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Abstract

It is a challenging problem to cluster multi- and high-
dimensional data with complex intrinsic properties and non-
linear manifold structure. The recently proposed subspace
clustering method, Low Rank Representation (LRR), shows
attractive performance on data clustering, but it generally
does with data in Euclidean spaces. In this paper, we intend to
cluster complex high dimensional data with multiple varying
factors. We propose a novel representation, namely Product
Grassmann Manifold (PGM), to represent these data. Addi-
tionally, we discuss the geometry metric of the manifold and
expand the conventional LRR model in Euclidean space onto
PGM and thus construct a new LRR model. Several clustering
experimental results show that the proposed method obtains
superior accuracy compared with the clustering methods on
manifolds or conventional Euclidean spaces.

1 Introduction

In many practical applications, one often faces the problem
of clustering image sets into proper classes. For example,
in action classification or recognition applications, action
video clips are assigned with actual action labels. Another
typical example is for facial image sets. Generally, the fa-
cial images of different subjects vary according to multiple
factors, such as illumination, pose and expression. So it is
a challenging problem for facial image clustering or recog-
nition, particularly there are a set of facial images available
for each person. However, the image set clustering problem
is different from the traditional image clustering problem,
in which each image is assigned to a class label. In the im-
age set clustering, a clustering label is given to an image set
which generally consists of several images from the same
subject. Thus a critical problem is to effectively represent
image sets and design a proper clustering method.

The subspace method and its clustering method have
attracted great interest in computer vision, pattern recog-
nition and signal processing (Elhamifar and Vidal 2013;
Vidal 2011; Xu and Wunsch-II 2005). The basic idea of sub-
space clustering relies on that most data often have intrinsic
subspace structures and can be regarded as the samples of a
mixture of multiple subspaces. Thus the main goal of sub-
space clustering is to group data into different clusters, data
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Figure 1: An overview of our proposed LRR on Product
Grassmann manifolds.

points in each of which just come from one subspace. To
investigate and represent the underlying subspace structure,
many subspace methods have been proposed, such as the
conventional iterative methods (Ho et al. 2003; Tseng 2000),
the statistical methods (Gruber and Weiss 2004; Tipping and
Bishop 1999), the factorization-based algebraic approaches
(Kanatani 2001; Ma et al. 2008; Hong et al. 2006), and the
spectral clustering-based methods (Chen and Lerman 2009;
Favaro, Vidal, and Ravichandran 2011; Lang et al. 2012;
Liu and Yan 2011; von Luxburg 2007).

The spectral clustering methods based on affinity matrix
are considered having good prospects, in which an affinity
matrix is firstly learned from the given data and the final
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clustering results are obtained by spectral clustering algo-
rithms such as K-means or Normalized Cuts (NCut) (Shi
and Malik 2000). The main component of the spectral clus-
tering methods is to construct a proper affinity matrix for
different data. In Sparse Subspace Clustering (SSC) (Elham-
ifar and Vidal 2013), one assumes that the data of subspaces
are independent and are sparsely represented under the so-
called �1 Subspace Detection Property (Donoho 2004). It
has been proved that under certain conditions the multiple
subspace structures can be exactly recovered via �p(p ≤ 1)
minimization (Lerman and Zhang 2011). However, the cur-
rent sparse subspace methods mainly focus on independent
sparse representation for data objects. The low rank repre-
sentation (LRR) (Liu, Lin, and Yu 2010) further introduces
a holistic constraint, i.e., the low rank or nuclear norm ‖ · ‖∗
to reveal the latent structural sparse property embedded in
the data set. When a high-dimensional data set is actually
from a union of several low dimension subspaces, the LRR
model can reveal this structure through subspace clustering.

Although the subspace clustering methods have good per-
formance in many applications, the current methods assume
that data objects come from linear space and the similarity
among data is measured in Euclidean-alike distance. How-
ever, this hypothesis may not be always true in practice since
data may reside in a “curved” nonlinear manifold. In fact,
many high-dimensional data are embedded in low dimen-
sional manifolds. So it is desired to reveal the nonlinear
manifold structure underlying these high-dimensional data
and obtain proper representation and clustering method for
the data derived from non-linear space.

