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Abstract

The Schatten-p quasi-norm (0<p<1) is usually used to re-
place the standard nuclear norm in order to approximate the
rank function more accurately. However, existing Schatten-
p quasi-norm minimization algorithms involve singular value
decomposition (SVD) or eigenvalue decomposition (EVD) in
each iteration, and thus may become very slow and impracti-
cal for large-scale problems. In this paper, we first define two
tractable Schatten quasi-norms, i.e., the Frobenius/nuclear
hybrid and bi-nuclear quasi-norms, and then prove that they
are in essence the Schatten-2/3 and 1/2 quasi-norms, re-
spectively, which lead to the design of very efficient algo-
rithms that only need to update two much smaller factor ma-
trices. We also design two efficient proximal alternating lin-
earized minimization algorithms for solving representative
matrix completion problems. Finally, we provide the global
convergence and performance guarantees for our algorithms,
which have better convergence properties than existing algo-
rithms. Experimental results on synthetic and real-world data
show that our algorithms are more accurate than the state-of-
the-art methods, and are orders of magnitude faster.

Introduction

In recent years, the matrix rank minimization problem arises
in a wide range of applications such as matrix comple-
tion, robust principal component analysis, low-rank repre-
sentation, multivariate regression and multi-task learning.
To solve such problems, Fazel, Hindi, and Boyd; Candès
and Tao; Recht, Fazel, and Parrilo (2001; 2010; 2010) have
suggested to relax the rank function by its convex envelope,
i.e., the nuclear norm. In fact, the nuclear norm is equiv-
alent to the �1-norm on singular values of a matrix, and
thus it promotes a low-rank solution. However, it has been
shown in (Fan and Li 2001) that the �1-norm regulariza-
tion over-penalizes large entries of vectors, and results in
a biased solution. By realizing the intimate relationship be-
tween them, the nuclear norm penalty also over-penalizes
large singular values, that is, it may make the solution de-
viate from the original solution as the �1-norm does (Nie,
Huang, and Ding 2012; Lu et al. 2015). Compared with the
nuclear norm, the Schatten-p quasi-norm for 0<p<1 makes a
closer approximation to the rank function. Consequently, the

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Schatten-p quasi-norm minimization has attracted a great
deal of attention in images recovery (Lu and Zhang 2014;
Lu et al. 2014), collaborative filtering (Nie et al. 2012; Lu
et al. 2015; Mohan and Fazel 2012) and MRI analysis (Ma-
jumdar and Ward 2011). In addition, many non-convex sur-
rogate functions of the �0-norm listed in (Lu et al. 2014;
2015) have been extended to approximate the rank function,
such as SCAD (Fan and Li 2001) and MCP (Zhang 2010).

All non-convex surrogate functions mentioned above
for low-rank minimization lead to some non-convex, non-
smooth, even non-Lipschitz optimization problems. There-
fore, it is crucial to develop fast and scalable algorithms
which are specialized to solve some alternative formula-
tions. So far, Lai, Xu, and Yin (2013) proposed an itera-
tive reweighted lease squares (IRucLq) algorithm to approx-
imate the Schatten-p quasi-norm minimization problem, and
proved that the limit point of any convergent subsequence
generated by their algorithm is a critical point. Moreover,
Lu et al. (2014) proposed an iteratively reweighted nuclear
norm (IRNN) algorithm to solve many non-convex surro-
gate minimization problems. For matrix completion prob-
lems, the Schatten-p quasi-norm has been shown to be em-
pirically superior to the nuclear norm (Marjanovic and Solo
2012). In addition, Zhang, Huang, and Zhang (2013) theo-
retically proved that the Schatten-p quasi-norm minimiza-
tion with small p requires significantly fewer measurements
than the convex nuclear norm minimization. However, all
existing algorithms have to be solved iteratively and involve
SVD or EVD in each iteration, which incurs high computa-
tional cost and is too expensive for solving large-scale prob-
lems (Cai and Osher 2013; Liu et al. 2014).

