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Abstract

We consider an online learning problem (classification or pre-
diction) involving disparate sources of sequentially arriving
data, whereby a user over time learns the best set of data
sources to use in constructing the classifier by exploiting their
similarity. We first show that, when (1) the similarity informa-
tion among data sources is known, and (2) data from different
sources can be acquired without cost, then a judicious selec-
tion of data from different sources can effectively enlarge the
training sample size compared to using a single data source,
thereby improving the rate and performance of learning; this
is achieved by bounding the classification error of the result-
ing classifier. We then relax assumption (1) and characterize
the loss in learning performance when the similarity inform-
ation must also be acquired through repeated sampling. We
further relax both (1) and (2) and present a cost-efficient al-
gorithm that identifies a best crowd from a potentially large
set of data sources in terms of both classifier performance and
data acquisition cost. This problem has various applications,
including online prediction systems with time series data of
various forms, such as financial markets, advertisement and
network measurement.

Introduction

The ability to learn (classify or predict) accurately with se-
quentially arriving data has many applications. Examples
include predicting future values on a prediction market,
weather forecasting, TV ratings, and ad placement by ob-
serving user behavior. The subject of learning in such con-
texts has been extensively studied. Past literature is heav-
ily focused on learning by treating each source or object’s
historical data separately, see e.g., (Lai and Robbins 1985;
Lu, Pl, and Pal 2010; Langford and Zhang 2007) for single
source multi-armed bandit problems for learning the best
options of returned rewards, (Kim 2003) for a support vec-
tor machine based forecasting for financial time series data,
(Hao et al. 2009) for a model predicting spammers using a
network’s past statistics, and (Hyup Roh 2007) for forecast-
ing stock price index, among other.

More recent development has increasingly been focusing
on improving learning through integrating data from mul-
tiple sources with similar statistics, see e.g., (He et al. )
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for wind power prediction using both temporal and spa-
tial information. The idea of increasing sample spaces by
exploiting similarity proves to be helpful especially when
the data arrives slowly, e.g., weather reports generated a
few times per day. This idea naturally arises when different
data sources are physically correlated, e.g., wind turbines
on the same farm, or environmental monitoring sensors loc-
ated within close proximity. However, it also fits well in the
emerging context of crowdsourcing, where different sources
(e.g., Amazon Mechanical Turks) contribute to a common
data collection objective (e.g., labeling a set of images), and
exploiting multiple data sources can improve the quality of
crowdsourced data. For instance the idea of aggregating se-
lectively data from a crowd to make prediction more accur-
ate is empirically demonstrated and referred to as finding a
“smaller but smarter crowd” in (Galesic and Barkoczi 2014;
Goldstein, McAfee, and Suri 2014).

In this paper we seek to make the notion of a “smarter”
crowd quantitatively precise and develop methods to sys-
tematically identify and utilize this crowd. Specifically, we
consider a problem involving K (potentially-)disparate data
sources, each of which may be associated with a user. A
given user can use its own data to achieve a certain learning
(prediction, classification) objective but is interested in im-
proving its performance by tapping into other data sources,
and can request data from other sources at a cost. Ac-
cordingly, decisions need to be made judiciously on which
sources of data should be used so as to optimize its learn-
ing accuracy. This implies two challenges: (1) we need to be
able to measure the similarity/disparity between two sources
in order to differentiate which sources are more useful to-
ward the learning objective, and (2) we need to be able to de-
termine the best set of sources given the measured similarity.
Prior work most relevant to the present study is (Crammer,
Kearns, and Wortman 2008), where the problem of com-
bining static IID data sources is analyzed. There are how-
ever a number of key differences: 1) in (Crammer, Kearns,
and Wortman 2008) the similarity information is assumed
known a priori and the cost of obtaining data is not con-
sidered. 2) The results in (Crammer, Kearns, and Wortman
2008) are established pre-collected IID data, while we focus
on an online learning setting with Markovian data sources.
In addition, the methodology we employ in this paper is
quite different from (Crammer, Kearns, and Wortman 2008)
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which draws mainly from VC theory (Vapnik 1995), while
our study is based on both VC theory and the multi-armed
bandit (MAB) literature (Auer, Cesa-Bianchi, and Fischer
2002).

