
The �2,1-Norm Stacked Robust Autoencoders for Domain Adaptation

Wenhao Jiang1, Hongchang Gao1, Fu-lai Chung2, Heng Huang1∗
1Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA

2Department of Computing, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
{cswhjiang, hongchanggao}@gmail.com, cskchung@comp.polyu.edu.hk, heng@uta.edu

Abstract

Recently, deep learning methods that employ stacked
denoising autoencoders (SDAs) have been successfully
applied in domain adaptation. Remarkable performance
in multi-domain sentiment analysis datasets has been
reported, making deep learning a promising approach
to domain adaptation problems. SDAs are distinguished
by learning robust data representations for recovering
the original features that have been artificially cor-
rupted with noise. The idea has been further exploited
to marginalize out the random corruptions by a state-
of-the-art method called mSDA. In this paper, a deep
learning method for domain adaptation called �2,1-norm
stacked robust autoencoders (�2,1-SRA) is proposed
to learn useful representations for domain adaptation
tasks. Each layer of �2,1-SRA contains two steps: a ro-
bust linear reconstruction step which is based on �2,1
robust regression and a non-linear squashing transfor-
mation step. The experimental results demonstrate that
the proposed method is very effective in multiple cross
domain classification datasets which include Amazon
review dataset, spam dataset from ECML/PKDD dis-
covery challenge 2006 and 20 newsgroups dataset.

Introduction

Traditionally, training of a classifier assumes that the train-
ing data and the testing data follow the same distributions or
they are in the same domain. However, this may not be valid
in some situations, and thus posing a need to train classi-
fiers without such an assumption. For example, we might
have plenty of labeled samples from one domain (source
domain) but very few or even no labeled samples from a
different domain (target domain), and want to train a classi-
fier that will do well on both domains. This is the so-called
domain adaptation problem which aims to produce a clas-
sifier that is trained on the source domain and generalizes
well on the target domain (Pan and Yang 2010). Domain
adaptation problem is a fundamental problem in machine
learning and has been studied before under different names
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including covariate shift (Shimodaira 2000) and sample se-
lection bias (Heckman 1979; Zadrozny 2004). The term do-
main adaptation only started recently to attract the inter-
est of researchers (Blitzer, McDonald, and Pereira 2006;
Blitzer 2007; Ben-David et al. 2007; Daume III 2007;
Blitzer et al. 2008; Daumé and Marcu 2006).

According to whether there exist labeled samples or unla-
beled samples from the target domain in the training stage,
domain adaptation could be categorized into three types:
unsupervised domain adaptation, supervised domain adap-
tation and semi-supervised domain adaptation (Jiang 2008;
Kumar, Saha, and Daume 2010). In unsupervised domain
adaptation setting, there are no samples with labels from tar-
get domain. While in supervised domain adaptation setting,
some amount of labeled samples are available for training.
For semi-supervised domain adaptation, models have access
to both labeled and unlabeled data in target domain 1. In this
paper, we focus on improving unsupervised domain adapta-
tion performance by feature learning.

Recently, deep learning methods, which can be seen as
feature learning methods, has also been applied to unsuper-
vised domain adaptation to learn features such that the gap
between the distributions of source domain and target do-
main is overcomed. Glorot et al. (Glorot, Bordes, and Ben-
gio 2011) proposed to learn robust feature representations
with stacked denoising autoencoders (SDAs) and demon-
strated the potential of deep learning in obtaining good per-
formance in sentiment analysis across different domains on
Amazon review datasets. In (Chen et al. 2012), the authors
found that random corruptions could be marginalized out
under a specific network structure, and proposed a marginal-
ized SDA (mSDA). The new method is highly effective for
domain adaption problems.

In view of the success of deep learning methods for do-
main adaption, we make an attempt in this paper to propose a
new method called the �2,1-norm stacked robust autoencoder
(�2,1-SRA) to learn effective representations. With learned
features, we just train a classifier with samples from source
domain and apply the trained classifier directly to the target
domain. State-of-the-art performances were achieved.

