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Abstract

In recent years, spectral clustering has become a standard
method for data analysis used in a broad range of applica-
tions. In this paper we propose a new class of algorithms
for multiway spectral clustering based on optimization of a
certain “contrast function” over the unit sphere. These al-
gorithms, partly inspired by certain Indepenent Component
Analysis techniques, are simple, easy to implement and effi-
cient.
Geometrically, the proposed algorithms can be interpreted as
hidden basis recovery by means of function optimization. We
give a complete characterization of the contrast functions ad-
missible for provable basis recovery. We show how these con-
ditions can be interpreted as a “hidden convexity” of our op-
timization problem on the sphere; interestingly, we use ef-
ficient convex maximization rather than the more common
convex minimization. We also show encouraging experimen-
tal results on real and simulated data.

1 Introduction

Partitioning a dataset into classes based on a similarity be-
tween data points, known as cluster analysis, is one of the
most basic and practically important problems in data anal-
ysis and machine learning. It has a vast array of applications
from speech recognition to image analysis to bioinformatics
and to data compression. There is an extensive literature on
the subject, including a number of different methodologies
as well as their various practical and theoretical aspects (Jain
and Dubes 1988).

In recent years spectral clustering—a class of methods
based on the eigenvectors of a certain matrix, typically
the graph Laplacian constructed from data—has become a
widely used method for cluster analysis. This is due to the
simplicity of the algorithm, a number of desirable prop-
erties it exhibits and its amenability to theoretical analy-
sis. In its simplest form, spectral bi-partitioning is an at-
tractively straightforward algorithm based on thresholding
the second bottom eigenvector of the Laplacian matrix of
a graph. However, the more practically significant problem
of multiway spectral clustering is considerably more com-
plex. While hierarchical methods based on a sequence of bi-
nary splits have been used, the most common approaches
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use k-means or weighted k-means clustering in the spectral
space or related iterative procedures (Shi and Malik 2000;
Ng, Jordan, and Weiss 2002; Bach and Jordan 2006; Yu and
Shi 2003). Typical algorithms for multiway spectral cluster-
ing follow a two-step process:

1. Spectral embedding: A similarity graph for the data is
constructed based on the data’s feature representation. If
one is looking for k clusters, one constructs the embed-
ding using the bottom k eigenvectors of the graph Lapla-
cian (normalized or unnormalized) corresponding to that
graph.

2. Clustering: In the second step, the embedded data
(sometimes rescaled) is clustered, typically using the
conventional/spherical k-means algorithms or their vari-
ations.

In the first step, the spectral embedding given by the
eigenvectors of Laplacian matrices has a number of interpre-
tations. The meaning can be explained by spectral graph the-
ory as relaxations of multiway cut problems (Von Luxburg
2007). In the extreme case of a similarity graph having k
connected components, the embedded vectors reside in R

k,
and vectors corresponding to the same connected component
are mapped to a single point. There are also connections to
other areas of machine learning and mathematics, in partic-
ular to the geometry of the underlying space from which the
data is sampled (Belkin and Niyogi 2003).

In our paper we propose a new class of algorithms for
the second step of multiway spectral clustering. The starting
point is that when k clusters are perfectly separate, the spec-
tral embedding using the bottom k eigenvectors has a par-
ticularly simple geometric form. For the unnormalized (or
asymmetric normalized) Laplacian, it is simply a (weighted)
orthogonal basis in k-dimensional space, and recovering the
basis vectors is sufficient for cluster identification. This view
of spectral clustering as basis recovery is related to previ-
ous observations that the spectral embedding generates a
discrete weighted simplex (see (Weber, Rungsarityotin, and
Schliep 2004) and also (Kumar, Narasimhan, and Ravindran
2013) for some applications). For the symmetric normalized
Laplacian, the structure is slightly more complex, but is, as
it turns out, still suitable for our analysis, and, moreover the
algorithms can be used without modification.