We will start by establishing bounds on the expected
learning error under ideal conditions, including that (1) the
similarity information between data sources is known a pri-
ori, and (2) data from all sources are available for free.
We then relax assumption (1) and similarly establish the
bounds on the error when such similarity information needs
to be learned over time. We then relax both (1) and (2) and
design an efficient online learning algorithm that simultan-
eously makes decisions on requesting and combining data
for the purpose of training the predictor, and learning the
similarity among data sources. We again show that this al-
gorithm achieves a guaranteed performance uniform in time,
and the additional cost with respect to the minimum cost re-
quired to achieve optimal learning rate diminishes in time.
Moreover, the obtained bounds show clearly the trade-off
between learning accuracy and the cost to obtain additional
data. This provides useful information for system designers
with different objectives. To our best knowledge this is the
first study on online learning by exploiting source similar-
ity with provable performance guarantees. Unless otherwise
specified, all proofs can be found in (Liu and Liu 2015).

Problem Formulation

Learning with multiple data sources

Consider K sources of data each associated with a unique
user, indexed by D = {1,2, · · · ,K}, which we also refer to
as the whole crowd of sources. The sources need not be gov-
erned by identical probability distributions. Data samples ar-
rive in discrete time to each user; the sample arriving at time
t for user i is denoted by zi(t) = (xi(t),yi(t)), t = 1,2, · · · ,
with xi(t) denoting the features and yi(t) denoting the la-
bels. At each time t, xi(t) is revealed first followed by a
prediction on yi(t) made by the user, after which yi(t) is
revealed and zi(t) is added to the training set. For simpli-
city of exposition, we will assume xi(t) to be a scalar; how-
ever our analysis easily extends to more complex forms of
data, including batch arrivals. The objective of each user
is to train a classifier to predict yi(t) using collected past
data, and after prediction at time t, yi(t) will be revealed
and can be used for training in the future steps. As a spe-
cial case, when the target is to predict for future, yi(t) can
be taken as xi(t + 1). For analytical tractability we will fur-
ther assume that the data arrival processes {xi(t)}t , ∀i, are
mutually independently (but not necessarily identical), and
each is given by a first order1 finite-state positive recurrent
Markov chain, with the corresponding transition probability
matrix denoted by Pi on the state space X i (|X i| < ∞). De-
note by Pi

x,y the transition probability from state x to y under
Pi, and by πi its stationary distribution on X i. For simpli-
city we will assume that X 1 = X 2 = ... = X K = X , though
this assumption can be easily relaxed, albeit with more cum-
bersome notation. The motivation for such modeling choice

1A high order extension is also straightforward.

is by observing that for many applications the sequentially
arriving data does not follow IID distribution as has been
studied in the literature; consider e.g., weather conditions.
Suppose labels yi(t) ∈ Y i and again for simplicity let us
assume Y 1 = Y 2 = ... = Y K = Y , and |Y | < ∞. Denote
y∗ := maxy∈Y |y|.

For the classification job, a straightforward approach
would be for each user i to build a classifier/predictor
by using past observations of its own data up to time
t: {zi(1), ...,zi(t)}. Denote the classifier by fi for user i,
and a loss function L to measure the classification error.
For instance L can be taken as the squared loss function
L( fi,zi(t)) = [yi(t)− fi(xi(t))]2. With the definition of loss
function, the classification task for a user is to find the clas-
sifier that best fits its past observations:

fi(t) = argmin f∈F

t

∑
n=1

L( f ,zi(n)) , (1)

where we have used F to denote the set of all models of
classifier (hypothesis space). For example, F could contain
the classical linear regression models.

The idea we seek to explore in this paper is to construct
the classifier fi by utilizing similarity embedded among data
sources, i.e., we ask whether fi should be a function of all
sources’ past data and not just i’s own, and if so how should
such a classifier be constructed. Specifically, if we collect
data from a set Ωk of sources and use them as if they were
from a single source, then the best classifier is given by

fΩk(t) = argmin f∈F ∑
j∈Ωk

t

∑
n=1

L( f ,z j(n)) . (2)

It was shown in (Crammer, Kearns, and Wortman 2008) that
the expected error of the above classifier is bounded by a
function of certain source similarity measures; the higher the
similarity the lower the error bound.

Our interest is in constructing the best classifier for any
given user i by utilizing other data sources. To do so we
will need to measure the similarity or discrepancy between
sources and to judiciously use data from the right set of
sources. We will accomplish this by decomposing the prob-
lem into two sub-problems, the first is to use a similarity
measure to determine a preferred set Ω∗

k to use, and the
second is to construct the classifier using data from this set.

