Can be open accessed from www.ncbi.nlm.nih.gov/geo/
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(c) Typical plots of metric basis

Figure 2: Interpretability illustrations of ISMETS on two-moon data. Subplot (a) displays the data distribution together with a
selected area marked in black rectangle. Subplot (b) zooms in the selected area of (a) and marks the instance specific metrics
learned by ISMETS. Subplot (c) shows 4 of learned metric bases. All ellipsoids are drawn according to the inverse of metrics.

Table 1: Comparisons of classification performance (test errors, mean ± std.) with other methods. ISMETSt represents ISMETS
with transductive strategy while ISMETSi predicts in an inductive manner. Last two rows list the Win/Tie/Lose counts on all
datasets with t-test against other methods at significance level 95%. The win counts for ISMETSt/i to other compared methods
and the best performance on each dataset are bolded. The W/T/L is marked with “�” where ISMETSt/i never lose.

Name ISMETSt ISMETSi SCMLG SCMLL ISD-L1 ISD-L2 mmLMNN LMNN DNE SDA Euclid

balance∗ .161±.021 .162±.026 .117±.032 .121±.032 .175±.021 .168±.023 .239±.036 .170±.017 .174±.021 .271±.088 .170±.015
echocardio .191±.031 .193±.031 .261±.059 .264±.074 .196±.054 .203±.058 .208±.050 .207±.049 .208±.047 .195±.029 .208±.050
haberman .306±.046 .315±.046 .296±.033 .296±.033 .303±.037 .316±.048 .321±.040 .314±.044 .301±.037 .318±.043 .303±.038
heart-stat .196±.038 .193±.038 .200±.119 .233±.119 .191±.033 .216±.037 .197±.033 .195±.035 .197±.033 .407±.090 .197±.033
liver-dis .404±.048 .400±.040 .426±.059 .426±.059 .418±.049 .412±.049 .425±.034 .406±.052 .409±.053 .450±.059 .409±.053

mfeat-mor∗ .285±.018 .287±.018 .286±.018 .317±.016 .295±.016 .295±.015 .307±.019 .296±.014 .299±.016 .281±.015 .293±.016
page-blo∗ .052±.005 .052±.005 .059±.010 .063±.014 .063±.005 .067±.004 .064±.005 .060±.004 .060±.004 .055±.006 .059±.004

vote .066±.049 .080±.049 .142±.137 .153±.141 .082±.032 .074±.030 .154±.000 .085±.032 .088±.029 .371±.097 .088±.031
GDS3286 .338±.000 .336±.005 .355±.038 .355±.038 .472±.145 .404±.114 .409±.089 .432±.116 .441±.114 .526±.176 .441±.114
GSE4115 .469±.019 .464±.026 .485±.078 .489±.081 .487±.035 .461±.028 .481±.050 .472±.030 .479±.034 .481±.015 .479±.034
GDS2771 .475±.032 .469±.017 .487±.058 .476±.046 .480±.014 .475±.026 .462±.044 .476±.026 .477±.022 .479±.013 .477±.022
GDS531 .207±.000 .207±.000 .207±.000 .207±.000 .320±.150 .280±.095 .235±.044 .330±.118 .348±.140 .243±.138 .348±.140

W / T / L ISMETSt vs. others 5 / 6 / 1 6 / 5 / 1 6 / 6 / 0 � 6 / 6 / 0 � 7 / 5 / 0 � 6 / 6 / 0 � 6 / 6 / 0 � 7 / 5 / 0 � 6 / 6 / 0 �

W / T / L ISMETSi vs. others 5 / 6 / 1 6 / 5 / 1 7 / 5 / 0 � 6 / 6 / 0 � 7 / 5 / 0 � 6 / 6 / 0 � 6 / 6 / 0 � 8 / 3 / 1 5 / 7 / 0 �

Fig. 3 shows the influence over classification vs. label ra-
tio, i.e., the portion of labeled data in the training set, chang-
ing from 20% to 100% on 4 datasets. The trends on average
errors of instances specific or local distance metric methods
are reported. The average errors of compared methods are
decreased on most datasets when more labeled examples are
used, while ISMETSt/i perform better than others in most
cases. Especially, when the label ratio is 20%, ISMETSt/i
almost outperform other methods. This indicates ISMETSt/i
can make full use of the information from unlabeled data
and adapt to semi-supervised scenarios when labeled exam-
ples are very limited.

To investigate the influence on the number of metric
bases, we conduct more experiments on ISMETSt/i with dif-
ferent choice of metric bases number K. The changes of
mean classification error are plotted in Fig. 4. We can find
that the errors of ISMETSt/i only vary in a small range when

the number of metric bases changes. Thus, tuning the num-
ber of bases may not impact performance dramatically, i.e.,
ISMETS is robust to the number of metric bases.

Conclusion

We propose a unified framework ISMETS to tackle instance
specific metric learning where we can predict the specific
metrics for unseen test instances inductively as well as trans-
ductively. In transductive setting, the metrics of instances are
yielded by an expectation over a latent allocation distribu-
tion, while the instances’ metrics can be obtained by inte-
grating out the latent allocation variables in inductive set-
ting. In addition, ISMETS automatically learns metric bases
and form instance specific subspaces with sparse combina-
tion of those bases. Interpretability of our proposed method
is showed on synthetic data. Moreover, extensive evaluations
have demonstrated its effectiveness and robustness. Note that
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Figure 3: Influence on label ratio.

"
���#������!���	��������

 
��
��
�!
�
�	
��
�
��
��
�
�

(a) haberman
"
���#������!���	��������

 
��
��
�!
�
�	
��
�
��
��
�
�

(b) heart-stat

Figure 4: Influence on the number of metric bases.

the supervision part of the model can be substituted with
other forms, which implies ISMETS framework is general
for instance specific metric learning. For faster metric learn-
ing and prediction, we will try to incorporate parallel tech-
niques and some approximation tricks into our framework.
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