The proposed approach relies on an optimization problem
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resembling certain Independent Component Analysis tech-
niques, such as FastICA (see (Hyvärinen, Karhunen, and Oja
2004) for a broad overview). Specifically, the problem of
identifying k clusters reduces to maximizing a certain “ad-
missible” contrast function over a (k−1)-sphere. Each local
maximum of such a function on the sphere corresponds to
exactly one cluster in the data. The main theoretical contri-
bution of our paper is to provide a complete characterization
of the admissible contrast functions for geometric basis re-
covery. We show that such contrast functions have a certain
“hidden convexity” property and that this property is nec-
essary and sufficient for guaranteed recovery1 (Section 2).
Rather than the more usual convex minimization, our analy-
sis is based on convex maximization over a (hidden) convex
domain. Interestingly, while maximizing a convex function
over a convex domain is generally difficult (even maximiz-
ing a positive definite quadratic form over the continuous
cube [0, 1]n is NP-hard2), our setting allows for efficient op-
timization.

Based on this theoretical connection between clusters and
local maxima of contrast functions over the sphere, we pro-
pose practical algorithms for cluster recovery through func-
tion maximization. We discuss the choice of contrast func-
tions and provide running time analysis. We also provide
a number of encouraging experimental results on synthetic
and real-world datasets.

Finally, we note connections to recent work on geomet-
ric recovery. The paper (Anderson, Goyal, and Rademacher
2013) uses the method of moments to recover a continuous
simplex given samples from the uniform probability distri-
bution. Like our work, it uses efficient enumeration of local
maxima of a function over the sphere. In (Hsu and Kakade
2013), one of the results shows recovery of parameters in a
Gaussian Mixture Model using the moments of order three
and can be thought of as a case of the basis recovery prob-
lem.

2 Summary of the Theoretical Results

In this section we state the main theoretical results of our
paper on weighted basis recovery and briefly show how they
can be applied to spectral clustering.

A Note on Notation. Before proceeding, we define some
notations used throughout the paper. The set {1, 2, . . . , k} is
denoted by [k]. For a matrix B, bij indicates the element in
its ith row and j th column. The ith row vector of B is denoted
bi·, and the jth column vector of B is denoted b·j . For a vec-
tor v, ‖v‖ denotes its standard Euclidean 2-norm. Given two
vectors u and v, 〈u, v〉 denotes the standard Euclidean inner
produce between the vectors. We denote by 1S the indicator
vector for the set S, i.e. the vector which is 1 for indices in
S and 0 otherwise. The null space of a matrix M is denoted

1Interestingly, there are no analogous recovery guarantees in
the ICA setting except for the special case of cumulant functions
as contrasts. In particular, typical versions of FastICA are known
to have spurious maxima (Wei 2015).

2This follows from (Gritzmann and Klee 1989) together with
Fact 1 below.

N (M). We denote the unit sphere in R
d by Sd−1. For points

p1, . . . , pm, conv(p1, . . . , pm) will denote their convex hull.

Recovering a Weighted Basis. The main technical results
of this paper deal with reconstructing a weighted basis by
optimizing a certain contrast function over a unit sphere. We
show that for certain functions, their maxima over the sphere
correspond to the directions of the basis vectors. We give a
complete description for the set of such functions, providing
necessary and sufficient conditions.

More formally, consider a set {Z1, . . . , Zm} of orthonor-
mal vectors in R

m. These vectors form a hidden basis of the
space. We define a function Fg : Sm−1 → R in terms of a
“contrast function” g and strictly positive weights αi, βi as
follows:

Fg(u) :=

m∑
i=1

αig(βi|〈u, Zi〉|) . (1)

We will provide a complete description of when the direc-
tions Z1, . . . , Zm can be recovered from the local maxima
of Fg for arbitrary weights αi, βi. This process of finding
the local maxima of Fg can be thought of as weighted basis
recovery.

Here and everywhere else in the paper, we consider con-
trast functions g : [0,∞) → R that are continuous on [0,∞)
and twice continuously differentiable on (0,∞). It turns out
that the desirable class of functions can be described by the
following properties:

P1. Function g(
√
x) is strictly convex.