Pair-wise similarity between data sources

We first introduce the notion of cross-classification error,
which is the expected loss when using classifier f j (trained
using source j’s data) on user i’s data and can be form-
ally defined as ri( f j) = Ei[L( f j,zi)] where the expectation
is with respect to user i’s source data distribution. In prin-
ciple, this could be used to measure the degree of similarity
between two data sources i and j. However, this definition
is not easy to work with as it involves a classifier that is
only implicitly given in (1). Instead, we introduce a notion
of similarity between two data sources i and j, that satisfies
the following two conditions: (1) it can be obtained from the
statistics of two respective data sources, and (2) it satisfies
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the following bound:

ri( f j)≤ β1(1−Si, j)+β2 , (3)

where β1,β2 ≥ 0 are normalization constants and 0 ≤ Si, j ≤
1 denotes the similarity measure; the higher this value the
more similar two sources. The relationship captured in Eqn
(3) between the error function and similarity can also take
on alternate forms; we adopt this simple linear relationship
for simplicity of exposition. The following example shows
the existence of such a measure.

Suppose for each user i, corresponding to each
state/feature x ∈ X , labels y ∈ Y is generated according a
probability measure Qi

x and denote each probability as Qi
x,y

and ∑y∈Y Qi
x,y = 1. Consider the following example. Take L

as the squared loss and Si, j as:

Si, j = 1− max
x∈X ,y∈Y

|Qi
x,y −Q j

x,y|2 . (4)

Then we can show2 that, by setting β1 := 2∑y∈Y y2 and
β2 := 2∑x∈X πi

x ·∑y∈Y Qi
x,y ·(∑ŷ∈Y Qi

x,ŷŷ−y)2, i.e. two times
the intrinsic classification error with user i’s own (perfect)
data, which is independent with other sources j, the choice
of Si, j satisfies both conditions. We note that the choice of
such an S is not unique. For example, we could also take Si, j
to be

Si, j = 1− ∑
x∈X

πi
x · ∑

y∈Y
|Qi

x,y −Q j
x,y|2 ,

while setting β1 := 2(y∗)2. Later we will argue that an S that
leads to a tighter bound can help achieve a better perform-
ance in classification. As it shall become clearer later when
such similarity information needs to be estimated, the trade-
off between selecting a tighter and looser similarity measure
comes from the fact that tighter similarity may incur more
learning error as it requires the evaluation of more terms.

Without loss of generality, for the remainder of our dis-
cussion we will focus on user 1. We will also denote si :=
min{S1,i,Si,1},∀i. While the definition given in (4) is sym-
metric in i and j such that S1,i = Si,1, this needs not be true
in general under alternate definitions of similarity. Note that
s1 = 1. We will then relabel the users in decreasing order of
their similarity to user 1: 1 = s1 ≥ s2....≥ sK ≥ 0.

Solution with Complete Information

As mentioned earlier, the problem of finding the best set of
data sources to use and that of finding the best classifier
given this set are inherently coupled and strictly speaking
need to be jointly optimized, resulting in significant chal-
lenges. The approach we take in this paper is as follows. We
will first derive an upper bound on the error of the classifier
given in (2) when applied to user 1, for a set of k independ-
ent Markov sources; this bound is shown to be a function
of k and their similarity with user 1. This bound is then op-
timized to obtain the best set. Below we derive this upper
bound assuming (1) the similarity information is known and
(2) data is free, i.e., at time t all past and present samples
from all sources are available to user 1.

2Please refer to Appendices.

Upper bounding the learning error

First notice we have the following convergence results for
positive recurrent Markov Chain we consider in the current
paper (Rosenthal 1995),

||π̃i(t)−πi||TV ≤CMC · (λi
2)

t ,

where CMC is some positive constant, π̃i
x(t) is the expected

empirical distribution of state x for data source i’s Markov
chain upto time t for user i and πi

x denotes its stationary dis-
tribution, and 0 < λi

2 < 1 is the second largest eigenvalue
which specifies the mixing speed of the process. The total
variation distance ||p−q||TV between two probability meas-
ures p and q that are defined on X is defined as follows

||p−q||TV := max
S∈2X

|∑
x∈S

(p(x)−q(x))| . (5)

Denote ρk(t)(t) := maxL ·CMC
∑i∈k(t)(λi

2)
t

|k(t)| , where maxL is
the maximum value attained by the loss function. Through-
out the paper we denote [k] := {1,2, ...,k} as the ordered and
continuous set up to k, and k(t) for any other un-ordered set
invoked at time t and use |k(t)| to denote its size. For squared
loss function we have the following results:

Theorem 1. At time t, with probability at least 1−O( 1
t2 )

the error of a classifier f[k](t) constructed using data from k
sources of similarity si, i ∈ k(t) can be bounded as

r1( fk(t)(t))≤ 4min
f∈F

rIID
1 ( f )+6β2︸ ︷︷ ︸
Term 1

+6β1
∑i∈k(t)(1− si)

|k(t)|︸ ︷︷ ︸
Term 2

+ρk(t)(t)︸ ︷︷ ︸
Term 3

+8y∗(2
√

2d + y∗)

√
log |k(t)|t
|k(t)|t︸ ︷︷ ︸

Term 4

, (6)

where d is the VC dimension for F , and rIID
1 ( f ) is the expec-

ted prediction error when the data are generated according
to an IID process.