1For all these three settings, labeled samples from source do-
main are available.
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Related Works

There have been several methods proposed for unsupervised
domain adaptation, and here we highlight a few represen-
tative ones. As a semi-supervised method, structural learn-
ing (Ando and Zhang 2005) was proposed to utilize the in-
formation contained in the unlabeled data. It was extended
to domain adaptation setting by structural correspondence
learning (SCL) (Blitzer, McDonald, and Pereira 2006). SCL
defines pivot features which are common to both source
domain and target domain and tries to find the correla-
tion between pivot features and non-pivot features. It ex-
tracts the corresponding subspace and augments the original
feature space with it for more effective classification. The
method has been proved useful for natural language process-
ing tasks (Blitzer, McDonald, and Pereira 2006). Coupled
subspaces (Blitzer, Foster, and Kakade 2011) is another sub-
space method for domain adaptation. In this method, sam-
ples are divided into multiple views and cross-correlation
matrices are computed, from which projection operators for
both source domain and target domain could be determined.
With these two projection matrices, a linear predictor could
be built.

Chen et. al. (Chen, Weinberger, and Blitzer 2011) pro-
posed co-training for domain adaptation (CODA), which is
a variant of the co-training method. CODA does not assume
two available views. Instead, in each iteration, CODA for-
mulates an individual optimization problem which simulta-
neously learns a target predictor, a split of the feature space
into views (Chen, Weinberger, and Chen 2011), and a subset
of source and target features to be included in the predic-
tor. It bridges the gap between source and target domains by
slowly adding both the features and instances that the current
algorithm is most confident with to the training set.

Glorot et al. (Glorot, Bordes, and Bengio 2011) proposed
to learn robust feature representations with stacked denois-
ing autoencoders (SDA) (Vincent et al. 2010) for domain
adaptation. Glorot et al. showed that using SDA-learned fea-
tures with linear SVM classifiers yields recordable perfor-
mance for the tasks of sentiment analysis across different
product domains on Amazon review dataset (Glorot, Bordes,
and Bengio 2011). But the method is slow which limits its
use in practice. Marginalized stacked denoising autoencoder
(mSDA) (Chen et al. 2012), a variant of SDA with slightly
different network structure, was proposed to overcome this
drawback. Chen et al. (Chen et al. 2012) noticed that the ran-
dom feature corruption for SDA can be marginalized out and
this is equivalent to training the models with an infinitely
large number of corrupted input data conceptually. More-
over, its linear denoising autoencoders have a closed form,
which help to speed it up. The denoising step is followed by
a non-linear step, which is just a hyperbolic tangent func-
tion tanh(·). In (Chen et al. 2012), promising performance
is reported for multi-domain sentiment analysis tasks.

Proposed Method

Notation and background

Throughout this paper, the following definitions and nota-
tions are used. For a vector v, we denote the �2-norm of v

by ‖v‖2. For a matrix M ∈ R
m×n, we denote the (i, j)-th

element by Mij , the i-th row by Mi·, and the j-th column
by M·j . Also, we denote ‖M‖2,1 =

∑
i ‖Mi·‖2 as the �2,1-

norm of matrix M .
We follow the setup of traditional domain adaptation as

follows. Let us assume that the data come from two do-
mains, i.e. source domain S and target domain T . From the
source domain, data DS = {x1, · · · , xns

} ∈ R
d with labels

LS = {y1, · · · , yns} are sampled, while from the target do-
main data DT = {xns+1, · · · , xn} ∈ R

d without labels are
sampled. The data samples from these two domains form the
data matrix X = (x1, · · · , xn) ∈ R

d×n and the label vector
of source domain is denoted as YS . Our goal is to learn a
feature representation, on which a classifier can be learned
to predict the labels of samples from the target domain T .

Recall that the basic structure of our method is autoen-
coder. Usually, an autoencoder contains two parts, an en-
coder and a decoder. The encoder is a parameterized fea-
ture extracting function denoted as f(·), which maps the in-
put data vector x ∈ R

d to hidden representations h = f(x)
where h ∈ R

dh . The decoder g(·) is also a parameterized
function which maps the hidden representations back to the
input space forming a reconstruction r = g(h). The param-
eters of the autoencoders are learned to minimize the recon-
struction error, measured by a loss function l(x, r).

Denoising autoencoders (DAs) are slightly different from
autoencoders. The input is corrupted by adding noise be-
fore mapping them into the hidden representations. DAs are
trained to reconstruct the original input x from its corrupted
input x̃ by minimizing the loss function l(x, g(f(x̃))).

Stacked denoising autoencoders (SDAs) (Vincent et al.
2010) just stacks DAs together by feeding the output of the
previous DA into the current DA to learn high-level features.
The parameters of SDA are learned layer by layer greedily.