P2. The (right) derivative at the origin, d
dx (g(

√
x))|x=0+ , is

0 or −∞.

The main idea underlying the proposed framework for
weighted basis recovery comes from property P1. In partic-
ular, using just this property, it can be shown that the local
maxima of Fg are contained in the set {±Zi : i ∈ [m]}. The
idea is to perform a change of variable to recast maximiza-
tion of Fg over the unit sphere as a convex maximization
problem defined over a (hidden) convex domain. We sketch
the proof in order to illustrate this hidden role of convexity
in weighted basis recovery.
Proof sketch: Maxima of Fg are contained in {±Zi : i ∈
[m]}.

We will need the following fact about convex maximiza-
tion (Rockafellar 1997, Chapter 32).

For a convex set K, a point x ∈ K is said to be an extreme
point if x is not equal to a strict convex combination of two
other points of K.
Fact 1. Let K ⊆ R

n be a convex set. Let f : K → R be
a strictly convex function. Then the set of local maxima of f
on K is contained in the set of extreme points of K.

As Z1, . . . , Zm form an orthonormal basis of the space,
we may simplify notation by working in the hidden coordi-
nate system in which Z1, . . . , Zm are the canonical vectors
e1, . . . , em respectively. Let Δm−1 := conv(e1, . . . , em)
denote a (hidden) simplex. We will make use of the change
of variable ψ : Sm−1 → Δm−1 defined by ψi(u) = u2

i . In
particular, we define a family of functions hi : [0,∞) → R
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for i ∈ [m] by hi(t) = αig(βi

√
t), and we define a function

H : Δm−1 → R as H(t) =
∑m

i=1 hi(ti). Using assump-
tion P1, it can be seen that H is a strictly convex function
defined on a convex domain. Further, for any u ∈ Sm−1,
(H ◦ ψ)(u) = Fg(u). Using this equality, we see that u is a
maximum of Fg if and only if ψ(u) is a maximum of H .

The extreme points of Δm−1 are Z1, . . . , Zm. By Fact 1,
the maxima of H are contained in the set {Zi : i ∈ [m]}.
Hence, the maxima of Fg are contained in ψ−1({Zi : i ∈
[m]}) = {±Zi : i ∈ [m]}.

We have demonstrated that Fg has no local maxima out-
side of the set {±Zi : i ∈ [m]}; however, we have not
demonstrated that the directions {±Zi : i ∈ [m]} actually
are local maxima of Fg . In general, both P1 and P2 are re-
quired to guarantee that {±Zi : i ∈ [m]} is a complete
enumeration of the local maxima of Fg . More formally, we
have the following main theoretical results:
Theorem 2 (Sufficiency). Let α1, . . . , αm and β1, . . . , βm

be strictly positive constants. Let g : [0,∞) → R be a con-
tinuous function which is twice continuously differentiable
on (0,∞) satisfying properties P1 and P2. If Fg : Sm−1 →
R is constructed from g according to equation (1), then all
local maxima of Fg are contained in the set {±Zi}mi=1 of
basis vectors. Moreover, each basis vector ±Zi is a strict
local maximum of Fg .
Theorem 3 (Necessity). Let g : [0,∞) → R be a contin-
uous function which is twice continuously differentiable on
(0,∞), and let Fg : Sm−1 → R be constructed from g ac-
cording to equation (1).
1. If P1 does not hold for g, then there exists an integer

m > 1 and strictly positive values of the parameters
αi, βi such that Fg has a local maximum not contained
in the set {±Zi}mi=1.

2. If P1 holds but P2 does not hold for g, there exist strictly
positive values of the parameters αi, βi such that at least
one of the canonical directions Zi is not a local maxi-
mum for Fg .