To explore the non-linear structure underlying the data,
many manifold related methods are proposed. The classic
manifold learning methods, such as Locally Linear Embed-
ding (Roweis and Saul 2000), ISOMAP (Tenenbaum, Silva,
and Langford 2000) try to learn manifold structures from
data by exploring data local geometry, and ultimately to
complete other learning tasks, e.g., Sparse Manifold Clus-
tering and Embedding (Elhamifar and Vidal 2011) and the
kernel LRR method (Wang, .Saligrama, and nón 2011).

On the other hand, in many scenarios, data are generated
from a known manifold. For example, covariance matrices
are used to describe the region feature (Tuzel, Porikli, and
Meer 2006). In fact, the covariance matrix descriptor is a
point on the manifold of symmetrical positive definite matri-
ces. Similarly an image set can be represented as a point on
the so-called Grassmann manifold (Harandi et al. 2013). It is
beneficial to use manifold properties in designing new learn-
ing algorithms. Shirazi et al. (2012) embeds the Grassmann
manifolds into reproducing kernel Hilbert spaces. Turaga
et al. (2011) presents statistical modeling methods that are
derived from the Riemannian geometry of the manifold. A
Low-Rank Representation on Grassmann Manifold was ex-
plored in our recent paper (Wang et al. 2014).

Although using points on Grassmann manifold is a nat-
ural way to represent image sets, the current single space
representation method is still limited for the image sets with
multiple variations. For example, the human face images are
generally captured under different views and illuminations
with various expressions, poses and accessorizing. Another

problem is that there usually exist noises or outliers in a
dataset. For example, some non-face images or another per-
son’s face images are often mixed into one’s face image set.
Moreover, many new types of signals are composed of het-
erogeneous data with different modalities, such as the RGB-
D data and other multi-sources data. In these cases, it is diffi-
cult to represent data in a uniform space or construct a proper
transformation between different subspaces. So how to prop-
erly represent these data with multi-factors and obtain good
clustering results is still a challenging problem for Grass-
mann manifold based clustering method.

In this paper, we concentrate on the image set clustering
problem and propose a novel image set representation using
Product Grassmann manifold to describe the intrinsic com-
plexity of image sets. The motivation of using product space
representation is that product space is a good mathemati-
cal tool to represent multi-factors with multi-subspaces. To
further use the Product Grassmann manifold in image sets
clustering, we explore the geometry property of the Product
Grassmann Manifold (PGM) and expand conventional LRR
model onto PGM. Also the proposed LRR model on PGM
is kernelized. The pipeline of our method is illustrated in
Figure 1. Our main contributions are

• Proposing a new data representation based on PGM for
image sets with multiple varying factors;

• Formulating the LRR model on PGM;

• Presenting a new general kernelized LRR model on PGM.

The major difference from the previous work (Wang et al.
2014) lies in the new representation of multiple varying fac-
tors in image sets and its LRR.

2 Data representation by Product Grassmann

Manifold

2.1 Grassmann Manifold

Grassmann manifold G(p, d) (Absil, Mahony, and Sepulchre
2008) is the space of all p-dimensional linear subspaces of
R

d for 0 ≤ p ≤ d. A point on Grassmann manifold is a
p-dimensional subspace of Rd which can be represented by
any orthonormal basis X = [x1,x2, ...,xp] ∈ R

d×p. The
chosen orthonormal basis is called a representative of its
subspace span(X). There are many ways to represent Grass-
mann manifold. In this paper, We take the way of embed-
ding Grassmann manifold into the space of symmetric ma-
trices Sym(d). Here the embedding mapping is defined as,
see (Harandi et al. 2013),

Π : G(p, d) → Sym(d), Π(X) = XXT . (1)

The embedding Π(X) is diffeomorphism (Helmke and
Hüper 2007), hence it is reasonable to replace the distance
on Grassmann manifold with the following distance defined
on the symmetric matrix space under this mapping,

d2g(X,Y ) =
1

2
‖Π(X)−Π(Y )‖2F . (2)
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2.2 Product Grassmann Manifold (PGM)

PGM is considered as a space of product of multiple Grass-
mann spaces. Given a set of natural number {p1, ..., pM},
we define the PGM PGd:p1,...,pM

as the space of G(p1, d)×
·· ·×G(pM , d). So a PGM point can be represented as an as-
sembled Grassmann point, denoted by [X] = {X1, ..., XM}
such that Xm ∈ G(pm, d),m = 1, ...,M .

