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Abstract

Semi-supervised learning is proposed to exploit both labeled
and unlabeled data. However, as the scale of data in real
world applications increases significantly, conventional semi-
supervised algorithms usually lead to massive computational
cost and cannot be applied to large scale datasets. In addi-
tion, label noise is usually present in the practical applications
due to human annotation, which very likely results in remark-
able degeneration of performance in semi-supervised meth-
ods. To address these two challenges, in this paper, we pro-
pose an efficient RObust Semi-Supervised Ensemble Learn-
ing (ROSSEL) method, which generates pseudo-labels for
unlabeled data using a set of weak annotators, and combines
them to approximate the ground-truth labels to assist semi-
supervised learning. We formulate the weighted combination
process as a multiple label kernel learning (MLKL) problem
which can be solved efficiently. Compared with other semi-
supervised learning algorithms, the proposed method has lin-
ear time complexity. Extensive experiments on five bench-
mark datasets demonstrate the superior effectiveness, effi-
ciency and robustness of the proposed algorithm.

Introduction

Massive data can be easily collected from social networks
and online services due to the explosion of Internet de-
velopment. However, the vast majority of collected data
are usually unlabeled and unstructured. Labeling a large
amount of unlabeled data can be expensive. Therefore, it
is natural to consider exploiting the abundance of unla-
beled data to further improve the performance of algo-
rithms. This has led to a rising demand for semi-supervised
learning methods that leverage both labeled data and unla-
beled data (Zhang et al. 2015; Lu et al. 2015; Zhu 2005;
Chapelle, Schölkopf, and Zien 2006).

Semi-supervised learning (SSL) is an active research area
and a variety of SSL algorithms have been proposed (Ben-
nett, Demiriz, and others 1999; Blum and Chawla 2001;
Chapelle, Weston, and Schölkopf 2002; Smola and Kondor
2003; Belkin, Matveeva, and Niyogi 2004; Li, Kwok, and
Zhou 2010; Wang, Nie, and Huang 2014). However, many
existing algorithms are faced with the scalability issue ow-
ing to the high complexity. For example, the complexity of
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LapSVM (Belkin, Niyogi, and Sindhwani 2006) is O(n3)
due to the requirement for the inverse of a dense Gram ma-
trix. TSVM in (Joachims 1999) treats the SVM problem as
a sub-problem and infers the labels of unlabeled data via a
label switch procedure, which may lead to a large number of
iterations.

In addition to the scalability issue, SSL algorithms may
suffer from label noise, leading to unreliable performance.
In the SSL setting, there are usually only small amount of
labeled data and a large proportion of unlabeled data. Even
small mistakes in the human (non-expert) annotation process
are likely to result in label noise. Thus robustness is partic-
ularly critical for SSL methods in many applications (Lu et
al. 2015; Jing et al. 2015).

This paper focuses on the two aforementioned challenges
of SSL, i.e. scalability and robustness. Inspired by crowd-
sourcing (Sheng, Provost, and Ipeirotis 2008; Snow et al.
2008), we propose an efficient RObust Semi-Supervised En-
semble Learning (ROSSEL) method to approximate ground-
truth labels of unlabeled data through aggregating a num-
ber of pseudo-labels generated by low-cost weak annotators,
such as linear SVM classifiers. Meanwhile, based on the
aggregated labels, ROSSEL learns an inductive SSL clas-
sifier by Multiple Label Kernel Learning (MLKL) (Li et al.
2009). Unlike most existing SSL algorithms, the proposed
ROSSEL requires neither expensive graph Laplacian nor it-
erative label switching. Instead, it only needs one iteration
for label aggregation and can be solved by an SVM solver
very efficiently. The major contributions are listed as fol-
lows,

• Leveraging an ensemble of low-cost supervised weak
annotators, we propose ROSSEL to efficiently obtain
a weighted combination of pseudo-labels of unlabeled
data to approximate ground-truth labels to assist semi-
supervised learning.

• Instead of simple label aggregation strategies used in
crowdsourcing (e.g. majority voting), ROSSEL performs
a weighted label aggregation using MLKL. Meanwhile it
learns an inductive SSL classifier, which only requires one
iteration and linear time complexity w.r.t. number of data
and features.

• Complexity analysis of several competing SSL methods
and the proposed method is provided.
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Related Work

As large scale data are easily accessible, it is usually difficult
to obtain sufficient supervision in practice. For instance, a
feature selection algorithm is proposed in (Han et al. 2015)
for video recognition where the number of labeled videos are
limited. In (Gan et al. 2015), an action recognition method
is proposed which does not exploit any positive examplars.
The authors in (Li et al. 2013) propose a method to deal
with weak-label learning tasks. In this paper, we focus on
SSL problems.