Denote the upper bound for r1(·) in Eqn. (6) with set k(t)
of data sources (after ordering based on their similarity with
user 1) at time t by Uk(t)(t). The results may be viewed as
an extension to the previous one from (Crammer, Kearns,
and Wortman 2008) where static and IID data sources were
considered. This upper bound can serve as a good guide for
the selection of such a set and in particular the best choice
of |k(t)| given estimated values of si’s. Note that Terms 1
is independent of this selection and it is a function of the
baseline error of the classification problem, Term 2 is due to
the integration of disparate data sources, Term 3 comes from
the mixing time of a Markov source, and Term 4 arises from
imperfect estimation and decision using a finite number of
samples (|k(t)|t samples up to time t).

Below we first point out the key steps in the proof that dif-
fer from that in (Crammer, Kearns, and Wortman 2008) (full
proof is in the supplementary materials), and then highlight
the properties of this bound.
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Main steps in the proof Our analysis starts with connect-
ing Markovian data sources to IID sources so that the clas-
sical VC theory (Vapnik 1995) and corresponding results
can apply. The idea is rather simple: by the ergodicity as-
sumption on the arrival process, the estimation error con-
verges to that of IID data sources as shown in (Adams and
Nobel 2010). In particular, we can bound the difference in
error when applying a predictor f ∈ F to a Markovian vs.
an IID source (with distribution being the same as the steady
state distribution of the Markov chain) at time t, constructed
with available data as follows:

|ri( f (t))− rIID
i ( f (t))|

= | ∑
x∈X

π̃i
xEy∼Y [L( f (t),(x,y))]− ∑

x∈X
πi

xEy∼Y [L( f (t),(x,y))]|

≤ maxL ·CMC(λi
2)

t .

We impose α-triangle inequality on the error function
∀i, j,k , of the corresponding data sources ri( f j) ≤ α ·
[ri( fk)+ rk( f j)], where α ≥ 1 is a constant. When L is the
squared loss function, we have α = 2, following Jensen’s
inequality. Then ∀ f

r1( f )
k

≤ α · [r1( fi)+ ri( f )]
k

.

Sum over all i ∈ k(t) we have

r1( f )≤ αβ1

|k(t)| · ∑
i∈k(t)

(1− si)+αβ2 +α · r̄k(t)( f ) ,

where r̄k(t)( f ) = ∑i∈k(t) ri( f )
|k(t)| is the average regret by applying

f onto the |k(t)| data sources. Due to the bias of mixing time
for Markovian sources we have the following fact :

r̄k(t)( f )≤ r̄IID
k(t)( f )+ρk(t)(t).

The rest of the proof focuses on bounding r̄IID
k(t)( f ), i.e., the

expected prediction error on IID data sources, which is sim-
ilar in spirit to that presented in (Crammer, Kearns, and
Wortman 2008).

Properties of the error bound The upper bound Uk(t)(t)
has the following useful properties.
Proposition 2. For sources ordered in decreasing similarity

s1 ≥ s2 · · · , ∑k
i=1 si
k is non-increasing in k.

This is straightforward to see by noting that

∑k+1
i=1 si

k+1
−∑k

i=1 si

k
=−

k

∑
i=1

si

k(k+1)
+

sk+1

k+1
=

k

∑
i=1

sk+1 − si

k(k+1)
≤ 0 .

Terms 3 and 4 both decrease in time. While Term 4 con-
verges at the order of O(1/

√
t), Term 3 converges with geo-

metric rate, which is much faster than Term 4 and can be
ignored for now. We then know because of the use of mul-
tiple sources, Term 4 decrease |k(t)| times faster, leading to
a better bound. This shows how the use of multiple sources
fundamentally changes the behavior of the error bound.

The upper bound also suggests that the optimal selection
is always to choose those with the highest similarity, which
leads to a linear search for the optimal number k. Based on

above discussions, the trade-off comes from the fact a larger
k returns a smaller average similarity term ∑k

i=1 si/k (and
thus a larger ∑k

i=1(1− si)/k ), while with more data we have
a faster convergence of Term 4. Define the optimal set of
sources at time t as the one minimizing the bound Uk(t)(t),
and denote it by k∗(t). We then have the following fact,

Proposition 3. When {si}i∈D is known, ∃ to, such that ∀t ≥
to, if i ∈ k∗(t) then i ∈ k∗(n),∀to ≤ n ≤ t.

