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Abstract

We discuss necessary and sufficient conditions for an auto-
encoder to define a conservative vector field, in which case it
is associated with an energy function akin to the unnormal-
ized log-probability of the data. We show that the conditions
for conservativeness are more general than for encoder and
decoder weights to be the same (“tied weights”), and that they
also depend on the form of the hidden unit activation func-
tions. Moreover, we show that contractive training criteria,
such as denoising, enforces these conditions locally. Based on
these observations, we show how we can use auto-encoders
to extract the conservative component of a vector field.

Introduction

An auto-encoder is a feature learning model that learns to
reconstruct its inputs by going though one or more capacity-
constrained “bottleneck”-layers. The motivation for auto-
encoders is that reconstructing input data will be possible
only for a model that creates a faithful internal representa-
tion of the data. If that representation is forced through a bot-
tleneck, like a low-dimensional or sparse hidden layer, then
the model must have learned to compress (or equivalently,
“understand”) the data.

Since technically it defines a function r : R
n → R

n,
which maps data to its reconstruction, an auto-encoder can
also be viewed as dynamical system, and minimizing recon-
struction error can be viewed as a way to encourage the sys-
tem to have fixed points at the data (Seung 1998). Recent
renewed interest in the dynamical systems perspective led to
a variety of results that help clarify the role of auto-encoders
and their relationship to probabilistic models.

For example, (Vincent et al. 2008; Swersky et al. 2011)
showed that training an auto-encoder to denoise corrupted
inputs is closely related to performing score matching
(Hyvärinen 2005) in an undirected model. Similarly, (Alain
and Bengio 2014) showed that training the model to denoise
inputs, or to reconstruct them under a suitable choice of reg-
ularization penalty, lets the auto-encoder approximate the
derivative of the empirical data density. And (Kamyshanska
2013) showed that, regardless of training criterion, an auto-
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encoder whose weights are tied (decoder-weights are identi-
cal to the encoder weights) can be written as the derivative
of a scalar “potential” or energy-function.

In general, a dynamical system that can be written as
the derivative of such a scalar function is called conserva-
tive. When it is conservative, the autoencoder thus defines,
via this scalar function, an energy landscape, which may
viewed as an unnormalized log-density in the data space.
As such, the autoencoder could in principle be turned into
a probabilistic model of the data by simply exponentiating
and normalizing this function. In fact, for sigmoid hidden
units the potential function is identical to the free energy of
an RBM (Kamyshanska 2013). This shows that rather than
thinking of autoencoders and RBMs as two distinct types of
model, one may think of them as merely two different train-
ing schemes to fit the same kind of density function to the
data.

Besides rooting autoencoders in the realm of probabilistic
and energy-based models, the energy function has been of
interest because it may help explain how training of multi-
layer neural networks may be possible via local, biologically
plausible updates (see, for example, (Bengio 2014)).

For untied auto-encoders it has not been clear whether
an energy function exists. It has also not been clear under
which conditions an energy function exists or does not exist,
or even how to define it in the case where decoder-weights
differ from encoder weights.

In this paper, we describe necessary and sufficient con-
ditions for the existence of an energy function (“conserva-
tiveness”), and we show that suitable learning criteria will
lead to an auto-encoder that satisfies these conditions at least
locally, near the training data. We verify our results experi-
mentally. We also show how we can use an auto-encoder to
extract the conservative part of a vector field.

Background

We will focus on auto-encoders of the form

r(x) = Rh
(
WTx+ b

)
+ c (1)

where x ∈ R
n is an observation, W and R are d×n encoder

and n× d decoder weights, respectively, b and c are biases,
and h(·) is an elementwise hidden activation function. An
auto-encoder can be identified with its vector field, r(x) −
x, which is the set of vectors pointing from observations to

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1694



Figure 1: Encoder weights W (left) and decoder weights RT (right).

their reconstructions. The vector field is called conservative
if it can be written as the gradient of a scalar function F (x),
called potential or energy function:

r(x)− x = ∇F (x) (2)

The energy function can be thought of as an unnormalized
data density, and most common training criteria encourage
large values near the data.