Robust autoencoder for single layer

The difficulty of domain adaptation lies in the fact that dif-
ferent domain might have different specific features. For ex-
ample, the words comprehensive and detailed are usually
used to describe books but they are seldom used to describe
DVDs, electronics and kitchen appliances. Moreover, com-
prehensive and detailed are usually good indicators for pos-
itive reviews. A classifier trained on book domain which has
high weights on the book domain specific words will not
perform well on other domains. To overcome this difficulty,
we should learn new representations such that there are no
such domain specific features. Since these domain specific
features only occur in the related domains, their variances
are often small compared to those of common words.

In this paper, we approach the problem from a principal
component analysis perspective and propose to increase the
ratio of the components with larger variance. If the variance
of a component is large, it is more possible that it is impor-
tant for both domains. For example, excellent and satisfied
can be used in the reviews in all the domains. Hence, we
should increase the weights for such features. If a compo-
nent is just informative in only one domain, the correspond-
ing variance will often be smaller than the components that
are informative in both domains. Weights of word like com-
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prehensive and detailed should be weakened. Hence, it is
reasonable to adjust the weights of components. Addition-
ally, it is also practical to replace the autoencoders in deep
learning methods with PCA.

One may know that PCA truncates the components with
small singular values, which will cause information defi-
ciency for the next layer. Hence, we can increase the larger
variance components in a soft way, i.e. shrinking the eigen-
value ri of a covariance matrix by a factor r̂i = f(ri)ri.
If an eigenvalue ri is large, meaning that the corresponding
component is not noise, it should not be deleted and conse-
quently f(ri) should be close to 1. On the other hand, if ri is
very small, the shrinkage factor f(ri) should be close to 0 in
order to reduce the noise. Since the eigenvalue of covariance
matrix is just the square of the corresponding singular value
of the centered data matrix, we can carry out such shrinkage
on the singular values of centered matrix.

Inspired by ridge regression (Hastie, Tibshirani, and
Friedman 2009), one obvious option to implement the re-
quired shrinkage is ŝi =

s2i
s2i+λ

si, where λ ≥ 0 and si’s are
singular values of a data matrix that is centered . It could be
seen as the result of the following problem which is similar
to ridge regression

min
W

‖XT −XTW‖2F + λ‖W‖2F , (1)

where X ∈ R
d×n is the centered data matrix.

It is well known that the square loss is vulnerable to noise
and outliers. The occurrence of outliers might largely influ-
ence the result of the objective function. To reduce the effect
of outliers, we use robust loss to measure reconstruction er-
rors. �2,1-norm loss was first proposed in (Ding et al. 2006)
as a rotational invariant �1 norm. It has been successfully
adopted in robust principal component analysis (Ding et al.
2006) and robust feature selection (Nie et al. 2010) because
of its outlier-resistant property.

In this paper, we use the �2,1-norm as a measure of re-
construction error for our robust autoencoder. The objective
function can be written as

min
W

‖XT −XTW‖2,1 + λ‖W‖2F . (2)

However, in this formulation, the variance of feature might
be different. In order to enforce equal contribution from each
feature, we introduce the feature variance into the regular-
ization term. Hence, the objective function of our robust au-
toencoder is

min
W

‖XT −XTW‖2,1 + λ tr(WTΛW ), (3)

where Λ is a diagonal matrix and Λii = Xi·XT
i· . This is

a convex problem with a non-smooth loss function and a
smooth regularization. By setting the derivative of Equa-
tion (3) w.r.t W to zero, we have
∑

i

1

2‖xi −WTxi‖2 (−2xix
T
i + 2xix

T
i W ) + 2λΛW = 0.

We denote

Dii =
1

2‖xi −WTxi‖2 , (4)

and the above equation becomes
∑

i

Dii(−2xix
T
i + 2xix

T
i W ) + 2λΛW

=− 2XDXT + 2XDXTW + 2ΛW = 0.

Note that D is dependent on X and this equation is difficult
to solve. However, we can solve it by updating D and W
alternatively. If D is given, W could be computed by

W = (XDXT + λΛ)−1XDXT . (5)

We can solve the problem (3) by alternatively updating W
and D by (4) and (5) until convergence.

Our algorithm usually converges in less than 10 iterations
with relative error 10−5. In practice, we can also use the
maximum number of iterations as stopping criteria. In the
extreme case that the maximum number of iterations is set as
1, our method is just the regularized least squares regression.
And it learns useful features as well.