The proof can be found in Appendices. This implies that
if a data source is similar enough to be included at t, then
it would have been included in previous time steps as well
except for a constant number of times. This also motivates us
to observe a threshold or phase transitioning phenomenon in
selecting each user’s best crowd. This result is also crucial in
proving Theorem 6 where it helps establish bounded number
of missed sampling for an optimal data source in an adaptive
algorithm.

Proposition 4. A set of tighter similarity measures S returns
better worst case performance.

Consider two such similarity measures s′ and s with s′i ≥ si
(with at least one strict inequality). Suppose at any time t and
optimal set of crowd for s is k(t), then simply by selecting
k(t) for s′ we achieve a better worst case performance (a
smaller ∑k

i=1(1− si)/k in upper bound).

Overhead of Learning Similarity

As we show in the previous section, once the optimal set
of data sources is determined, the classification/prediction
performance is bounded. However in a real crowdsourcing
system, neither of the two assumptions may be valid. In this
section we relax the first assumption and consider a more
realistic setting where the similarity information remains un-
known a-priori and can only be learned through shared data.
In this regards we need to estimate the similarity information
{si}i�=1 while making decision of which set of data sources
to use.

The learning process works in the following way. At step
t, we first estimate similarity s̃i according to the following:

s̃i = 1− max
x∈X ,y∈Y

|Q̃i
x,y(t)− Q̃1

x,y(t)|2 ,

where Q̃i
x,y(t) := ni,x→y(t)

ni,x(t)
are the estimated transition probab-

ility matrices with ni,x(t) denoting the number of times user
i is sampled to be in state x ∈ X up to time t and ni,x→y(t)
denoting the number of observed samples from data source
i being in (x,y). Different from the previous Section, now
since {si}i�=1 is unknown, in order to select data sources, the
estimate of the upper bound Uk(t)(t) becomes a function of
{s̃i}: Uk(t)(t;{s̃i}i∈k(t)), which is obtained by simply substi-
tuting all s terms in Uk(t)(t) with s̃. Denote the terms that are
being affected by choosing set k(t) in Uk(t)(t;{s̃i}i∈k(t)) as
follows:

Ũtr
k(t)(t) = 6β1

∑i∈k(t)(1− s̃i)

k
+8y∗(2

√
2d + y∗)

√
log |k(t)|t
|k(t)|t .
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Note we are omitting ρk(t)(t) as it is on a much smaller order
and will not affect our results order-wise.

Then the learning algorithm first orders all data sources
according to {s̃i}. And then choses k̃∗(t) by a linear search
such that

k̃∗(t) = arg max
[k],1≤k≤K

Ũtr
[k](t) .

We have the following results.
Theorem 5. At time t, with probability at least 1−O( 1

t2 ) the
error of trained classifier fk̃∗(t)(t) using k̃∗(t) data sources
can be bounded as follows

r1( fk̃∗(t)(t))≤ Uk∗(t)(t)+O(

√
log t

t
) . (7)

Clearly from above results we see there is an extra
O(

√
log t/t) term capturing the loss of learning the simil-

arity information.

A Cost-efficient Algorithm
Now we relax the second restriction on data acquisition. In
reality data acquisition from other sources are costly. In our
study, we explicitly model this aspect whereby at each time
step a user may request data from another user at a unit cost
of c. This modeling choice not only reflects reality, but also
allows us to examine the tradeoff between a user’s desire to
to keep its overall cost low while keeping its prediction per-
formance high. We present a cost-efficient algorithm with
performance guarantee. As one may expect, with less data
the prediction accuracy will degrade. But the number of un-
necessary data will also be bounded from above.

A cost-efficient online algorithm

Denote by ni(t) the number of collected samples from
source i up to time t and Nk(t)(t)=∑i∈k(t) ni(t). Notice in this
section ni(t) �= t in general. Denote D(t) := O(tz); z will be
referred to as the exploration constant satisfying 0 < z < 1 .
Later we will show how z controls the trade-off between
data acquisition and classification accuracy. Again denote
by ni,x(t) the number of times user i is sampled to be in state
x ∈ X up to time t and construct the following set at each
time t :

O(t) = {i : i ∈ D,∃ x ∈ X ,ni,x(t)< D(t)} .
We name the algorithm as K-Learning, which consists

mainly of the following two steps (run by user 1):
Exploration: At time t, if any data source has a state x that

has been observed (from requested data) for less than D(t)
times, i.e., if O(t) is non-empty, then the algorithm enters
an exploration phase and collects data from all sources
k2(t) = D and predicts via its own data k1(t) = {1}. The
prediction at exploration phase is conservative since without
enough sampling user 1 cannot be confident in calculating its
optimal set of similar sources, in which case the user would
rather limit itself to its own data.