In contrast, as an alternative non-convex formulation of
the nuclear norm, the bilinear spectral regularization as
in (Srebro, Rennie, and Jaakkola 2004; Recht, Fazel, and
Parrilo 2010) has been successfully applied in many large-
scale applications, e.g., collaborative filtering (Mitra, Sheo-
rey, and Chellappa 2010). As the Schatten-p quasi-norm is
equivalent to the �p quasi-norm on singular values of a ma-
trix, it is natural to ask the following question: can we de-
sign equivalent matrix factorization forms for the cases of
the Schatten quasi-norm, e.g., p = 2/3 or 1/2?

In order to answer the above question, in this paper we
first define two tractable Schatten quasi-norms, i.e., the
Frobenius/nuclear hybrid and bi-nuclear quasi-norms. We
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then prove that they are in essence the Schatten-2/3 and 1/2
quasi-norms, respectively, for solving whose minimization
we only need to perform SVDs on two much smaller fac-
tor matrices as contrary to the larger ones used in existing
algorithms, e.g., IRNN. Therefore, our method is particu-
larly useful for many “big data” applications that need to
deal with large, high dimensional data with missing values.
To the best of our knowledge, this is the first paper to scale
Schatten quasi-norm solvers to the Netflix dataset. More-
over, we provide the global convergence and recovery per-
formance guarantees for our algorithms. In other words, this
is the best guaranteed convergence for algorithms that solve
such challenging problems.

Notations and Background

The Schatten-p norm (0 < p < ∞) of a matrix X ∈ R
m×n

(m ≥ n) is defined as

‖X‖Sp
�
(

n∑
i=1

σp
i (X)

)1/p
,

where σi(X) denotes the i-th singular value of X . When
p=1, the Schatten-1 norm is the well-known nuclear norm,
‖X‖∗. In addition, as the non-convex surrogate for the rank
function, the Schatten-p quasi-norm with 0<p<1 is a better
approximation than the nuclear norm (Zhang, Huang, and
Zhang 2013) (analogous to the superiority of the �p quasi-
norm to the �1-norm (Daubechies et al. 2010)).

To recover a low-rank matrix from some linear observa-
tions b ∈ R

s, we consider the following general Schatten-p
quasi-norm minimization problem,

min
X

λ‖X‖pSp
+ f(A(X)− b) , (1)

where A : Rm×n → R
s denotes the linear measurement

operator, λ > 0 is a regularization parameter, and the loss
function f(·) : R

s → R generally denotes certain mea-
surement for characterizing A(X) − b. The above formu-
lation can address a wide range of problems, such as ma-
trix completion (Marjanovic and Solo 2012; Rohde and Tsy-
bakov 2011) (A is the sampling operator and f(·) = ‖·‖22),
robust principal component analysis (Candès et al. 2011;
Wang, Liu, and Zhang 2013; Shang et al. 2014) (A is the
identity operator and f(·) = ‖·‖1), and multivariate regres-
sion (Hsieh and Olsen 2014) (A(X) = AX with A being
a given matrix, and f(·) = ‖ · ‖2F ). Furthermore, f(·) may
be also chosen as the Hinge loss in (Srebro, Rennie, and
Jaakkola 2004) or the �p quasi-norm in (Nie et al. 2012).

Analogous to the �p quasi-norm, the Schatten-p quasi-
norm is also non-convex for p < 1, and its minimization
is generally NP-hard (Lai, Xu, and Yin 2013). Therefore,
it is crucial to develop efficient algorithms to solve some al-
ternative formulations of Schatten-p quasi-norm minimiza-
tion (1). So far, only few algorithms (Lai, Xu, and Yin 2013;
Mohan and Fazel 2012; Nie et al. 2012; Lu et al. 2014) have
been developed to solve such problems. Furthermore, since
all existing Schatten-p quasi-norm minimization algorithms
involve SVD or EVD in each iteration, they suffer from a
high computational cost of O(n2m), which severely limits

their applicability to large-scale problems. Although there
have been many efforts towards fast SVD or EVD compu-
tation such as partial SVD (Larsen 2005), the performance
of those methods is still unsatisfactory for real-life applica-
tions (Cai and Osher 2013).