For our purpose, we adopt a weighted sum of Grassmann
distances as the distance on PGM,

dPG([X], [Y ])2 =
M∑

m=1

wmd2g(X
m, Y m). (3)

where wm is the weight to represent the importance of each
Grassmann space. In practice, it can be determined by a data
driven manner or according to prior knowledge. In this pa-
per, we simply set all wm = 1. So from (2), we obtain the
following distance on PGM,

dPG([X], [Y ])2 =

M∑
m=1

1

2
‖Xm(Xm)T − Y m(Y m)T ‖2F .

(4)

2.3 Data representation by PGM (the New Idea)

Given a set of data, e.g., a facial image set from one subject,
denoted by I = {I1, ..., IP }, which is generated/taken un-
der M varying factors, we can construct a disjoint union of
subsets S = {S1, ...,SM} such that Sm ⊂ I,m = 1, ...,M
is the subset corresponding to the mth factor, for example,
the subset of facial images with various illuminations. For
each subset Sm ∈ S, we first represent it as a Grassmann
point. Then we construct a PGM point by combining these
Grassmann points. Here we adopt SVD to construct an or-
thogonal basis to represent the subset of images as a Grass-
mann point. Finally, we combine M Grassmann points to
obtain the aforementioned Product Grassmann point [X] =
{X1, ..., XM}. This is a new way to jointly describe image
sets by using factor-related subspaces, rather than a single
subspace as done in subspace analysis.

3 LRR on Product Grassmann Manifold

3.1 The Classic LRR

Given a set of data drawn from an unknown union of sub-
spaces X = [x1,x2, ...,xN ] ∈ R

D×N where D is the data
dimension, the objective of subspace clustering is to assign
each data sample to its underlying subspace. The basic as-
sumption is that the data in X are drawn from the union of
K subspaces {Sk}Kk=1 of dimensions {dk}Kk=1.

Under the data self representation principle, each data
point in data can be written as a linear combination of other
data points, i.e., X = XZ, where Z ∈ R

N×N is a matrix
of similarity coefficients. The LRR model (Liu, Lin, and Yu
2010) is formulated as

min
Z,E

‖E‖2F + λ‖Z‖∗, s.t. X = XZ+E, (5)

where E is the error resulting from the self representation.
F -norm can be changed to other norms e.g. �2,1 as done in

the original LRR model. LRR takes a holistic view in favor
of a coefficient matrix in the lowest rank, measured by the
nuclear norm ‖ · ‖∗.
3.2 LRR on PGM

Let X 0 = {[X1], [X2], ..., [XN ]} be a set of given PGM
points from Fn:p1,..,pM

and [Xi] can be represented by a set
of orthogonal bases {X1

i , X
2
i , ..., X

M
i } such that the basis

matrix Xm
i ∈ G(pm, d). To generalize the LRR model (5)

for the dataset X 0, we first note that in (5)

‖E‖2F = ‖X−XZ‖2F =
N∑
i=1

‖xi −
N∑
j=1

Zijxj‖2,

where the measure ‖xi−
∑N

j=1 Zijxj‖ is the Euclidean dis-
tance between the point xi and its linear combination of all
the other data points including xi. So on PGM we propose
the following form of LLR,

min
Z

N∑
i=1

∥∥∥∥[Xi]� (
N⊎
j=1

Zij � [Xj ])

∥∥∥∥
PG

+ λ‖Z‖∗, (6)

where
∥∥∥[Xi]� (

⊎N
j=1 Zij � [Xj ])

∥∥∥
PG

with the operator �
representing the manifold distance between [Xi] and its re-
construction

⊎N
j=1 Zij � [Xj ]. So to get LRR model on

PGM, one should define a proper distance and a combina-
tion operation in the manifold.

From the geometric property of Grassmann manifold, we
can use the metric of Grassmann manifold and the PGM
in (2) and (3) to replace the manifold distance in (6), i.e.∥∥∥[Xi]� (

⊎N
j=1 Zij � [Xj ])

∥∥∥
PG

= dPG([Xi],
⊎N

j=1 Zij �
[Xj ]). Additionally, from the mapping in (1), the mapped
points in Sym(d) are positive definite matrices, so they have
the linear combination operation like that in Euclidean space
if the coefficients are positive. So it is intuitive to replace the
Grassmann points with its mapped points to implement the
combination in (6), i.e.