Exploitation: If O(t) is empty at time t then the al-
gorithm enters an exploitation phase, whereby it first es-
timates similarity measures of all sources. For our ana-
lysis we will use the same definition given earlier: s̃i(t) =

Algorithm 1 K-Learning

1: Initialization:
2: Set t = 1 and similarity {s̃i(1)}i∈D to some value in

[0,1]; ni,x(t) = 1 for all i and x.
3: loop:
4: Calculate O(t).
5: if O(t) �= /0 then
6: Explores, sets k1(t) = {1},k2(t) = D .
7: else
8: Exploit, orders data sources according to

{s̃i(t)}i∈D and computes k1(t) that minimizes
Ũtr

k1(t)
(t), which is solved using the linear search

property, and the current estimates {s̃i(t)}i∈D . Set
k2(t) as k2(t) := argmaxk′(t)⊆D{|k′(t)| : Ũtr

k′(t)(t) ∈
[Ũtr

k1(t)
(t)−

√
log t
tz ,Ũtr

k1(t)
(t)+

√
log t
tz ]}.

9: end if
10: Construct classifier fk1(t) using data collected from

sources in k1(t). Request data from k2(t).
11: t := t + 1 and update {ni,x(t)}i,x, {s̃i(t)}i∈D using col-

lected samples.
12: goto loop.

1−maxx∈X ,y∈Y |Q̃i
x,y(t)− Q̃1

x,y(t)|2. The algorithm then cal-
culates k1(t) using the estimated bound Ũtr

k1(t)
(t), and uses

data from this set k1(t) of sources for training the classifier,
while requesting data from set k2(t), where k2(t) is set to be:

k2(t) : = argmaxk′(t)⊆D{|k′(t)| :

Ũtr
k′(t)(t) ∈ [Ũtr

k1(t)
(t)−

√
log t

tz ,Ũtr
k1(t)

(t)+

√
log t

tz ]} .

Notice when calculating k2(t) we set a tolerance region (due
to imperfect estimation of Ũtr

k1(t)
(t)) so that a sample data

from an optimal data source will not be missed with high
probability.

Performance of K-Learning

There are three types of error in the learning performance:
(1) Error due to exploration, in which case the error comes
from conservative training due to no enough sampling. Due
to technical difficulties, we approximate the error (compared
to the performance with optimal classifier) by the worst case
performance loss, that is the performance difference in up-
per bounds. (2) Prediction error associated with incorrect
computation of k1(t) (i.e., k1(t) �= k∗(t)) in exploitation due
to imperfect estimates on {si}i�=1. (3) Prediction error from
sub-sampling effects. This is because even though under the
case that k1(t) = k∗(t), i.e., k∗(t) is correctly identified, due
to incomplete sampling, ∃ i > 1,ni(t) < t, Ûk1(t) �= Uk1(t),
where Ûk1(t) is the upper bound for the classification error
with collected data: this can be similarly derived following
the proof of Theorem 1 and results in (Crammer, Kearns,
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and Wortman 2008):

Ûk(t)(t) = 4min
f∈F

rĨID
1 ( f )+6β2 +6β1

∑i∈k(t) ni(t)(1− si)

Nk(t)(t)

+ ρ̃k(t)(t)+8y∗(2
√

2d + y∗) ·
√

logNk(t)(t)
Nk(t)(t)

,

where ρ̃k(t) :=maxL ·CMC
∑i∈k(t)(λi

2)
ni(t)

|k(t)| , and min f∈F rĨID
1 ( f )

is error rate over a biased data distribution due to incom-
plete sampling, compared to the target IID distribution. We
emphasize that the difference between Uk(t)(t;{s̃i}i∈k(t))

and Ûk(t)(t): Uk(t)(t;{s̃i}i∈k(t)) is the estimation of up-
per bound Uk(t)(t) with estimated similarity information s̃,
while Ûk(t)(t) bounds actual error of the learning task at
each step. In Uk(t)(t) and Uk(t)(t;{s̃i}i∈k(t)), full samples are
assumed to have been collected for each data source in k(t),
i.e., ni(t) = t. However this is not true for Ûk(t)(t), except
for n1(t) the data source for user 1 itself. Also due to dis-
continuous sampling for Markovian data, the sampled data
distribution is biased which results in min f∈F rĨID

1 ( f ). The
main gist of bounding this discrepancy is that due to Pro-
position 3 we are able to bound the missed samples for a
data source appearing in the optimal set.