Tractable Schatten Quasi-Norms

As in (Srebro, Rennie, and Jaakkola 2004), the nuclear norm
has the following alternative non-convex formulations.

Lemma 1. Given a matrix X ∈ R
m×n with rank(X) =

r ≤ d, the following holds:

‖X‖∗ = min
U∈Rm×d,V ∈Rn×d:X=UV T

‖U‖F ‖V ‖F

= min
U,V :X=UV T

‖U‖2F + ‖V ‖2F
2

.

Frobenius/Nuclear Hybrid Quasi-Norm

Motivated by the equivalence relation between the nuclear
norm and the bilinear spectral regularization (please refer
to (Srebro, Rennie, and Jaakkola 2004; Recht, Fazel, and
Parrilo 2010)), we define a Frobenius/nuclear hybrid (F/N)
norm as fellows

Definition 1. For any matrix X ∈ R
m×n with rank(X) =

r ≤ d, we can factorize it into two much smaller matrices
U ∈ R

m×d and V ∈ R
n×d such that X = UV T . Then the

Frobenius/nuclear hybrid norm of X is defined as

‖X‖F/N := min
X=UV T

‖U‖∗‖V ‖F .

In fact, the Frobenius/nuclear hybrid norm is not a real
norm, because it is non-convex and does not satisfy the
triangle inequality of a norm. Similar to the well-known
Schatten-p quasi-norm (0 < p < 1), the Frobenius/nuclear
hybrid norm is also a quasi-norm, and their relationship is
stated in the following theorem.

Theorem 1. The Frobenius/nuclear hybrid norm ‖·‖F/N is a
quasi-norm. Surprisingly, it is also the Schatten-2/3 quasi-
norm, i.e.,

‖X‖F/N = ‖X‖S2/3
,

where ‖X‖S2/3
denotes the Schatten-2/3 quasi-norm of X .

Property 1. For any matrix X ∈ R
m×n with rank(X) =

r ≤ d, the following holds:

‖X‖F/N = min
U∈Rm×d,V ∈Rn×d:X=UV T

‖U‖∗‖V ‖F

= min
X=UV T

(
2‖U‖∗ + ‖V ‖2F

3

)3/2
.

The proofs of Property 1 and Theorem 1 can be found in
the Supplementary Materials.

Bi-Nuclear Quasi-Norm

Similar to the definition of the above Frobenius/nuclear hy-
brid norm, our bi-nuclear (BiN) norm is naturally defined as
follows.
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Definition 2. For any matrix X ∈ R
m×n with rank(X) =

r ≤ d, we can factorize it into two much smaller matrices
U ∈ R

m×d and V ∈ R
n×d such that X = UV T . Then the

bi-nuclear norm of X is defined as

‖X‖BiN := min
X=UV T

‖U‖∗‖V ‖∗.
Similar to the Frobenius/nuclear hybrid norm, the bi-

nuclear norm is also a quasi-norm, as stated in the following
theorem.
Theorem 2. The bi-nuclear norm ‖·‖BiN is a quasi-norm. In
addition, it is also the Schatten-1/2 quasi-norm, i.e.,

‖X‖BiN = ‖X‖S1/2
.

The proof of Theorem 2 can be found in the Supple-
mentary Materials. Due to the relationship between the bi-
nuclear quasi-norm and the Schatten-1/2 quasi-norm, it is
easy to verify that the bi-nuclear quasi-norm possesses the
following properties.
Property 2. For any matrix X ∈ R

m×n with rank(X) =
r ≤ d, the following holds:

‖X‖BiN = min
X=UV T

‖U‖∗‖V ‖∗= min
X=UV T

‖U‖2∗+‖V ‖2∗
2

= min
X=UV T

(‖U‖∗+‖V ‖∗
2

)2
.