The proofs of Theorems 2 and 3 (along with all other
omitted proofs as well as the stability results for our meth-
ods) can be found in the long version of this paper.3

Spectral Clustering as Basis Recovery. It turns out that
geometric basis recovery has direct implications for spec-
tral clustering. In particular, when an n-vertex similarity
graph has m connected components, the spectral embed-
ding into R

m maps each vertex in the jth connected com-
ponent to a single point yj = βjZj where βj = ‖yj‖
and Zj = yj/‖yj‖. It happens that the points Z1, . . . , Zm

are orthogonal. Thus, letting xi denote the embedded points
and defining Fg(u) := 1

n

∑n
i=1 g(|〈u, xi〉|), there exist

strictly positive weights α1, . . . , αm such that Fg(u) =∑m
j=1 αjg(βj |〈u, Zj〉|). In particular, αj is the fraction of

vertices contained in the jth component. Recovery of the ba-
sis directions {±Zj}mj=1 corresponds to the recovery of the
component clusters.

3See http://arxiv.org/abs/1403.0667 for the long version of this
paper.

As the weights αj and βj take on a special form in spectral
clustering, it happens that property P1 by itself is sufficient
to guarantee that the local maxima of Fg are precisely the
basis directions {±Zj}mj=1.

3 Spectral Clustering Problem Statement

Let G = (V,A) denote a similarity graph where V is a set of
n vertices and A is an adjacency matrix with non-negative
weights. Two vertices i, j ∈ V are incident if aij > 0, and
the value of aij is interpreted as a measure of the similarity
between the vertices. In spectral clustering, the goal is to
partition the vertices of a graph into sets S1, . . . ,Sm such
that these sets form natural clusters in the graph. In the most
basic setting, G consists of m connected components, and
the natural clusters should be the components themselves.
In this case, if i′ ∈ Si and j′ ∈ Sj then ai′j′ = 0 whenever
i �= j. For convenience, we can consider the vertices of V to
be indexed such that all indices in Si precede all indices in
Sj when i < j. Matrix A takes on the form:

A =

⎛
⎜⎝

AS1
0 ··· 0

0 AS2
··· 0

...
...

. . .
...

0 0 ··· ASm

⎞
⎟⎠ ,

a block diagonal matrix. In this setting, spectral clustering
can be viewed as a technique for reorganizing a given simi-
larity matrix A into such a block diagonal matrix.

In practice, G rarely consists of m truly disjoint con-
nected components. Instead, one typically observes a matrix
Ã = A + E where E is some error matrix with (hopefully
small) entries eij . For i and j in different clusters, all that
can be said is that ãij should be small. The goal of spectral
clustering is to permute the rows and columns of Ã to form
a matrix which is nearly block diagonal and to recover the
corresponding clusters.

4 Graph Laplacian’s Null Space Structure

Given an n-vertex similarity graph G = (V,A), define
the diagonal degree matrix D with non-zero entries dii =∑

j∈V aij . The unnormalized Graph Laplacian is defined as
L := D − A. The following well known property of the
graph Laplacian (see (Von Luxburg 2007) for a review) helps
shed light on its importance: Given u ∈ R

n,

uTLu =
1

2

∑
i,j∈V

aij(ui − uj)
2 . (2)

The graph Laplacian L is symmetric positive semi-definite
as equation (2) cannot be negative. Further, u is a 0-
eigenvector of L (or equivalently, u ∈ N (L)) if and
only if uTLu = 0. When G consists of m connected
components with indices in the sets S1, . . . ,Sm, inspec-
tion of equation (2) gives that u ∈ N (L) precisely
when u is piecewise constant on each Si. In particular,
{|S1|−1/2

1S1
, . . . , |Sm|−1/2

1Sm
} is an orthonormal basis

for N (L).
In general, letting X ∈ R

d×m contain an orthogonal ba-
sis of N (L), it cannot be guaranteed that the rows of X will
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act as indicators of the various classes, as the columns of
X have only been characterized up to a rotation within the
subspace N (L). However, the rows of X are contained in a
scaled orthogonal basis of Rm with the basis directions cor-
responding to the various classes. We formulate this result
as follows (see (Weber, Rungsarityotin, and Schliep 2004),
(Verma and Meilă 2003, Proposition 5), and (Ng, Jordan,
and Weiss 2002, Proposition 1) for related statements).