Feature learning with Stacked Robust autoencoder

The output of above process becomes X̂ = WTX , which is
essentially a linear transformation of input data matrix. To
introduce nonlinearity, the output of linear transformation is
then fed into hyperbolic tangent function tanh(αx), where
α is a parameter to be determined by users. As in mSDA
(Chen et al. 2012), the non-linear step is independent of the
autoencoder which is different from other traditional autoen-
coders (Bengio, Courville, and Vincent 2012). Hence, it is
necessary for users to control the intensity of the squash-
ing effect. The algorithm of �2,1-norm robust autoencoder is
summarized in Algorithm 1.

Following the same strategy adopted by other autoencoder
based deep learning methods, we also learn the new rep-
resentations layer by layer greedily. Let us denote the in-
put sample of lth layer by z(l−1) and the original input as
z(0) = x. The output of lth layer which is also the input of
(l + 1)th layer could be written as

z(l) = tanh(αW (l)T z(l−1)), (6)

where W (l) is the transformation matrix computed with all
input samples of layer l. The original input and output from
all layers are concatenated to form the final representations.
We can use these new representations directly for classifi-
cation tasks as in traditional supervised learning. The whole
feature learning procedure is summarized in Algorithm 2.

Algorithm 1 �2,1-norm Robust Autoencoder

Input: X , λ.

Initialize Dii = 1 for i = 1, · · · , d.
repeat

Update W by (5).
Update D by (4).

until convergence

Output: tanh(α(WTX))
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Algorithm 2 Feature Learning with �2,1-SRA

Input: data matrix X , α, λ and number of layers L.

Initialize H(0) = X .
for i = 1 to L do

Compute H(i) by Algorithm 1.
end for

Output: Concatenate H(0) and all the learned features to
form new representations.

Our method uses similar architecture to mSDA, but there
are some essential differences. First, we use regularization
instead of marginalized corruptions. Hence our method is
easier to analyze since the loss + regularizer framework is
common in statistics. Second, the intensity of non-line trans-
formation could be controlled by parameters. The necessity
can be seen from the following section. Last, we use ro-
bust loss function to reconstruct inputs. Hence, our method
is more roust to noise and the advantages could be seen from
the performance comparisons in the next section.

Experimental Results

Datasets

We test and analyze the proposed method on Amazon review
dataset 2 (Blitzer, Dredze, and Pereira 2007), ECML/PKDD
2006 spam dataset 3 (Bickel 2008) and 20 newsgroups
dataset 4.

For Amazon review dataset, We follow the convention
in (Blitzer, Dredze, and Pereira 2007), and use a smaller
subset which contains reviews of four types of products:
Books, DVDs, Electronics, and Kitchen appliances in our
experiments. In this smaller dataset, each domain consists of
2000 labeled inputs and approximately 4000 unlabeled ones
(varying slightly between domains), and the classes are bal-
anced. In our experiments, we use the 5000 most frequent
terms of unigrams and bigrams as features as in (Glorot,
Bordes, and Bengio 2011; Chen et al. 2012). For mSDA and
�2,1-SRA, we use the raw binary unigram/bigram features as
their inputs as in (Chen et al. 2012). For all other algorithms,
we use tf-idf representations.

The second dataset is from the ECML/PKDD 2006 dis-
covery challenge. In this dataset, 4000 labeled training sam-
ples were collected from publicly available sources (source
domain), with half of them are spam and the other half are
non-spam. The testing samples were collected from 3 dif-
ferent user inboxes (target domains), each of which consists
of 2500 samples. The distributions of samples from source
domain and target domain are different since the sources are
different. As in Amazon review dataset, we also chose the
5000 most frequent terms as features. In our experiments,
three testing samples were deleted as a result of not contain-
ing any of these 5000 terms. Hence, we have 7497 testing

2http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
3http://www.ecmlpkdd2006.org/challenge.html
4http://qwone.com/∼jason/20Newsgroups/

Table 1: Description of data generated from 20 Newsgroups
data

Setting Source Domain Target Domain

Comp vs. Rec comp.windows.x comp.sys.ibm.pc.hardware
rec.sport.hockey rec.motorcycles

Comp vs. Sci comp.windows.x comp.sys.ibm.pc.hardware
sci.crypt sci.med

Comp vs. Talk comp.windows.x comp.sys.ibm.pc.hardware
talk.politics.mideast talk.politics.guns

samples in this dataset.
The third dataset was generated from the well-known 20

newsgroups dataset. The 20 newsgroups dataset contains
18774 news documents with 61188 features. It is organized
in a hierarchical structure which consists of 6 main cate-
gories and 20 subcategories. The task is to classify the main
categories and we have adopted a setting similar to (Duan,
Tsang, and Xu 2012). The four largest main categories (i.e.,
comp, rec, sci, and talk) were chosen for evaluation. For
each main category, the largest subcategory was selected as
the source domain, while the second largest subcategory was
chosen as the target domain. In our experiments, the largest
category comp is considered as the positive class and one of
the three other categories is considered as the negative class
for each setting. Since the subcategories are different, the
distributions of source domain and target domain are totally
different. The settings of this dataset are listed in Table 1.