The following relationship between the nuclear norm and
the Frobenius norm is well known: ‖X‖F ≤ ‖X‖∗ ≤√
r‖X‖F . Similarly, the analogous bounds hold for the

Frobenius/nuclear hybrid and bi-nuclear quasi-norms, as
stated in the following property.
Property 3. For any matrix X ∈ R

m×n with rank(X) = r,
the following inequalities hold:

‖X‖∗ ≤ ‖X‖F/N ≤ √
r‖X‖∗,

‖X‖∗ ≤ ‖X‖F/N ≤‖X‖BiN ≤ r‖X‖∗.
The proof of Property 3 can be found in the Supplemen-

tary Materials. It is easy to see that Property 3 in turn implies
that any low Frobenius/nuclear hybrid or bi-nuclear norm
approximation is also a low nuclear norm approximation.

Optimization Algorithms

Problem Formulations

To bound the Schatten-2/3 or -1/2 quasi-norm of X by
1
3 (2‖U‖∗+‖V ‖2F ) or 1

2 (‖U‖∗+‖V ‖∗), we mainly consider
the following general structured matrix factorization formu-
lation as in (Haeffele, Young, and Vidal 2014),

min
U,V

λϕ(U, V ) + f(A(UV T )− b), (2)

where the regularization term ϕ(U, V ) denotes 1
3 (2‖U‖∗+

‖V ‖2F ) or 1
2 (‖U‖∗+‖V ‖∗).

As mentioned above, there are many Schatten-p quasi-
norm minimization problems for various real-world appli-
cations. Therefore, we propose two efficient algorithms to
solve the following low-rank matrix completion problems:

min
U,V

λ(2‖U‖∗+‖V ‖2F )
3

+
1

2
‖PΩ(UV T )−PΩ(D)‖2F , (3)

min
U,V

λ(‖U‖∗ + ‖V ‖∗)
2

+
1

2
‖PΩ(UV T )− PΩ(D)‖2F , (4)

where PΩ denotes the linear projection operator, i.e.,
PΩ(D)ij=Dij if (i, j)∈Ω, and PΩ(D)ij=0 otherwise. Due
to the operator PΩ in (3) and (4), we usually need to intro-
duce some auxiliary variables for solving them. To avoid in-
troducing auxiliary variables, motivated by the proximal al-
ternating linearized minimization (PALM) method proposed
in (Bolte, Sabach, and Teboulle 2014), we propose two fast
PALM algorithms to efficiently solve (3) and (4). The space
limitation refrains us from fully describing each algorithm,
but we try to give enough details of a representative algo-
rithm for solving (3) and discussing their differences.

Updating Uk+1 and Vk+1 with Linearization
Techniques

Let gk(U) := ‖PΩ(UV T
k )−PΩ(D)‖2F /2, and then its gra-

dient is Lipschitz continuous with constant lgk+1, meaning
that ‖∇gk(U1)−∇gk(U2)‖F ≤ lgk+1‖U1 −U2‖F for any
U1, U2 ∈ R

m×d. By linearizing gk(U) at Uk and adding a
proximal term, then we have the following approximation:

ĝk(U,Uk)=gk(Uk)+〈∇gk(Uk), U−Uk〉+
lgk+1
2

‖U−Uk‖2F . (5)

Thus, we have

Uk+1=argmin
U

2λ

3
‖U‖∗+ĝk(U,Uk)

=argmin
U

2λ

3
‖U‖∗+

lgk+1
2

‖U−Uk+
∇gk(Uk)

lgk+1
‖2F .