Proposition 4. Let the similarity graph G = (V,A) con-
tain m connected components with indices in the sets
S1, . . . ,Sm, let n = |V |, and let L be the unnormal-
ized graph Laplacian of G. Then, N (L) has dimensional-
ity m. Let X = (x·1, . . . , x·m) contain m scaled, orthog-
onal column vectors forming a basis of N (L) such that
‖x·j‖ =

√
n for each j ∈ [m]. Then, there exist weights

w1, . . . , wm with wj =
|Sj |
n and mutually orthogonal vec-

tors Z1, . . . , Zm ∈ R
m such that whenever i ∈ Sj , the row

vector xi· = 1√
wj

ZT
j .

Proposition 4 demonstrates that using the null space of
the unnormalized graph Laplacian, the m connected compo-
nents in G are mapped to m basis vectors in R

m. Of course,
under a perturbation of A, the interpretation of Proposition 4
must change. In particular, G will no longer consist of m
connected components, and instead of using only vectors in
N (L), X must be constructed using the eigenvectors cor-
responding to the lowest m eigenvalues of L. With the per-
turbation of A comes a corresponding perturbation of the
eigenvectors in X . When the perturbation is not too large,
the resulting rows of X yield m nearly orthogonal clouds of
points.

Due to different properties of the resulting spectral em-
beddings, normalized graph Laplacians are often used in
place of L for spectral clustering, in particular Lsym :=

D−1/2LD−1/2 and Lrw := D−1L. These normalized Lapla-
cians are often viewed as more stable to perturbations of the
graph structure. Further, spectral clustering with Lsym has a
nice interpretation as a relaxation of the NP-hard multi-way
normalized graph cut problem (Yu and Shi 2003), and the
use of Lrw has connections to the theory of Markov chains
(see e.g., (Deuflhard et al. 2000; Meilă and Shi 2001)).

For simplicity, we state all results in this paper in terms of
L. However, when G consists of m connected components,
N (Lrw) happens to be identical to N (L), making Proposi-
tion 4 and all subsequent results in this paper equally valid
for Lrw. The algorithms which we will propose for spectral
clustering turn out to be equally valid when using any of L,
Lsym, or Lrw, though the structure of N (Lsym) is somewhat
different. The description of N (Lsym) and its analysis can
be found in the long version of this paper.

5 Basis Recovery for Spectral Clustering

Given a graph G with n vertices and m connected com-
ponents, let X; S1, . . . ,Sm; w1, . . . , wm; and Z1, . . . , Zm

be constructed from L as in Proposition 4. The basis vec-
tors Z1, . . . , Zm are mutually orthogonal in R

m, and each
weight wi = |Si|

n is the fraction of the rows of X indexed

as x�· coinciding with the point 1√
wi

ZT
i . It suffices to re-

cover the basis directions Zi up to sign in order to cluster
the points. That is, each embedded point xj· ∈ Si lies on the
line through ±Zi and the origin, making these lines corre-
spond to the clusters.

We use an approach based on function optimization over
projections of the embedded data. Let Fg : Sm−1 → R be
defined on the unit sphere in terms of a “contrast function”
g : [0,∞) → R as Fg(u) :=

1
n

∑n
i=1 g(|〈u, xi·〉|). This can

equivalently be written as

Fg(u) =

m∑
i=1

wig(
1√
wi

|〈u, Zi〉|) . (3)

In equation (3), Fg takes on a special form of the basis re-
covery problem presented in equation (1) with the choices
αi = wi and βi = 1√

wi
. Due to the special form of these

weights, only property P1 is required in order to recover the
directions {±Zi : i ∈ [m]}:

Theorem 5. Let g : [0,∞) → R be a continuous function
satisfying property P1. Let Fg : Sm−1 → R be defined from
g according to equation (3). Then, the set {±Zi : i ∈ [m]}
is a complete enumeration of the local maxima of Fg .