In the case where an energy function exists, we can inte-
grate Eq. 2 to find it. (Kamyshanska 2013) show that for an
auto-encoder with tied weights and real-valued observations
the energy function takes the general form

F (x) =

∫
h(u)du− 1

2
‖x− c‖22 + const (3)

where u = WTx + b is an auxiliary variable and h(·) can
be any elementwise activation function with known anti-
derivative. For example, the energy function of an auto-
encoder with sigmoid activation function is identical to the
free energy of a Gaussian RBM (Hinton 2010):

Fsig(x) =
∑
k

log
(
1 + exp

(
WT

·kx+ bk
))

− 1

2
‖x− c‖22 + const (4)

A sufficient condition for the existence of an energy func-
tion is that the weights are tied (Kamyshanska 2013), but it
has not been clear if this is also necessary. A peculiar phe-
nomenon in practice is that it is very common for decoder
and encoder weights to be “similar” (albeit not necessar-
ily tied) in response to training. An example of this effect

is shown in Figure 11. This raises the question of why this
happens, and whether the quasi-tying of weights has any-
thing to do with the emergence of an energy function, and if
yes, whether there is a way to compute the energy function
despite the lack of exact symmetry. We shall address these
questions in what follows.

Conservative auto-encoders

One of the central objectives of this paper is understanding
the conditions for an auto-encoder to be conservative2 and
thus to have a well-defined energy function. In the following
subsection we derive and explain said conditions.

Conditions for conservative auto-encoders

Proposition 1. Consider an m-hidden-layer auto-encoder
defined as

r(x; θ) = W (m)h(m)
(
W (m−1)h(m−1)

(
· · ·W (1)h(1) (x) · · ·

)
+ c(m−1)

)
+ c(m),

where θ = ∪m
k=0θ

(k) such that θ(k) = {W (k), c(k)} are the
parameters of the model, and h(k)(·) is a smooth element-
wise activation function at layer k. Then the auto-encoder
is said to be conservative over a smooth simply connected
domain K ⊆ R

D if and only if its reconstruction’s Jacobian
∂r(x)
∂x is symmetric for all x ∈ K.

1We found these kinds of behaviours not only for unwhitened,
but also for binary data.

2The expressions, “conservative vector field” and “conservative
auto-encoders” will be used interchangeably.
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A formal proof is provided in the supplementary material.
A region K is said to be simply connected if and only if

any simple curve in K can be shrunk to a point. It is not al-
ways the case that a region of RD is simply connected. For
instance, a curve surrounding a punctured circle in R

2 can-
not be continuously deformed to a point without crossing the
punctured region. However, as long as we make the reason-
able assumption that the activation function does not have a
continuum of discontinuities, we should not run into trouble.
This makes our analysis valid for activation functions with
cusps such as ReLUs.

Throughout the paper, our focus will be on one–hidden-
layer auto-encoders. Although the necessary and sufficient
conditions for their conservativeness are a special case of the
above proposition, it is worthwhile to derive them explicitly.
Proposition 2. Let r(x) be a one-hidden-layer auto-
encoder with D dimensional inputs and H hidden units,

r(x) = Rh
(
WTx+ b

)
+ c,

where R,W,b, c are the parameters of the model. Then r(x)
defines a conservative vector field over a smooth simply con-
nected domain K ⊆ R

D if and only if RDh′WT is symmet-
ric for all x ∈ K where Dh′ = diag (h′(x)).

Proof. Following proposition 1, an auto-encoder defines a
conservative vector field if and only if its Jacobian is sym-
metric for all x ∈ K.

∂r(x)

∂x
=

(
∂r(x)

∂x

)T

(5)

By explicitly calculating the Jacobian, this is equivalent to

(∀1 ≤ i < j ≤ D)
H∑
l=0

(
RjlWli −RilWlj

)
h′
l (x) = 0 (6)

Defining Dh′ = diag(h
′
(x)), this holds if and only if

RDh′WT = WDh′RT (7)

For one-hidden-layer auto-encoders with tied weights,
Equation 7 holds regardless of the choice of activation func-
tion h and x.
Corollary 1. An auto-encoder with tied weights always de-
fines a conservative vector field.

Proposition 2 illustrates that the set of all one-layered tied
auto-encoders is actually a subset of the set of all conser-
vative one-layered auto-encoders. Moreover, the inclusion
is strict. That is to say there are untied conservative auto-
encoders that are not trivially equivalent to tied ones. As ex-
ample, let us compare the parametrization of tied and conser-
vative untied linear one-layered auto-encoders. runtied(x)
in Eq. 7 defines a conservative vector field if and only
RWT = WRT which offers a richer parametrization than
the tied linear auto-encoder rtied(x) = WWTx.