(6)

Similarly, we have

Vk+1=argmin
V

λ

3
‖V ‖2F+

lhk+1
2

‖V−Vk+∇hk(Vk)/l
h
k+1‖2F , (7)

where hk(V ) := ‖PΩ(Uk+1V
T )−PΩ(D)‖2F /2 with the

Lipschitz constant lhk+1. The problems (6) and (7) are known
to have closed-form solutions, which of the former is given
by the so-called matrix shrinkage operator (Cai, Candès, and
Shen 2010). In contrast, for solving (4), Uk+1 is computed
in the same way as (6), and Vk+1 is given by

Vk+1=argmin
V

λ

2
‖V ‖∗+

lhk+1
2

‖V−Vk+∇hk(Vk)/l
h
k+1‖2F . (8)

Updating Lipschitz Constants

Next we compute the Lipschitz constants lgk+1 and lhk+1 at
the (k+1)-iteration.

‖∇gk(U1)−∇gk(U2)‖F =‖[PΩ(U1V
T
k − U2V

T
k )]Vk‖F

≤‖Vk‖22‖U1 − U2‖F ,

‖∇hk(V1)−∇hk(V2)‖F =‖UT
k+1[PΩ(Uk+1(V

T
1 −V T

2 ))]‖F
≤‖Uk+1‖22‖V1−V2‖F .

Hence, both Lipschitz constants are updated by

lgk+1 = ‖Vk‖22 and lhk+1 = ‖Uk+1‖22. (9)
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Algorithm 1 Solving (3) via PALM
Input: PΩ(D), the given rank d and λ.
Initialize: U0, V0, ε and k = 0.

1: while not converged do
2: Update lgk+1 and Uk+1 by (9) and (6), respectively.
3: Update lhk+1 and Vk+1 by (9) and (7), respectively.
4: Check the convergence condition,

max{‖Uk+1−Uk‖F , ‖Vk+1−Vk‖F } < ε.
5: end while

Output: Uk+1, Vk+1.

PALM Algorithms

Based on the above development, our algorithm for solving
(3) is given in Algorithm 1. Similarly, we also design an ef-
ficient PALM algorithm for solving (4). The running time of
Algorithm 1 is dominated by performing matrix multiplica-
tions. The total time complexity of Algorithm 1, as well as
the algorithm for solving (4), is O(nmd), where d � m,n.

Algorithm Analysis

We now provide the global convergence and low-rank matrix
recovery guarantees for Algorithm 1, and the similar results
can be obtained for the algorithm for solving (4).

Global Convergence

Before analyzing the global convergence of Algorithm 1,
we first introduce the definition of the critical points of a
non-convex function given in (Bolte, Sabach, and Teboulle
2014).
Definition 3. Let a non-convex function f : R

n →
(−∞,+∞] be a proper and lower semi-continuous func-
tion, and domf={x ∈ R

n : f(x) < +∞}.
• For any x ∈ domf , the Frèchet sub-differential of f at x

is defined as

∂̂f(x)={u∈R
n : lim

y �=x
inf
y→x

f(y)−f(x)−〈u, y−x〉
‖y−x‖2 ≥0},

and ∂̂f(x) = ∅ if x /∈ domf .
• The limiting sub-differential of f at x is defined as

∂f(x)={u∈R
n : ∃xk → x, f(xk) → f(x)

and uk∈ ∂̂f(xk)→u as k→∞}.
• The points whose sub-differential contains 0 are called

critical points. For instance, the point x is a critical point
of f if 0∈∂f(x).

Theorem 3 (Global Convergence). Let {(Uk, Vk)} be a se-
quence generated by Algorithm 1, then it is a Cauchy se-
quence and converges to a critical point of (3).