Since the distributions of source domain and target do-
main are different, the traditional cross validation can only
select parameters that are suitable for source domain. Hence,
we simply use a validation set containing a small number of
labeled samples selected randomly from target domain to
select parameters for feature learning algorithms. After we
have the new features, we treat the classification tasks as tra-
ditional ones and find the best classifier on source domain
and apply it to the target domain. The validation set was not
used to select parameters for classification.

Performance comparison

As a baseline, we train a linear SVM (Chang and Lin 2011)
on the raw tf-idf representation (Salton and Buckley 1988)
of the labeled source domain data and test it on the target do-
main. When learning the new representations, we do not use
any samples from other domains. We also present the results
of new representation by projecting the whole dataset (sam-
ples from both source domain and target domain) onto a low
dimensional subspace obtained by PCA. Besides these two
baselines, we also compare with CODA (Chen, Weinberger,
and Chen 2011), which is a state-of-the-art domain adapta-
tion algorithm based on co-training. At last, we compare our
method with deep learning methods. Since mSDA is better
than SDA (Chen et al. 2012), we only provide comparisons
with mSDA. The performance metric is classification accu-
racy.

For representation learning algorithms, we select param-
eters with validation set. Once we have the new representa-
tions, we do not use validation set to select parameters for
classification. Instead, we treat it as a traditional supervised
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Table 2: Performance (accuracy %) on Amazon review
dataset.

�2,1-SRA CODA PCA mSDA tf-idf
B → D 84.09 81.98 82.16 83.57 81.56
B → E 76.79 81.64 75.28 77.09 71.66
B → K 85.27 83.21 77.69 84.92 75.49
D → B 83.88 79.34 78.64 83.76 79.84
D → E 83.59 80.68 76.47 85.06 74.41
D → K 87.68 84.74 82.02 87.49 78.41
E → B 80.55 75.71 75.97 80.10 72.73
E → D 80.36 76.76 77.32 78.81 74.86
E → K 88.85 86.43 86.94 88.19 86.02
K → B 79.02 76.89 75.24 79.14 72.28
K → D 79.88 77.90 77.49 78.52 75.11
K → E 87.31 85.56 85.56 87.45 85.24
AVG 83.11 80.91 79.23 82.84 77.30

Table 3: Performance (accuracy %) on spam dataset.

�2,1-SRA CODA PCA mSDA tf-idf
Public → U0 93.75 68.43 63.88 91.64 62.34
Public → U1 95.55 81.48 73.62 92.79 70.38
Public → U2 93.15 88.6 73 93.65 74.12
AVG 94.15 79.51 70.16 92.69 68.95

learning problem and select parameters for classifiers with
cross validation only on source domain. With respect to the
number of layers, 5 is used for Amazon review dataset, and
3 is used for both spam dataset and 20 newsgroups dataset.

The performances on Amazon review dataset, spam
dataset, and 20 newsgroups dataset are shown in Tables 2,
3 and 4 respectively. The best results in each setting have
been marked in bold. One may observe that both mSDA and
�2,1-SRA improved the performance a lot compared to the
baseline methods. Also, �2,1-SRA is better than mSDA in
quite a consistent manner.

Analysis

There are three parameters in our method: the intensity of
non-linear transformation α, the regularizer coefficient λ
and the number of layers. We study the effects of these
parameters on B → D, Public → U0 and Comp vs. Rec
datasets.

We fixed the number of layers and plotted the accuracies
with different values of α and λ in Figure 1. The number of
layers are 5, 3 and 3 for B → D, Public → U0 and Comp
vs. Rec datasets respectively. α controls the intensity of the
squashing function. If α is large, the squashing will look
like a Heaviside step function. On all these datasets, α = 1
does not provide satisfactory performance. Small alpha val-
ues, say 2 or 3, are good choices for Amazon review dataset
and 20 newsgroup dataset. But for spam dataset, large α are
needed. In addition, from Figure 1 we can see that the ac-
curacy curves with different λ show similar appearance, and
apparently the value of λ is related to the singular values of
the data matrix.