Stability analysis: It can be shown that both the embedding
structure (Proposition 4) and the local maxima structure of
Fg (Theorem 5) are robust to a perturbation from the set-
ting in which G consists of m connected components. We
provide such a stability analysis, demonstrating that our al-
gorithms are robust to such perturbations. The precise state-
ments can be found in the long version of this paper.

6 Spectral Clustering Algorithms

Choosing a contrast function. There are many possible
choices of contrast g which are admissible for spectral clus-
tering under Theorem 5 including the following:

gp(t) = |t|p where p ∈ (2,∞) gabs(t) = −|t|
ght(t) = log cosh(t) ggau(t) = e−t2

gsig(t) = − 1

1 + exp(−|t|) .

In choosing contrasts, it is instructive to first consider
the function g2(y) = y2 (which fails to satisfy prop-
erty P1 and is thus not admissible). Noting that Fg2(u) =∑m

i=1 wi(
1√
wi

〈u, Zi〉)2 = 1, we see that Fg2 is constant on
the unit sphere. We see that the distinguishing power of a
contrast function for spectral clustering comes from prop-
erty P1. Intuitively, “more convex” contrasts g have better
resolving power but are also more sensitive to outliers and
perturbations of the data. Indeed, if g grows rapidly, a small
number of outliers far from the origin could significantly dis-
tort the maxima structure of Fg .

Due to this tradeoff, gsig and gabs could be important
practical choices for the contrast function. Both gsig(

√
x)

and gabs(
√
x) have a strong convexity structure near the ori-

gin. As gsig is a bounded function, it should be very robust
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to perturbations. In comparison, gabs(
√
t) = −|√t| main-

tains a stronger convexity structure over a much larger re-
gion of its domain and has only a linear rate of growth as
n → ∞. This is a much slower growth rate than is present
for instances in gp with p > 2.

Algorithms. We now have all the tools needed to create
a new class of algorithms for spectral clustering. Given a
similarity graph G = (V,A) containing n vertices, define
a graph Laplacian L̃ among L, Lrw, and Lsym (reader’s
choice). Viewing G as a perturbation of a graph consisting of
m connected components, construct X ∈ R

n×m such that
x·i gives the eigenvector corresponding to the ith smallest
eigenvalue of L̃ with scaling ‖x·i‖ =

√
n.

With X in hand, choose a contrast function g satisfying
P1. From g, the function Fg(u) =

1
n

∑n
i=1 g(〈u, xi·〉) is de-

fined on Sm−1 using the rows of X . The local maxima of
Fg correspond to the desired clusters of the graph vertices.
Since Fg is a symmetric function, if Fg has a local maxi-
mum at u, Fg also has a local maximum at −u. However,
the directions u and −u correspond to the same line through
the origin in R

m and form an equivalence class, with each
such equivalence class corresponding to a cluster.

Our first goal is to find local maxima of Fg corresponding
to distinct equivalence classes. We will use that the desired
maxima of Fg should be approximately orthogonal to each
other. Once we have obtained local maxima u1, . . . , um of
Fg , we cluster the vertices of G by placing vertex i in the j th

cluster using the rule j = arg max� |〈u�, xi·〉|. We sketch
two algorithmic ideas in HBROPT and HBRENUM. Here,
HBR stands for hidden basis recovery.

1: function HBROPT(X , η)
2: C ← {}
3: for i ← 1 to m do
4: Draw u from Sm−1 ∩ span(C)⊥

uniformly at random.
5: repeat
6: u ← u+ η(∇Fg(u)− uuT∇Fg(u))

(= u+ ηPu⊥∇Fg(u))
7: u ← Pspan(C)⊥u
8: u ← u

‖u‖
9: until Convergence

10: Let C ← C ∪ {u}
11: return C

HBROPT is a form of projected gradient ascent. The pa-
rameter η is the learning rate. Each iteration of the repeat-
until loop moves u in the direction of steepest ascent. For
gradient ascent in R

m, one would expect step 6 of HBROPT
to read u ← u+ η∇Fg(u). However, gradient ascent is be-
ing performed for a function Fg defined on the unit sphere,
but the gradient described by ∇Fg is for the function Fg

with domain R
m. The more expanded formula ∇Fg(u) −

uuT∇Fg(u) is the projection of ∇Fg onto the tangent plane
of Sm−1 at u. This update keeps u near the sphere.