The proof of the theorem can be found in the Supplemen-
tary Materials. Theorem 3 shows the global convergence of
Algorithm 1. We emphasize that, different from the gen-
eral subsequence convergence property, the global conver-
gence property is given by (Uk, Vk)→ (Û , V̂ ) as the num-
ber of iteration k → +∞, where (Û , V̂ ) is a critical point

of (3). As we have stated, existing algorithms for solving
the non-convex and non-smooth problem, such as IRucLq
and IRNN, have only subsequence convergence (Xu and Yin
2014). According to (Attouch and Bolte 2009), we know that
the convergence rate of Algorithm 1 is at least sub-linear, as
stated in the following theorem.
Theorem 4 (Convergence Rate). The sequence {(Uk, Vk)}
generated by Algorithm 1 converges to a critical point
(Û , V̂ ) of (3) at least in the sub-linear convergence rate,
that is, there exists C > 0 and θ ∈ (1/2, 1) such that

‖[UT
k , V T

k ]− [ÛT , V̂ T ]‖F ≤ Ck−
1−θ
2θ−1 .

Recovery Guarantee

In the following, we show that when sufficiently many en-
tries are observed, the critical point generated by our algo-
rithms recovers a low-rank matrix “close to” the ground-
truth one. Without loss of generality, assume that D =
Z+E ∈ R

m×n, where Z is a true matrix, and E denotes
a random gaussian noise.

Theorem 5. Let (Û , V̂ ) be a critical point of the problem
(3) with given rank d, and m ≥ n. Then there exists an
absolute constant C1, such that with probability at least 1−
2 exp(−m),

‖Z−Û V̂ T‖F√
mn

≤‖E‖F√
mn

+C1β

(
md log(m)

|Ω|
)1/4

+
2
√
dλ

3C2

√|Ω| ,

where β = maxi,j |Di,j | and C2 = ‖PΩ(D−ÛV̂ T )V̂ ‖F
‖PΩ(D−ÛV̂ T )‖F .

The proof of the theorem and the analysis of lower-
boundedness of C2 can be found in the Supplementary Ma-
terials. When the samples size |Ω| � md log(m), the sec-
ond and third terms diminish, and the recovery error is es-
sentially bounded by the “average” magnitude of entries of
the noise matrix E. In other words, only O(md log(m))
observed entries are needed, which is significantly lower
than O(mr log2(m)) in standard matrix completion theo-
ries (Candès and Recht 2009; Keshavan, Montanari, and Oh
2010; Recht 2011). We will confirm this result by our exper-
iments in the following section.

Experimental Results

We now evaluate both the effectiveness and efficiency of our
algorithms for solving matrix completion problems, such as
collaborative filtering and image recovery. All experiments
were conducted on an Intel Xeon E7-4830V2 2.20GHz CPU
with 64G RAM.

Algorithms for Comparison We compared our algo-
rithms, BiN and F/N, with the following state-of-the-art
methods: IRucLq1 (Lai, Xu, and Yin 2013): In IRucLq, p
varies from 0.1 to 1 with increment 0.1, and the parameters
λ and α are set to 10−6 and 0.9, respectively. In addition,
the rank parameter of the algorithm is updated dynamically
as in (Lai, Xu, and Yin 2013), that is, it only needs to com-
pute the partial EVD. IRNN2 (Lu et al. 2014): We choose

1http://www.math.ucla.edu/∼wotaoyin/
2https://sites.google.com/site/canyilu/
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Figure 1: The recovery accuracy of IRucLq, IRNN and our algorithms on noisy random matrices of size 100× 100.

1 2 3 4 5
x 104

101

102

103

104

Size of matrices

Ti
m

e 
(s

ec
on

ds
)

IRucLq
IRNN−Lp
IRNN−SCAD
IRNN−MCP
BiN
F/N

0 0.1 0.2 0.3 0.4 0.5

10−3

10−2

10−1

Noise factor

R
SE

APGL
IRucLq
IRNN−Lp
BiN
F/N

Figure 2: The running time (seconds) and RSE results vs.
sizes of matrices (left) and noise factors (right).

the �p-norm, SCAD and MCP penalties as the regularization
term among eight non-convex penalty functions, where p is
chosen from the range of {0.1, 0.2, . . . , 1}. At each iteration,
the parameter λ is dynamically decreased by λk=0.7λk−1,
where λ0=10‖PΩ(D)‖∞.