We also studied the effect of the number of layers. We

Table 4: Performance (accuracy %) on 20 newsgroups
dataset.

�2,1-SRA CODA PCA mSDA tf-idf
Comp vs. Rec 81.92 79.27 73.43 79.07 72.07
Comp vs. Sci 93.04 70.80 75.03 85.61 69.98
Comp vs. Talk 97.62 88.18 92.79 96.83 91.85
AVG 90.86 79.42 80.42 87.17 77.97

plotted the accuracies with different α, λ and the number of
layers on the same datasets as above, which are shown in
Figure 2. We can see that our method usually performs the
best with 3 ∼ 5 layers. Hence, we use 5, 3 and 3 for Ama-
zon dataset, spam dataset and 20 newsgroup respectively for
performance comparisons.

The non-linear transformation step we used does not
change the singular values too much. It just squashes the
elements to interval [−1, 1]. Moreover, we found that even
if we deleted the non-linear transformation step, our method
still improved the performance. But the performances are
not as good as the method with the non-linear squashing
step. Moreover, we plotted the eigenvalues of the covari-
ance matrices of output data matrix of each layer in Fig-
ure 3. The output of layer 0 is just the original raw data.
For each set of eigenvalues that obtained from the same ma-
trix, we normalized it such that it has sum equal to 1. To
depict clearly, we only plotted the first few eigenvalues. We
can see that bigger eigenvalues become relatively bigger and
bigger through layers. The components with smaller eigen-
values become more and more less important through lay-
ers. Hence, �2,1 − SRA can be roughly seen as a procedure
of denoising process layer by layer. Through the procedure,
the components that are not important for both domains are
weakened, the components that are important for both do-
main are strengthened. We believe that this property is im-
portant for �2,1 − SRA to achieve the best performance.

Distance between domains

A-distance is a measure of distance between two distribu-
tions. Smaller A-distance means the two distributions are
similar to each other. In (Ben-David et al. 2007), it was sug-
gested as a measure of similarity between source domain and
target domain. Additionally, it was shown that A-distance is
a crucial part of upper bound of generalization for domain
adaptation (Ben-David et al. 2007). Hence, the A-distance
should be small in order to have good generalization from
source domain to target domain. In practice, the exact A-
distance is impossible to compute. A proxy-A-distance is
used instead and it is defined as dA = 2(1 − 2ε), where ε
is the generalization error of a classifier trained to discrim-
inate source domain and target domain. In this paper, ε is
computed with linear SVM.

References (Glorot, Bordes, and Bengio 2011) and (Chen
et al. 2012) showed that the proxy-A-distance actually in-
creases after the representation learning on Amazon dataset,
meaning that the new representations are suitable for both
sentiment analysis tasks and domain classification tasks.
This phenomenon is also observed on features learned by
our method on Amazon review dataset, which can be seen
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Figure 1: Accuracy (%) with different α and λ on different datasets.
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Figure 3: Eigenvalues of covariance matrices of output from each layer on different datasets.
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Figure 4: Proxy-A-distance on different datasets.

from Figure 4(a). But Figure 4(b) and Figure 4(c) show
that the proxy-A-distance decreased on spam dataset and 20
newsgroups dataset. However, our method performed well
on all the datasets. Therefore, proxy-A-distance is not a nec-
essarily good enough indicator for good domain adaptation
performance. The features that are useful for discriminat-
ing domain might be weakened or strengthened in the fea-
ture learning process. Hence, the proxy-A-distance might
get bigger or smaller after feature learning.

Conclusions

The study of deep learning for domain adaptation is still in
its preliminary stage. Motivated by the remarkable perfor-
mance of mSDA (Chen et al. 2012) which is a new deep
learning method for domain adaptation, we proposed a �2,1-
norm stacked robust autoencoder (�2,1-SRA) to learn better
representations for domain adaptation tasks, which is a sim-
ple combination of statistics tool and deep architecture.

The intuition behind our proposed method is that we
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should adjust the weights of components of data matrix
that compromise of all samples from both source domain
and target domain. The proposed autoencoder is based on a
loss + regularizer framework, which makes our method eas-
ier to implement and analyze compared to neural network
based methods. We made an attempt to provide understand-
ing by analyzing the eigenvalues of covariance matrices of
output matrix and showed that the noisy components were
weakened relatively through layers. The experimental re-
sults showed that the proposed method is very promising for
domain adaptation tasks.
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