A subtle difference between the results in this section and
the previous one is the performance of the classifier trained
during an exploration phase is simply the one using user 1’s
own data, which is bounded away from the optimal perform-
ance bound (via data sources k∗(t)). Denote the worse case
performance loss (difference in performance upper bound)
in exploration phases upto time t as Re(t), that is

Re(t) =
t

∑
n=1

1O(n)�= /0 · |U[1](t)−Uk∗(t)(t)| . (8)

This is a quantity we are interested in determining for ex-
ploration phases. For exploitation phases, we evaluate the
prediction/classification performance as the ones with clas-
sifier fk1(t)(t).
Theorem 6. At time t,
• The number of exploration phases is bounded as follows,

E[
t

∑
n=1

1O(n)�= /0]≤ O(tz) .

Further the per round performance loss due to explora-
tion phases E[Re(t)]

t is bounded as follows: with probability
being at least 1−O(e−Ctz

) where C > 0 is a constant,

E[Re(t)]
t

≤ O(
√

z · log t · tz/2−1) .

• If t is an exploitation phase, with probability being at least
1−O( 1

t2 ) we bound the average prediction error for clas-
sifier fk1(t)(t) with data sources k1(t) as follows,

r1( fk1(t)(t))≤Uk∗(t)(t)+O(

√
log t

tz )+O(log t · t−2/3) .

Note on the bound:

• O(
√

z · log t · tz/2−1) is the average error invoked by ex-
ploration. This term is diminishing with t, that is the
average amount of exploration error is converging to 0.
O(

√
log t/tz) is the learning error incurred in exploitation

phases, which is in analogy to the O(
√

log t/t) term as
shown in the bound proved in Theorem 5. O(log t · t−2/3)
is also incurred in exploitation phases. This is a unique er-
ror associated with subsampling of Markovian data: due
to (1) missed sampling and (2) discontinuous sampling.

• It should be noted that the prediction error term
O(

√
log t/tz) decrease with z for 0 < z < 1. That is with

a higher z, a tighter bound can be achieved. With z → 1
(number of samples cannot go beyond t at time t), we can
show the prediction error term converges to O(

√
log t/t),

which is consistent with the results we reported in last
section. Also it worths pointing out O(log t · t−2/3) is gen-
erally on a smaller order compared to O(

√
z · log t · tz/2−1)

and O(
√

log t/tz) : simply set z to be z > 2/3.
• This observation also sheds lights on establishing the

tightness of this bound for z close to 1, as O(
√

log t/t)
is the uniform convergence bound as proved in statistical
learning theory (Vapnik 1995).

Cost analysis

To capture the effectiveness of cost saving, we define the
following difference in cost:

Cost measure : Rc(t) = c
t

∑
n=1

K

∑
i=1

1i/∈k∗(n),i∈k2(n) .

Rc(t) will be referred to as the cost measure, which quan-
tifies the amount of data requests from non-optimal data
sources. We have the following main results.
Theorem 7. At time t, we have

E[Rc(t)]≤ O(ctz) .

Notes on the bound:

• First of all note that E[Rc(t)] = o(t) when t < 1 and thus
E[Rc(t)]/t → 0 as t → ∞. This demonstrates the cost sav-
ing property of our algorithm as the average number of
redundant data request is converging to 0.

• Clearly z controls the trade-offs between prediction accur-
acy r1( fk1(t)(t)) and data acquisition cost regret E[Rc(t)].
A higher z leads to a more frequent sampling scheme and
thus higher cost regret, while with a small z the sampling
is conservative which leads to higher prediction error.
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Conclusion

In this paper we consider a problem of finding best set of
data for each user to enhance its online learning (be it a clas-
sification or prediction problem) performance when facing
disparate sources of sequentially arriving samples. We first
establish learning error when similarity information among
users are known and data can be collected without cost.
We then extend the results to the case when such inform-
ation is unknown a priori. Lastly we propose and analyze a
cost-efficient algorithm to help users adaptively distinguish
between similar and dis-similar data sources. and aggregate
and request data appropriately for the purpose of training
predictor and saving budget. We establish its performance
guarantee and show the algorithm helps avoid requesting re-
dundant data from sources that are helpless (or even harm-
ful) and thus saves cost.