N⊎
j=1

Zij � [Xj ] = X ×4 Zi,

where Zi is a vector of (Zi1, ..., ZiN )T and X =
{X1,X2, ...,XN} is a 4-order tensor, including a set
of 3-order tensors Xi which stacks all mapped sym-
metric matrices along the 3rd mode, i.e. Xi =
{X1

i (X
1
i )

T , X2
i (X

2
i )

T , ..., XM
i (XM

i )T } ⊂ Sym(d). Up to
now, we can construct the LRR model on PGM as follows,

min
E,Z

‖E‖2F + λ‖Z‖∗ s.t. X = X ×4 Z +E. (7)

We name the above model PGLRR.

3.3 Algorithms for LRR on PGM

To avoid any complex calculation between the 4-order tensor
and a matrix in (7), we carefully analyze the reconstruction
tensor error E and translate the optimization problem into
an equivalent and solvable optimization model.
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We consider the slice Ei of E in (7). ‖Ei‖2F is re-written
as the following form:

‖Ei‖2F =

M∑
m=1

‖(Xm
i Xm

i
T −

N∑
j=1

Zij(X
m
j Xm

j
T ))‖2F .

To simplify the expression for ‖Ei‖2F , note that the matrix
property ‖A‖2F = tr(ATA) and denote

Δm
ij = tr[(Xm

j
TXm

i )(Xm
i

TXm
j )]. (8)

Clearly Δm
ij = Δm

ji and we define M N × N symmetric
matrices

Δm = (Δm
ij )

N
i=1,j=1, m = 1, 2, ...,M. (9)

With some algebraic manipulation, it is not hard to prove

‖E‖2F = −2tr(ZΔ) + tr(ZΔZT ) + const, (10)

where Δ =
∑M

m=1 Δ
m and const collects all the terms ir-

relevant to the variable Z. Similar to (Wang et al. 2014),
we can prove that Δ is semi-definite positive in the latter
Appendix. As a result, we have the eigenvector decomposi-
tion for Δ defined by Δ = UDUT , where UTU = I and
D = diag(σi) with non-negative eigenvalues σi. Thus, (10)
can be converted to its equivalent form ‖E‖2F = ‖ZΔ

1
2 −

Δ
1
2 ‖2F + const.
After variable elimination, (7) can be converted to

min
Z

‖ZΔ
1
2 −Δ

1
2 ‖2F + λ‖Z‖∗. (11)

Problem (11) has a closed form solution given in the fol-
lowing theorem (Favaro, Vidal, and Ravichandran 2011).

Theorem 1 Given that Δ = UDUT as defined above, the
solution to (11) is given by

Z∗ = UDλU
T ,

where Dλ is a diagonal matrix with its i-th element defined
by

Dλ(i, i) =

{
1− λ

σi
if σi > λ,

0 otherwise.

We briefly conclude the main procedures of our proposed
algorithm in Algorithm 1.

3.4 Complexity Analysis of PGLRR

If we denote the rank of coefficient matrix Z by R and the
number of iterations by s, for the N PGM samples gener-
ated from M Grassmann manifolds, the complexity of the
proposed PGLRR algorithm (Algorithm 1) can be mainly
divided into two parts: the data representation part (step 2-
11) and the solution to the algorithm part (step 12-13). In
the formal part, the trace norm should be calculated to get
the new coefficient matrix Δ. The complexity of Δ compu-
tation is O(MN2); In the second part, we perform a partial
SVD method to solve the final coefficient matrix Z, whose
computation complexity is O(RN2). Overall, for the s iter-
ations, the computation complexity of our proposed method
is O(MN2) +O(sRN2).

Algorithm 1 The whole procedures about Problem (7).
Input: The Product Grassmann sample set {[Xi]}Ni=1,

[Xi] ∈ PGn:p1,..,pM
and the balancing penalty parame-

ter λ.
Output: The Low-Rank Representation Z

1: Initialize:J = Z = 0, A = B = 0, μ = 10−6, μmax =
1010 and ε = 10−8

2: for m=1:M do
3: for i=1:N do
4: for j=1:N do

5: Δm
ij ← tr[(Xm

j
TXm

i )(Xm
i

TXm
j )];

6: end for
7: end for
8: end for
9: for m=1:M do

10: Δ ← Δ+Δm
:: ;

11: end for
12: Performing SVD on Δ

Δ ← UDUT

13: Calculating the coefficient matrix Z by
Z ← UDλU

T

4 Kernelized LRR on Product Grassmann

Manifold

4.1 Kernels on PGM

The LRR model on PGM (7) can be regarded as a kernelized
LRR with a kernel feature mapping

∏
defined by (1). It is

not surprised that Δ is semi-definite positive as it serves as a
kernel matrix. It is natural to further generalize the PGLRR
based on kernel functions on PGM.