For our algorithms, we set the regularization parameter
λ = 5 or λ = 100 for noisy synthetic and real-world data,
respectively. Note that the rank parameter d is estimated
by the strategy in (Wen, Yin, and Zhang 2012). In addi-
tion, we evaluate the performance of matrix recovery by the
relative squared error (RSE) and the root mean square er-
ror (RMSE), i.e., RSE := ‖X−Z‖F /‖Z‖F and RMSE :=
1
|T |
√

Σ(i,j)∈T (Xij−Dij)2, where T is the test set.

Synthetic Matrix Completion

The synthetic matrices Z∈R
m×n with rank r are generated

by the following procedure: the entries of both U ∈ R
m×r

and V ∈R
n×r are first generated as independent and identi-

cally distributed (i.i.d.) numbers, and then Z = UV T is as-
sembled. Since all these algorithms have very similar recov-
ery performance on noiseless matrices, we only conducted
experiments on noisy matrices with different noise levels,
i.e., PΩ(D)=PΩ(Z+nf ∗E), where nf denotes the noise
factor. In other worlds, the observed subset is corrupted by
i.i.d. standard Gaussian random noise as in (Lu et al. 2014).
In addition, only 20% or 30% entries of D are sampled
uniformly at random as training data, i.e., sampling ratio
(SR)=20% or 30%. The rank parameter d of our algorithms
is set to �1.25r� as in (Wen, Yin, and Zhang 2012).

The average RSE results of 100 independent runs on noisy
random matrices are shown in Figure 1, which shows that

Table 1: Testing RMSE on MovieLens1M, MovieLens10M
and Netflix.

Datasets MovieLens1M MovieLens10M Netflix
% SR 50% / 70% / 90% 50% / 70% / 90% 50% / 70% / 90%
APGL 1.2564/ 1.1431/ 0.9897 1.1138/ 0.9455/ 0.8769 1.0806/ 0.9885/ 0.9370
LMaFit 0.9138/ 0.9019/ 0.8845 0.8705/ 0.8496/ 0.8244 0.9062/ 0.8923/ 0.8668
IRucLq 0.9099/ 0.8918/ 0.8786 — / — / — — / — / —
IRNN 0.9418/ 0.9275/ 0.9032 — / — / — — / — / —
BiN 0.8741/ 0.8593/ 0.8485 0.8274/ 0.8115/ 0.7989 0.8650/ 0.8487/ 0.8413
F/N 0.8764/ 0.8562/ 0.8441 0.8158/ 0.8021/ 0.7921 0.8618/ 0.8459/ 0.8404

if p varies from 0.1 to 0.7, IRucLq and IRNN-Lp achieve
similar recovery performance as IRNN-SCAD, IRNN-MCP
and our algorithms; otherwise, IRucLq and IRNN-Lp usu-
ally perform much worse than the other four methods, espe-
cially p = 1. We also report the running time of all the meth-
ods with 20% SR as the size of noisy matrices increases, as
shown in Figure 2. Moreover, we present the RSE results
of those methods and APGL3 (Toh and Yun 2010) (which is
one of the nuclear norm solvers) with different noise factors.
Figure 2 shows that our algorithms are significantly faster
than the other methods, while the running time of IRucLq
and IRNN increases dramatically when the size of matri-
ces increases, and they could not yield experimental results
within 48 hours when the size of matrices is 50, 000×50, 000.
This further justifies that both our algorithms have very good
scalability and can address large-scale problems. In addition,
with only 20% SR, all Schatten quasi-norm methods signif-
icantly outperform APGL in terms of RSE.