In the following section we explore in more detail and
generality of the parametrization imposed by the conditions
above.

Understanding the symmetricity condition

Note that if symmetry holds in the Jacobian of an auto-
encoder’s reconstruction function, then the vector field is
conservative. A sufficient condition for symmetry of the Ja-
cobian is that R can be written

R = CWDh′E. (8)

where C and E are symmetric matrices, and C commutes
with WDh′EDh′WT , as this will ensure symmetry of the
partial derivatives:

∂r(x)

∂x
= RDh′WT = CWDh′EDh′WT (9)

= WDh′EDh′WTC = WDh′RT =

(
∂r(x)

∂x

)T

.

The case of tied weights (R = W ) follows if C and E are
the identity, since then ∂r(x)

∂x = RDh′WT = WDh′WT .
Notice that R = CWDh′ and R = WDh′E are further

special cases of the condition R = CWDh′E when E is
the identity (first case) or C is the identity (second case).
Moreover, we can also find matrices E and C given the pa-
rameters W and R, which is shown in Section 1.2 of the
supplementary material3.

Conservativeness of trained auto-encoders

Following (Alain and Bengio 2014) we will first assume
that the true data distribution is known and the auto-encoder
is trained. We then analyze the conservativeness of auto-
encoders around fixed points of the data manifold. After that,
we will proceed to empirically investigate and explain the
tendency of trained auto-encoders to become conservative
away from the data manifold. Finally, we will use the ob-
tained results to explain why the product of the encoder and
decoder weights become increasingly symmetric in response
to training.

Local Conservativeness

Let r(x) be an auto-encoder that minimizes a contraction-
regularized squared loss function averaged over the true data
distribution p,

Lε(x) =

∫
Rd

p(x)

[
‖r(x)− x‖22 + ε‖∂r(x)

∂x
‖22

]
dx (10)

A point x ∈ R
d is a fixed point of the auto-encoder if and

only if r(x) = x.

Proposition 3. Let r(x) be an untied one-layer auto-
encoder minimizing Equation 10. Then r(x) is locally con-
servative as the contraction parameter ε tends to zero.

Taking a first order Taylor expansion of r(x) around a
fixed point x yields

r(x+ ε) = x+
∂r(x)

∂x

T

ε+ o(ε) as ε → 0. (11)

3www.uoguelph.ca/∼imj/files/conservative ae supplementary.
pdf
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(a) Symmetricity for RDh′W with sigmoid units (b) Symmetricity for RW with sigmoid units

(c) Symmetricity for RDh′W with ReLU units (d) Symmetricity for RW with ReLU units

Figure 2: Symmetricity of ∂r(x)
∂x and RWT for sigmoid and ReLU activations over training time.

(Alain and Bengio 2014) show that the reconstruction
r(x) − x becomes an estimator of the score when ‖r(x) −
x‖22 is small and the contraction parameters ε → 0. Hence
around a fixed point we have

r(x+ ε)− x = ε
∂ log(p(x))

∂x
, and (12)

∂(r(x+ ε)− x)

∂x
= ε

∂2 log(p(x))

∂x2
(13)

By explicitly expressing the Jacobian of the auto-
encoder’s dynamics ∂r(x)−x

∂x and using the Taylor expansion
of r(x), we have

WTDh′RT − I = ε
∂2 log(p(x))

∂x2
(14)

The Hessian of log p(x) being symmetric, Equation 14
illustrates that around fixed points, RDh′W is symmetric. In
conjunction with Proposition 2, this shows that untied auto-
encoders, when trained using a contractive regularizer, are
locally conservative. Notice that when the auto-encoder is
trained with patterns drawn from a continuous family, then
the auto-encoder forms a continuous attractor that lies near
the examples it is trained on (Seung 1998).

It is worth noting that dynamics around fixed points can
be understood by analyzing the eigenvalues of the Jacobian.
The latter being symmetric implies that its eigenvalues can-
not have complex parts, which corresponds to the lack of

Table 1: Symmetricity of ADW after training AEs with
500 units on MNIST for 100 epochs. We denote the auto-
encoders with weight length constraints as ‘+wl’.

ReLU ReLU+wl sig. sig.+wl
AE 95.9% 98.7% 95.1% 99.1%
CAE 95.2% 98.6% 97.4% 99.1%

oscillations in a conservative vector field. Moreover, in di-
rections orthogonal to the fixed point, the eigenvalues of the
reconstruction will be negative. Thus the fixed point is actu-
ally a sink.