A straightforward way to define a kernel function on PGM
is to use the kernel functions on Grassmann manifolds such
as Canonical Correlation Kernel and Projection Kernel (Ha-
randi et al. 2011). Consider any two Product Grassmann
points [Xi] = {X1

i , ..., X
M
i } and [Xj ] = {X1

j , ..., X
M
j }

where Xm
i and Xm

j (m = 1, 2, ...,M ) are Grassmann points
respectively. We define a kernel K([Xi], [Xj ]) as follows

K([Xi], [Xj ]) =

M∑
m=1

k(Xm
i , Xm

j ), (12)

where k is any kernel on Grassmann manifold. For the sim-
plicity of expression, we denote Km

ij = k(Xm
i , Xm

j ).

4.2 Kernelized LRR on PGM

Let k be any kernel function on Grassmann manifold. For
an example, here we use the largest canonical correlation
kernel (Yamaguchi, Fukui, and Maeda 1998). According to
the kernel theory (Schölkopf and Smola 2002), there exists
a feature mapping φ : G(p, n) → F , where F is the relevant
feature space under the given kernel k.

Given a set of points {[X1], [X2], ..., [XN ]} on PGM
Fn:p1...pM

, we define the following LRR model

min
Z

‖E‖2F + λ‖Z‖∗ s.t. φ(X ) = φ(X )X⊕Z + E , (13)
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where φ(X ) = {φ([X1]), φ([X2]), ..., φ([XN ])} denotes
the “tensor” on feature spaces Fs and X⊕ denotes the ten-
sor mode multiplication in the last mode (or data mode). We
call the above model KPGLRR.

4.3 Algorithm for KPGLRR

By using the similar derivation in PGLRR algorithm, we can
prove that the model (13) is equivalent to

min
Z

−2tr(ZK) + tr(ZKZT ) + λ‖Z‖∗, (14)

where K is an N ×N kernel matrix over all the data points

[Xi]s, K =
M∑

m=1
Km and Km = (Km

ij )
N
i=1,j=1. Clearly the

symmetric matrix K is positive semi-definite. Finally (14)
can be re-written as

min
Z

‖ZK 1
2 −K 1

2 ‖2F + λ‖Z‖∗, (15)

where K 1
2 is the square root matrix of kernel matrix K. A

closed solution to (15) is formed as the way for (11).

5 Experiments

We evaluate our proposed PGLRR and KPGLRR meth-
ods on the following public datasets: MNIST Handwritten
dataset1, CMU-PIE dataset2, ALOI dataset3, SKIG dataset4,
Highway Traffic dataset5.

Our methods are assessed against the following clustering
methods:

• Sparse Subspace Clustering (SSC) (Elhamifar and Vi-
dal 2013) finding the sparsest representation for the data
set using l1 approximation.

• Low Rank Representation (LRR) (Liu et al. 2013) re-
vealing the global intrinsic structure of the data by its low-
est rank representation.

• Low Rank Representation on Grassmann Manifold
(FGLRR) (Wang et al. 2014) representing the image
sets as Grassmann manifold pionts and constructing LRR
model on Grassmann manifold.

• Statistical computations on Grassmann and Stiefel
manifolds (SCGSM) (Turaga et al. 2011) computing the
Riemannian geometry of the Grassmann and Stiefel man-
ifold by statistical methods.

• Sparse Manifold Clustering and Embedding (SMCE)
(Elhamifar and Vidal 2011) constructing proper metric
by considering the local geometry of manifold.

• Clustering on Grassmann Manifold via Kernel Em-
bedding (CGMKE) (Shirazi et al. 2012) embedding the
Grassmann manifold into a Hilbert space where a measure
of clustering distortion is minimised.