References

Adams, T. M., and Nobel, A. B. 2010. Uniform convergence
of VapnikChervonenkis classes under ergodic sampling. The
Annals of Probability 38(4):1345–1367.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
Analysis of the Multiarmed Bandit Problem. In Machine
learning, volume 47, 235–256. Springer.
Crammer, K.; Kearns, M.; and Wortman, J. 2008. Learning
from Multiple Sources. The Journal of Machine Learning
Research 9:1757–1774.
Galesic, M., and Barkoczi, D. 2014. Wisdom of Small
Crowds for Diverse Real-World Tasks. In Available at SSRN
2484234.
Goldstein, D. G.; McAfee, R. P.; and Suri, S. 2014. The
Wisdom of Smaller, Smarter Crowds. In Proceedings of the
fifteenth ACM conference on Economics and computation,
471–488. ACM.
Hao, S.; Syed, N. A.; Feamster, N.; Gray, A. G.; and Krasser,
S. 2009. Detecting Spammers with SNARE: Spatio-
temporal Network-level Automatic Reputation Engine. In
Presented as part of the 18th USENIX Security Symposium
(USENIX Security 09). Montreal, Canada: USENIX.
He, M.; Yang, L.; Zhang, J.; and Vittal, V. A Spatio-temporal
Analysis Approach for Short-term Forecast of Wind Farm
Generation. IEEE Trans. Power Syst.
Hyup Roh, T. 2007. Forecasting the Volatility of Stock Price
Index. In Expert Systems with Applications, volume 33,
916–922. Elsevier.
Kim, K.-j. 2003. Financial time series forecasting using
support vector machines. In Neurocomputing, volume 55,
307–319. Elsevier.
Lai, T. L., and Robbins, H. 1985. Asymptotically Efficient
Adaptive Allocation Rules. In Advances in Applied Math-
ematics, volume 6, 4–22.

Langford, J., and Zhang, T. 2007. The Epoch-Greedy Al-
gorithm for Multi-armed Bandits with Side Information. In
NIPS.
Liu, Y., and Liu, M. 2015. Finding Ones Best Crowd: Online
Learning By Exploiting Source Similarity. www.umich.edu/
∼youngliu/pub/aaai16 liu.pdf.
Lu, T.; Pl, D.; and Pal, M. 2010. Contextual Multi-
Armed Bandits. In Journal of Machine Learning Research,
volume 9, 485–492.
Rosenthal, J. S. 1995. Convergence Rates for Markov
Chains. SIAM Review 37(3):pp. 387–405.
Vapnik, V. N. 1995. The Nature of Statistical Learning The-
ory. New York, NY, USA: Springer-Verlag New York, Inc.

Example of S
We show Si, j = 1 − maxx∈X ,y∈Y |Qi

x,y − Q j
x,y|2 while set-

ting β1 := 2∑y∈Y y2 and β2 := 2∑x∈X πi
x · ∑y∈Y Qi

x,y ·
(∑ŷ∈Y Qi

x,ŷŷ − y)2 is a feasible similarity measure. For
squared loss the optimal predictor is given by the conditional
expectation; we thus have the following:

ri( f j) = ∑
x∈X

πi
x · ∑

y∈Y
Qi

x,y · ( ∑
ŷ∈Y

Q j
x,ŷŷ− y)2

= ∑
x∈X

πi
x · ∑

y∈Y
Qi

x,y( ∑
ŷ∈Y

Q j
x,ŷŷ− ∑

ŷ∈Y
Qi

x,ŷŷ+ ∑
ŷ∈Y

Qi
x,ŷŷ− y)2

≤ 2 ∑
x∈X

πi
x · ∑

y∈Y
Qi

x,y · ( ∑
ŷ∈Y

Q j
x,ŷŷ− ∑

ŷ∈Y
Qi

x,ŷŷ)2

+2 ∑
x∈X

πi
x · ∑

y∈Y
Qi

x,y · ( ∑
ŷ∈Y

Qi
x,ŷŷ− y)2

≤ 2 ∑
y∈Y

y2 · (1−Si, j)+β2 .

Proof of Proposition 3

Suppose i ∈ k∗(t) and there exists a n < t such that i /∈ k∗(n).
First consider the following fact: let 0 < δ < 1 we have

|
√

logδt
δt

−
√

log t
t

|

=
1

√
log t +

√
log t+δ

δ

|(1−1/δ) log t −δ|√
t

.

Easy to see the first term is strictly decreasing. For the
second term since

√
t is of a higher order compared with

log t we expect this term to be decreasing when t passes
certain threshold. Since i ∈ k∗(t) and i /∈ k∗(n) and the
fact we proved earlier that the optimal selection is always
a continuous group we know |k∗(n)| < |k∗(t)| and denote
δ := |k∗(n)|/|k∗(t)|. Therefore reducing k∗(t) to k∗(n) will
return a better strategy for time t : compared with time n,

the loss from the term
√

log t
t to

√
logδ·t

δ·t is smaller, while
the gain in average similarity is the same. Similar arguments
hold for the term (λi

2)
t , which is also strictly decreasing with

t. Proved.
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