We may draw u uniformly at random from Sm−1 ∩

span(C)⊥ by first drawing u from Sm−1 uniformly at ran-
dom, projecting u onto span(C)⊥, and then normalizing u.
It is important that u stay near the orthogonal complement
of span(C) in order to converge to a new cluster rather than
converging to a previously found optimum of Fg . Step 7 en-
forces this constraint during the update step.

1: function HBRENUM(X , δ)
2: C ← {}
3: while |C| < m do
4: j ← arg maxi{Fg(

xi·
‖xi·‖ ) :

angle( xi·
‖xi·‖ , u) > δ ∀u ∈ C}

5: C ← C ∪ { xj·
‖xj·‖ }

6: return C

In contrast to HBROPT, HBRENUM more directly uses
the point separation implied by the orthogonality of the ap-
proximate cluster centers. Since each embedded data point
should be near to a cluster center, the data points themselves
are used as test points. Instead of directly enforcing orthog-
onality between cluster means, a parameter δ > 0 specifies
the minimum allowable angle between found cluster means.

By pre-computing the values of Fg(xi·/‖xi·‖) outside of
the while loop, HBRENUM can be run in O(mn2) time. For
large similarity graphs, HBRENUM is likely to be slower
than HBROPT which takes O(m2nt) time where t is the
average number of iterations to convergence. The number of
clusters m cannot exceed (and is usually much smaller than)
the number of graph vertices n.

HBRENUM has a couple of nice features which may make
it preferable on smaller data sets. Each center found by
HBRENUM will always be within a cluster of data points
even when the optimization landscape is distorted under per-
turbation. In addition, the maxima found by HBRENUM are
based on a more global outlook, which may be important in
the noisy setting.

7 Experiments

An Illustrating Example. Figure 1 illustrates our func-
tion optimization framework for spectral clustering. In this
example, random points pi were generated from 3 concen-
tric circles: 200 points were drawn uniformly at random
from a radius 1 circle, 350 points from a radius 3 circle,
and 700 points from a radius 5 circle. The points were then
radially perturbed. The generated points are displayed in
Figure 1 (a). The similarity matrix A was constructed as
aij = exp(− 1

4‖pi − pj‖2), and the Laplacian embedding
was performed using Lrw.

Figure 1 (b) depicts the clustering process with the con-
trast gsig on the resulting embedded points. In this depiction,
the embedded data sufficiently encodes the desired basis
structure that all local maxima of Fgsig correspond to desired
clusters. The value of Fgsig is displayed by the grayscale
heat map on the unit sphere in Figure 1 (b), with lighter
shades of gray indicate greater values of Fgsig . The cluster
labels were produced using HBROPT. The rays protruding
from the sphere correspond to the basis directions recovered

2112



oracle- k-means- HBROPT HBRENUM
centroids cosine gabs ggau g3 ght gsig gabs ggau g3 ght gsig

E. coli 79.7 69.0 80.9 81.2 79.3 81.2 80.6 68.7 81.5 81.5 68.7 81.5
Flags 33.2 33.1 36.8 34.1 36.6 36.8 34.4 34.7 36.8 36.8 34.7 36.8
Glass 49.3 46.8 47.0 46.8 47.0 47.0 46.8 47.0 47.0 47.0 47.0 47.0

Thyroid Disease 72.4 80.4 82.4 81.3 82.2 82.2 81.5 81.8 82.2 82.2 81.8 82.2
Car Evaluation 56.1 36.4 37.0 36.3 36.3 35.2 36.6 49.6 32.3 41.1 49.9 41.1

Cell Cycle 74.2 62.7 64.3 64.4 63.8 64.5 64.0 60.1 62.9 64.8 61.1 62.7

Table 1: Percentage accuracy of spectral clustering algorithms, with the best performing non-oracle algorithm bolded.