1http://yann.lecun.com/exdb/mnist/.
2http://vasc.ri.cmu.edu/idb/html/face/.
3http://aloi.science.uva.nl/.
4http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm.
5http://www.svcl.ucsd.edu/projects/.

Among them, FGLRR, SCGSM, SMCE and CGMKE are
related to clustering on manifolds. As the conventional SSC
and LRR methods implement clustering in linear space, the
Grassmann points cannot be used as inputs for SSC and
LRR. To construct a fair comparison, we “vectorize” them
into a long vector with all the raw data in each image set, in
a carefully chosen order, e.g., in the frame order. As the di-
mension of such vectors is usually too high, we apply PCA
to reduce the raw vectors to a low dimension which equals
to the number of PCA components retaining 95% of its vari-
ance energy.

Our experiments are coded in Matlab 2014a and imple-
mented on a machine with Intel Core i7-4770K 3.5GHz
CPU. All color images are converted into gray images and
normalized with mean zero and unit variance.

5.1 MNIST Handwritten digits Clustering

The MNIST dataset consists of about 70,000 digit images
written by 250 volunteers. All the digit images have been
size-normalized and centered in a fixed size of 28×28. This
dataset can be regarded as synthetic as the data are clean.

This dataset has 10 classes. To test the robustness of the
proposed methods, we construct the image set of one digit
contains other digits images. For each digit class, we ran-
domly select 9 images from its samples and randomly select
1 image from other 9 digit classes to construct an image set,
i.e. S = {S1, ..., S9} and Sm = {Im1 , Im2 },m = 1, ..., 9,
where the first image Im1 is selected from the same digit
class, and the second Im2 is from the other digit classes
which are noise. Then the subset Sm is represented as a
Grassmann point, i.e. Xm ∈ G(2, 748) (pm = 2, d =
28 × 28 = 748). Therefore, we construct a Product Grass-
mann point of the digit class as [X] = {X1, ..., X9} ∈
PG748:2,2,2,2,2,2,2,2,2. Thus 9 underlying varying factors are
simulated in this case. Here the number of samples of each
cluster are set to 20, 30, 40, 50 to construct test datasets.

For FGLRR, SCGSM, SMCE and CGMKE methods,
Grassmann points are directly used as the input. For SSC
and LRR methods, the original vectors with dimension 28×
28 × 18 = 14112 are reduced to dimension of {162, 234,
302, 366} for the different scales by PCA, respectively.

The experiment results are reported in Figure 2. It is
shown that the accuracy of our proposed algorithms outper-
form other methods almost 20 percents for different scales
of test sets. We conclude that PGM representation has ca-
pacity in extracting the common features crossing a number
of varying factors as shown in Figure 3. Thus the combina-
tion of Product Grassmann geometry and LRR model brings
better accuracy for NCut clustering.

5.2 ALOI Object Clustering

The ALOI dataset collects 1000 objects with simple back-
ground and each object has over 100 images captured under
four different conditions: 72 views, 24 light directions, 12 il-
luminations and 4 stereos. Figure 4(a) shows some samples.
We down-sampling image size to 48× 32.

In this experiment, we use the images of C(=
5, 10, 15, 20, 25, 30) objects. We select 4 images with dif-
ferent light directions and 14 images with different views
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Figure 2: The experimental results on MNIST Datasets.

Figure 3: Demonstration of a point of Product Grassmann
manifold. The first row is the first dimension of the Grass-
mann points, the second row is the second dimension.

(a) (b)

Figure 4: (a) Some samples of ALOI dataset and (b) the
Learned Similarity Matrix.

to construct an image set, i.e. S = {S1, S2} (M =
2). Then S1, S2 are represented as Grassmann points as
X1 ∈ G(2, 1536) and X2 ∈ G(3, 1536)(d = 1536, p1 =
2, p2 = 3). Therefore, we could create a PGM point [X] =
{X1, X2} ∈ PG1536:2,3 to represent an image set. For each
object, we generate 5 image sets. For SSC and LRR meth-
ods, the original vectors with dimension 48×32×(2+3) =
7680 reduced to {14,30,46,58,73,87} for the different C by
PCA, respectively.

The experimental results are shown in Figure 5. It in-
dicates that SMCE, FGLRR and our methods perform ex-
cellently, but our methods are more stable when the clus-
ter number is increasing. Figure 4(b) shows an affinity ma-
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Figure 5: The experimental results on ALOI Datasets.

trix generated from PGLRR for C=10, which is an obvious
block diagonal matrix.