Empirical Conservativeness

We now empirically analyze the conservativeness of trained
untied auto-encoders. To this end, we train an untied auto-
encoder with 500 hidden units with and without weight
length constraints4 on the MNIST dataset. We measure sym-
metricity using sym(A) = ‖(A+AT )/2‖2

‖A‖2 which yields values
between [0, 1] with 1 representing complete symmetricity.
Figure 2a and 2c shows the evolution of the symmetricity of
∂r(x)
∂x = RDh′W during training. For untied auto-encoders,

we observe that the Jacobian becomes increasingly symmet-
ric as training proceeds and hence, by Proposition 2, the

4Weight length constraints : ||wi||2 = α for all i = 1 · · ·H
and α is a constant term.
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auto-encoder becomes increasingly conservative.
The contractive auto-encoder tends more towards com-

plete symmetricity than the unregularized one. Their sym-
metricity scores plateau at 0.974 and 0.951 respectively. It
is interesting to note that auto-encoders with weight length
constraints yield sensibly higher symmetricity scores as
shown in Table 1. The details of the experiments and further
interpretations are provided in the supplementary material.

To explicitly confirm the conservativeness of the auto-
encoder in 2D, we monitor the curl of the vector field during
training. In our experiments, we created three 2D synthetic
datasets by adding gaussian white noise to the parametriza-
tion of a line, a circle, and a spiral. As shown in Figure 3, we
notice that the curl decreases sharply during training, further
demonstrating how untied auto-encoders become more con-
servative during training. More results on the line, circle, and
spiral synthetic datasets can be found in the supplementary
material.

Symmetricity of weights product

The product of weight RWT tends to become increasingly
symmetric during training. This behavior is more marked for
sigmoid activations than for ReLUs as shown in Figures 2b
and 2d. This can be explained by considering the symmetric-
ity of the Jacobian. After training, it holds that

H∑
l=1

(RilWlj −RjlWli)h
′
l(x) ≈ 0, ∀1 ≤ i, j ≤ d (15)

This implies that the activations of sigmoid hidden units,
at least for training data points, are independent of h′(x) or
constant.

As shown in the supplementary material, most hidden unit
activities are concentrated in the highest curvature region
when training with weight length constraints. This forces
hl(x) to be concentrated on high curvature regions of the
sigmoid activation. This may be due to either h′

l(x) being
nearly constant for all l given x, or h′

l(x) being close to lin-
early independent. In both cases, the Jacobian becomes close
to the identity, and hence RWT ≈ WRT .

Decomposing the Vector Field

In this section, we consider finding the closest conservative
vector field, in a least square sense, to a non-conservative
vector field. Finding this vector field is of great practical im-
portance in many areas of science and engineering (Bhatia et
al. 2013). Here we show that conservative auto-encoders can
provide a powerful, deep learning based perspective onto
this problem.

The fundamental theorem of vector calculus, also known
as Helmhotz decomposition states that any vector field in R

3

can be expressed as the orthogonal sum of an irrotational and
a solenoidal field. The Hodge decomposition is a generaliza-
tion of this result to high dimensional space (James 1966).
A complete statement of the result requires careful analysis
of boundary conditions as well as differential form formal-
ism. But since 1-forms correspond to vector fields, and our

interest lies in the latter, we abuse notation to state the result
in the special case of 1-forms as

ω = dα+ δβ + γ (16)

where d is the exterior derivative, δ the co-differential, and
Δγ = 0.5 This means that any 1-form (vector field) can
be orthogonally decomposed into a direct sum of a scalar,
solenoidal, and harmonic component.

This shows that it is always theoretically possible to get
the closest conservative vector field, in the least square
sense, to a non-conservative one. When applied to auto-
encoders, this guarantees the existence of a best approximate
energy function for any untied conservative auto-encoder.
For a more detailed background on the vector field decom-
position we refer to the supplementary material.

Extracting the Conservative Vector Field through
Learning

Although the explicit computation of the projection might
be theoretically possible in special cases, we propose to find
the best approximate conservative vector through learning.
There are several advantages to learning the conservative
part of a vector field: i) Learning the scalar vector field com-
ponent α from some vector field ω with an auto-encoder is
straightforward due to the intrinsic tendency of the trained
auto-encoder to become conservative, ii) although there is a
large body of literature to explicitly compute the projections,
these methods are highly sensitive to boundary conditions
(Bhatia et al. 2013) while learning based methods eschew
this difficulty.