-5 0 5

-5

0

5

(a) (b)

Figure 1: An illustration of spectral clustering on the con-
centric circle data. (a) The output of clustering. (b) The em-
bedded data and the contrast function.

by HBROPT, and the recovered labels are indicated by the
color and symbol used to display each data point.

Image Segmentation Examples. Spectral clustering was
first applied to image segmentation in (Shi and Malik 2000),
and it has remained a popular application of spectral clus-
tering. The goal in image segmentation is to divide an im-
age into regions which represent distinct objects or features
of the image. Figure 2 illustrates segmentations produced
by HBROPT-gabs and spherical k-means on several exam-
ple images from the BSDS300 test set (Martin et al. 2001).
For these images, the similarity matrix was constructed us-
ing only color and proximity information.

Stochastic block model with imbalanced clusters. We
construct a similarity graph A = diag(A1, A2, A3) + E
where each Ai is a symmetric matrix corresponding to a
cluster and E is a small perturbation. We set A1 = A2

to be 10 × 10 matrices with entries 0.1. We set A3 to
be a 1000 × 1000 matrix which is symmetric, approxi-
mately 95% sparse with randomly chosen non-zero loca-
tions set to 0.001. When performing this experiment 50
times, HBROPT-gsig obtained a mean accuracy of 99.9%.
In contrast, spherical k-means with randomly chosen start-
ing points obtained a mean accuracy of only 42.1%. It turns
out that splitting the large cluster is in fact optimal in terms
of the spherical k-means objective function but leads to poor
classification performance. Our method does not suffer from
that shortcoming.

Figure 2: Segmented images. Segmentation using HBROPT-
gabs (left panels) compared to k-means (right panels). The
borders between segmented regions are marked by black
pixels in the top panels and gray pixels in the bottom panels.

Performance Evaluation on UCI datasets. We compare
spectral clustering performance on a number of data sets
with unbalanced cluster sizes. In particular, the E. coli,
Flags, Glass, Thyroid Disease, and Car Evaluation data
sets which are part of the UCI machine learning reposi-
tory (Bache and Lichman 2013) are used. We also use the
standardized gene expression data set (Yeung et al. 2001a;
2001b), which is also referred to as Cell Cycle. For the Flags
data set, we used religion as the ground truth labels, and for
Thyroid Disease, we used the new-thyroid data.

For all data sets, we only used fields for which there were
no missing values, we normalized the data such that every
field had unit standard deviation, and we constructed the
similarity matrix A using a Gaussian kernel k(yi, yj) =
exp(−α‖yi−yj‖2). The parameter α was chosen separately
for each data set in order to create a good embedding. The
choices of α were: 0.25 for E. Coli, 32 for Glass, 32 for
Thyroid Disease, 128 for Flags, 0.25 for Car Evaluation, and
0.125 for Cell Cycle.

The spectral embedding was performed using the sym-
metric normalized Laplacian Lsym. Then, the clustering
performance of our proposed algorithms HBROPT and
HBRENUM (implemented with δ = 3π/8 radians) were
compared with the following baselines:

• oracle-centroids: The ground truth labels are used to set
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means μj = 1
|Sj |

∑
i∈Sj

xi·
‖xi·‖ for each j ∈ [m]. Points

are assigned to their nearest cluster mean in cosine dis-
tance.

• k-means-cosine: Spherical k-means is run with a random
initialization of the means, cf. (Ng, Jordan, and Weiss
2002).

We report the clustering accuracy of each algorithm in Ta-
ble 1. The accuracy is computed using the best matching
between the clusters and the true labels. The reported re-
sults consist of the mean performance over a set of 25 runs
for each algorithm. The number of clusters being searched
for was set to the ground truth number of clusters. In most
cases, we see improvement in performance over spherical
k-means.
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