5.3 CMU-PIE Face Clustering

The CMU-PIE database contains facial images of 68 persons
captured under 13 poses, 43 illuminations and with 4 differ-
ent expressions. Here the images were cropped to attain the
face region. The cropped images have been down-sampled
to 32× 32 pixels. Some samples of this dataset are shown in
Figure 6.

Figure 6: The CMU PIE face samples. The three rows are
facial images with glasses, different illuminations and poses
respectively.

Since the expression variation is not very obvious in this
dataset, we use the images with glasses instead of expres-
sion variation to implement clustering. We select images of 7
persons who have glasses. For the images of one person, we
select 4 images with different illuminations, 8 images with
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different poses and 5 images with glasses to construct an im-
age set, i.e. S = {S1, S2, S3} (M = 3). Then S1, S2, S3 are
represented as Grassmann points as X1 ∈ G(3, 1024), X2 ∈
G(3, 1024) and X3 ∈ G(4, 1024). Therefore, we could cre-
ate a PGM point [X] = {X1, X2, X3} ∈ PG1024:3,3,4

to represent an image set. Each person generates 5 image
sets. For SSC and LRR, the original vectors with dimension
32 × 32 × 17 = 17408 are reduced to 22 by PCA. Table 1
presents the clustering result of all algorithms.

Methods
Datasets CMU-E TRAFFIC

SSC 0.4286 0.6285
LRR 0.6000 0.6838

SCGSM 1 0.7787
SMCE 1 0.5573

CGMKE 0.4857 0.5652
FGLRR 1 0.7984
PGLRR 1 0.8379

KPGLRR 1 0.8458

Table 1: The clustering results on the CMU-PIE dataset and
TRAFFIC dataset.

5.4 SKIG Action Video Clustering

The SKIG dataset (Liu and Shao 2013) contains 1080 RGB-
D sequences and this dataset stores ten kinds of gestures of
six persons. All the gestures are performed by fist, finger and
elbow respectively under three backgrounds (wooden board,
white plain paper and news paper) and two illuminations
(strong and poor light). Each RGB-D sequence contains 63
to 605 frames. These images are normalized to 24×32. Fig-
ure 7 shows some RGB images and its DEPTH images of
ten actions.

Figure 7: The SKIG samples.First row is the RGB images of
ten actions. Second row is the DEPTH images of ten actions.

We design different types of PGM points with differ-
ent combinations of factors, including: illumination + depth
sequences ([X] = {X1, X2} ∈ PG1024:20,20); illumina-
tion + dark background sequences ([X] = {X1, X2} ∈
PG1024:20,20); fist + finger + elbow sequences ([X] =
{X1, X2, X3} ∈ PG1024:20,20,20). For each PGM type, we
select 54 samples for one of the 10 clusters.

Since there is a big gap between 63 to 405 frames among
SKIG sequences and both SSC and LRR require input data
in the same dimension, we give up comparing our methods

Methods light+depth light+dark fist+index+flat
SCGSM 0.4093 0.4667 0.3806
SMCE 0.4481 0.4130 0.4639

CGMKE 0.1796 0.1648 0.1778
FGLRR 0.5648 0.5185 0.4944
PGLRR 0.5833 0.5963 0.5056

KPGLRR 0.5907 0.6000 0.5194

Table 2: The clustering results on the SKIG dataset.

with SSC and LRR. Table 2 shows our methods have better
performance.

5.5 UCSD Traffic video Clustering

The Traffic dataset contains 253 video sequences of highway
with three traffic levels: light, medium and heavy, in various
weather scenes. Each video sequence has 42 to 52 frames.
Each image is normalized to size 24× 24.

Each video containing frames at different traffic levels
may be assigned one particular traffic level. In other word,
there are outliers in an image set. So we split each video into
a set of M short clips, some clips may contains a few out-
liers. We represent each clip as a Grassmann point, thus a
video can be regarded as a PGM point. In our experiments
we set M = 3 with roughly equal number of frames for each
clip. The constructed PGM point ([X] = {X1, X2, X3} ∈
PG1024:6,6,6).