The advantage of deep learning based methods over ex-
isting approaches, such as matrix-valued radial basis func-
tion kernels (Macedo and Castro 2008), is that they can be
trained on very large amounts of data. To the best of our
knowledge, this is the first application of neural networks to
the problem of extracting the conservative part of any vector
field (effectively recovering the scalar part of Eq. 16).

Two Dimensional space As a proof of concept, we first
extract the conservative part of a two dimensional vector
field F (x, y) = (−x+ y,−x− y). The field corresponds to
a spiralling sink. We train an untied auto-encoder with 1000
ReLU units for 500 epochs using BFGS over an equally
spaced grid of 100 points in each dimension. Figure 4 shows
how the conservative part is perfectly recovered.

High Dimensional space We also conducted experiments
with high dimensional vector fields. We created a continum
of vector fields by considering convex combinations of a
conservative and a non-conservative field. The former is ob-
tained by training a tied auto-encoder on MNIST and the lat-
ter by setting the parameters of an auto-encoder to random
values. That is, we have (Wi, Ri) = β(W0, R0) + (1 −
β)(WK , RK) where (W0, R0) is the non-conservative auto-
encoder and (WK , RK) is the conservative auto-encoder.
We repeatedly train a tied auto-encoder on this continuum

5For Laplace-deRham, Δ = dδ + δd. Standard Δ on 1-forms
is dδ.
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(a) Initial vector field (b) Final vector field (c) Magnitude of curl during training

Figure 3: Initial and final vector field after training an untied auto-encoder on the spiral dataset.

Figure 4: Vector field learning by tied (Middle) and united (Right) auto-encoder on 2D unconservative vector field (Left).

Algorithm 1 Learning to approximate a conservative field
with an auto-encoder
1: procedure (D be a data set )
2: Let (W0, R0) be a random weights for AE.
3: Let (WK , RK) be trained AE on D.
4: Generate Fi ∀i = 1 · · ·K as follows:

• (Wi, Ri) = β(W0, R0) + (1− β)(WK , RK)

• Sample xi from uniform distributon in the data space.
• Fi = {(xi, r(xi))fori = 1 · · ·N}

5: for each vector field Fi, do
6: Train a tied Auto-encoder on Fi

7: Compute E(x) where x ∈ D
8: Compute E(x̃) where x̃ ∼ Binomial
9: Count number of E(x) > E(x̃).

in order to learn its conservative part. The pseudocode for
the experiment is presented in Algorithm 1.

Figure 5 shows the mean squared error as a function of
training epoch for different values of β. We observe that the
auto-encoder’s loss function decreases as β gets closer to 1.
This is due to the auto-encoder only being able to learn the
conservative component of the vector field.

We then compare the unnormalized model evidence of
the auto-encoders. The comparison is based on computing
the potential energy of auto-encoders given two points at a

time. These two points are from the MNIST and a corrupted
version of the latter using salt and pepper noise. We count
the number of times where E(x) > E(xrand). Given that
the weights (WK , RK) of the conservative auto-encoder are
obtained by training it on MNIST, the potential energy at
MNIST data points should be higher than that at the cor-
rupted MNIST data points. However, this does not hold for

Figure 5: Learning curves for tied (dashed) and untied
(solid) auto-encoders.

β < 1. Even for β = 0.6, we can recover the conservative
component of the vector field up to 93% . Thus, we conclude
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Table 2: The fraction of observations with E(x) > E(xrand) for different β values.

β 0.0 0.2 0.4 0.6 0.8 1.0
CVF=Tied AE 0.5036 0.7357 0.9338 0.98838 0.9960 0.9968
CVF=Untied AE 0.5072 0.7496 0.9373 0.98595 0.9958 0.9968

that the tied auto-encoder is able to learn the conservative
component of the vector field. The procedure is detailed in
Algorithm 1.

Table 2 shows that, on average, the auto-encoder poten-
tial energy increasingly favors the original MNIST examples
over the corrupted ones as the vector field Fi moves from
0 to K. “CVF=Tied AE” refers to conservative vector field
FK trained by the tied auto-encoder and “CVF=Untied AE”
refers to conservative vector field FK learned by the untied
auto-encoder.
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