Collaborative Filtering

We tested our algorithms on three real-world recommenda-
tion system data sets: the MovieLens1M, MovieLens10M4

and Netflix datasets (KDDCup 2007). We randomly chose
50%, 70% and 90% as the training set and the remaining
as the testing set, and the experimental results are reported
over 10 independent runs. In addition to the methods used
above, we also compared our algorithms with one of the
fastest existing methods, LMaFit5 (Wen, Yin, and Zhang
2012). The testing RMSE of all these methods on the three

3http://www.math.nus.edu.sg/∼mattohkc/
4http://www.grouplens.org/node/73
5http://lmafit.blogs.rice.edu/.
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Figure 3: The testing RMSE of LMaFit and our algorithms with ranks varying from 5 to 20 and 70% SR.
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Figure 4: The running time (seconds) on three data sets (left,
best viewed in colors) and MovieLens1M (right).

data sets is reported in Table 1, which shows that all those
methods with non-convex penalty functions perform signifi-
cantly better than the convex nuclear norm solver, APGL. In
addition, our algorithms consistently outperform the other
methods in terms of prediction accuracy. This further con-
firms that our two Schatten quasi-norm regularized models
can provide a good estimation of a low-rank matrix. More-
over, we report the average testing RMSE and running time
of our algorithms on these three data sets in Figures 3 and
4, where the rank varies from 5 to 20 and SR is set to 70%.
Note that IRucLq and IRNN-Lp could not run on the two
larger data sets due to runtime exceptions. It is clear that our
algorithms are much faster than AGPL, IRucLq and IRNN-
Lp on all these data sets. They perform much more robust
with respect to ranks than LMaFit, and are comparable in
speed with it. This shows that our algorithms have very good
scalability and are suitable for real-world applications.

Image Recovery

We also applied our algorithms to gray-scale image recov-
ery on the Boat image of size 512×512, where 50% of pix-
els in the input image were replaced by random Gaussian
noise, as shown in Figure 5(b). In addition, we employed the
well known peak signal-to-noise ratio (PSNR) to measure
the recovery performance. The rank parameter of our algo-
rithms and IRucLq was set to 100. Due to limited space, we
only report the best results (PSNR and CPU time) of APGL,
LMaFit, IRucLq and IRNN-Lp in Figure 5, which shows
that our two algorithms achieve much better recovery per-
formance than the other methods in terms of PSNR. And im-
pressively, both our algorithms are significantly faster than
the other methods except LMaFit and at least 70 times faster

(a) Original (b) Input (c) APGL (d) LMaFit

(e) IRucLq (f) IRNN-Lp (g) BiN (h) F/N

Figure 5: Comparison of image recovery on the Boat image
of size 512×512: (a) Original image; (b) Image with Gaus-
sian noise; (c) APGL (PSNR: 24.93, Time: 15.47sec); (d)
LMaFit (PSNR: 25.89, Time: 6.95sec); (e) IRucLq (PSNR:
26.36, Time: 805.81sec); (f) IRNN-Lp (PSNR: 26.21, Time:
943.28sec); (g) BiN (PSNR: 26.94, Time: 8.93sec); (h) F/N
(PSNR: 27.62, Time: 10.80sec).

than IRucLq and IRNN-Lp.

Conclusions

In this paper we defined two tractable Schatten quasi-norms,
i.e., the Frobenius/nuclear hybrid and bi-nuclear quasi-
norms, and proved that they are in essence the Schatten-
2/3 and 1/2 quasi-norms, respectively. Then we designed
two efficient proximal alternating linearized minimization
algorithms to solve our Schatten quasi-norm minimization
for matrix completion problems, and also proved that each
bounded sequence generated by our algorithms globally
converges to a critical point. In other words, our algorithms
not only have better convergence properties than existing al-
gorithms, e.g., IRucLq and IRNN, but also reduce the com-
putational complexity from O(mn2) to O(mnd), with d be-
ing the estimated rank (d�m,n). We also provided the re-
covery guarantee for our algorithms, which implies that they
need only O(md log(m)) observed entries to recover a low-
rank matrix with high probability. Our experiments showed
that our algorithms outperform the state-of-the-art methods
in terms of both efficiency and effectiveness.
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