In SSC and LRR methods, the dimension 24192(= 24 ×
24× 42) of the raw data is reduced to 147 by PCA. Table 1
presents the clustering results. The accuracy of our methods
is obviously at least 4% higher than the other methods.

6 Conclusion

In this paper, we proposed a data representation method
based on PGM. By exploiting the metric on the manifold,
the LRR based subspace clustering method is extended to
the PGLRR model. An efficient algorithm is also proposed
for PGLRR. Additionally, the LRR model on PGM is gen-
eralized in a kernel framework. The high performance in
the clustering experiments on different image sets and video
databases indicates that PGLLR is well suitable for repre-
senting non-linear high dimensional data with multiple vary-
ing factors and revealing their intrinsic multiple subspaces
structures underlying the data. In the future work, we will fo-
cus on investigating different metrics of PGM and test these
methods on large scale complex image sets.

Acknowledgements

The research project is supported by the Australian Research
Council (ARC) through the grant DP140102270 and also
partially supported by National Natural Science Foundation
of China under Grant No.61390510, 61133003, 61370119,
61171169, 61227004, 61300065, Beijing Natural Science
Foundation No.4132013, 4142010 and Funding Project for
Academic Human Resources Development in Institutions of
Higher Learning Under the Jurisdiction of Beijing Munici-
pality(PHR(IHLB)).

2128



References

Absil, P.; Mahony, R.; and Sepulchre, R. 2008. Optimization Al-
gorithms on Matrix Manifolds. Princeton University Press.
Chen, G., and Lerman, G. 2009. Spectral curvature clustering.
IJCV 81(3):317–330.
Donoho, D. 2004. For most large underdetermined systems of
linear equations the minimal l1-norm solution is also the sparsest
solution. Comm. Pure and Applied Math. 59:797–829.
Elhamifar, E., and Vidal, R. 2011. Sparse manifold clustering and
embedding. NIPS.
Elhamifar, E., and Vidal, R. 2013. Sparse subspace clustering:
Algorithm, Theory, and Applications. IEEE TPAMI 35(1):2765–
2781.
Favaro, P.; Vidal, R.; and Ravichandran, A. 2011. A closed form
solution to robust subspace estimation and clustering. In CVPR,
1801–1807.
Gruber, A., and Weiss, Y. 2004. Multibody factorization with un-
certainty and missing data using the EM algorithm. In CVPR, vol-
ume I, 707–714.
Harandi, M. T.; Sanderson, C.; Shirazi, S. A.; and Lovell, B. C.
2011. Graph embedding discriminant analysis on Grassmannian
manifolds for improved image set matching. In CVPR, 2705–2712.
Harandi, M. T.; Sanderson, C.; Shen, C.; and Lovell, B. 2013.
Dictionary learning and sparse coding on Grassmann manifolds:
An extrinsic solution. In ICCV, 3120–3127.
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Appendix
Lemma 1 Given a set of 3-order tensors {X1,X2, ...,XN}
and each tensor contains M matrices, Xi =

{X1
i , X

2
i , ..., X

M
i } where XmT

i Xm
i = Id, if

Δ =
M∑

m=1
Δm = [

∑M
m=1 Δ

m
ij ]

N
i,j=1 ∈ RN×N with el-

ement Δm
ij = tr

[
(XmT

j Xm
i )(XmT

i Xm
j )

]
, then the matrix

Δ is semi-positive definite.

Proof: Denote by Bm
i = Xm

i XmT

i . Then Bm
i is a sym-

metric matrix of size d× d. Then

Δm
ij = tr

[
(XmT

j Xm
i )(XmT

i Xm
j )

]
= tr

[
(Xm

j XmT

j )(Xm
i XmT

i )
]

= tr[Bm
j Bm

i ] = tr[Bm
j BmT

i ] = tr[BmT

i Bm
j ]

= vec(Bm
i )T vec(Bm

j )

where vec(·) is the vectorization of a matrix.
Define a matrix Bm =

[vec(Bm
1 ), vec(Bm

2 ), ..., vec(Bm
N )]. Then it is easy to

show that

Δm = [Δm
ij ]

N
i,j=1 = [vec(Bm

i )T vec(Bm
j )]Ni,j=1 = BmT

Bm.

So Δm is a semi-positive definite matrix. Obviously,

Δ =
M∑

m=1

Δm =

M∑
m=1

BmT

Bm

is also a semi-positive definite matrix.
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