Among SSL algorithms, graph-based methods are com-
monly used (Chapelle, Schölkopf, and Zien 2006). Many
graph-based algorithms introduce the manifold structure by
leveraging manifold regularization (Zhu, Ghahramani, and
Lafferty 2003; Zhou et al. 2004; Belkin, Niyogi, and Sind-
hwani 2005; Sindhwani et al. 2005; Belkin, Niyogi, and
Sindhwani 2006; Tsang and Kwok 2006; Sindhwani, Chu,
and Keerthi 2007; Xu et al. 2010; Zhang et al. 2015). How-
ever, the complexity of building graph Laplacian is at least
O(n2). Consequently, these graph-based algorithms are usu-
ally difficult to handle large scale datasets. Recently, the au-
thors in (Wang, Nie, and Huang 2014) propose an adap-
tive SSL to optimize the weight matrix of the model and
the label matrix simultaneously, which avoids expensive
graph construction. There are some SSL methods exploiting
pseudo-labels of unlabeled data. For instance, in (Lee 2013),
pseudo-labels are used to make deep neural networks able to
handle unlabeled data. The authors in (Bachman, Alsharif,
and Precup 2014) propose to exploit pseudo-ensembles to
produce models that are robust to perturbation. In (Deng et
al. 2013), pseudo-labels are exploited in an image rerank-
ing framework regularized by multiple graphs. The authors
in (Chang et al. 2014) formulate multi-label semi-supervised
feature selection as a convex problem and propose an ef-
ficient optimization algorithm. A semi-supervised ranking
and relevance feedback framework is proposed for multime-
dia retrieval in (Yang et al. 2012). In (Li, Kwok, and Zhou
2009), the authors propose a SVM-based SSL algorithm by
exploiting the label mean. A cost-sensitive semi-supervised
SVM is proposed in (Li, Kwok, and Zhou 2010). Although
these methods avoid expensive graph Laplacian, they still
require a number of iterations for training.

Ensemble learning is a supervised learning paradigm that
trains a variety of learners on a given the training set, and de-
rives a prediction from the votes of all its learners (Dietterich
2000). There are a number of most commonly used ensem-
ble algorithms, including bagging (Breiman 1996), random
forests (Breiman 2001) and boosting (Schapire and Freund
2012). Bagging is one of the most commonly used ensem-
ble algorithms, where a number of bootstrap replicates are
generated on the training set by bootstrap sampling, and
a learner is trained on each bootstrap replicate. Ensemble
learning methods can only handle labeled data.

The Proposed Model

Inspired by crowdsourcing methods (Sheng, Provost, and
Ipeirotis 2008; Snow et al. 2008), we propose a new SSL al-
gorithm that efficiently learns a classifier by leveraging both

labeled and unlabeled data. Our proposed method consists
of the two steps, namely label generation and label aggrega-
tion, illustrated in Figure 1. In the first stage, a set of weak
annotators are trained and applied to unlabeled data to gen-
erate a set of pseudo-labels. In the second stage we com-
bine the pseudo-labels to approximate the optimal labels of
unlabeled data. In the meantime, weight vectors is derived,
which enables ROSSEL to handle unseen data.

Label Generation

Low-cost, less-than-expert labels are easy to obtain from
weak annotators in crowdsourcing (Sheng, Provost, and
Ipeirotis 2008). Following the crowdsourcing framework,
ROSSEL firstly generates a set of pseudo-labels for unla-
beled data using ensemble learning. In this paper we focus
on bagging to generate pseudo-labels.

Bagging is a simple and effective supervised ensem-
ble learning algorithm, which produces a number of boot-
strap replicates using bootstrap sampling. A weak learner is
trained on each bootstrap replicate. By applying these weak
learners on unlabeled data, a set of pseudo-labels can be de-
rived. Bagging finally aggregates all the pseudo-labels by
majority voting to generate predictions.

ROSSEL trains weak annotators using bootstrap sam-
pling. Similar to crowdsourcing, we apply weak annotators
on unlabeled data and obtain the resultant less-than-expert
labels. The label generation procedure is illustrated in Fig-
ure 1.

labeled 
data

unlabeled 
data

replicate 3replicate 2replicate 1

weak annotator 3weak annotator 2weak annotator 1

pseudo-label 3

label generation

label aggregation
MLKL

bootstrap
sampling

pseudo-label 2pseudo-label 1

Figure 1: Illustration of the proposed ROSSEL.

Label Aggregation by MLKL

Considering a binary supervised learning scenario, let DL =
{xi, yi}li=1 denotes the labeled set, where xi ∈ Rd and
yi ∈ {−1,+1} denotes the feature vector and the label of
the i-th sample, respectively. A general objective function is
formulated as follows

min
w

Ω(w) + C�(w), (1)

where w ∈ Rd is the weight vector, Ω(w) is the regulariza-
tion term, �(w) is a loss function and C is the regulariza-
tion parameter. We focus on the �2-regularized hinge loss.
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The objective function of hinge loss then can be specifically
written as

min
w

1

2
||w||22 + C

l∑
i=1

ξi

s.t. yiw
�xi ≥ 1− ξi, ξi ≥ 0, i = 1, ..., l,

(2)

where ξi is the slack variable of the i-th instance.
SSL is aimed to exploit the abundant unlabeled data.

Hence let DU = {xi}ni=l+1 denote the unlabeled set and
we incorporate the information of unlabeled data into the
objective function, which can be written as,

min
ỹ∈Y

min
w

1

2
||w||22 + C1

l∑
i=1

ξi + C2

n∑
i=l+1

ξi

s.t. ỹiw
�xi ≥ 1− ξi, ξi ≥ 0, i = 1, ..., n,

(3)

where C1 and C2 are the regularization parameters that
control the tradeoff between model complexity, the cost
generated by the labeled data, and the cost generated by
the unlabeled data, and Y = {ỹ|ỹ = [yL; ỹU ], ỹU ∈
{−1,+1}n−l}, where yL ∈ Rl represents the ground-truth
label vector of labeled data, and ỹU represents any possible
labels of unlabeled data. Thus there are exponential possi-
ble values for yU , i.e. the labels of unlabeled data, which is
intractable to directly optimize.

By introducing dual variables α ∈ Rn, the Lagrangian of
Equation (3) can be obtained by

L(w,α) =
1

2
||w||22 + C1

l∑
i=1

ξi + C2

n∑
i=l+1

ξi

+

n∑
i=1

αi(1− ξi − ỹiw
�xi).

(4)

By setting the derivatives of L w.r.t. w and ξi as 0, the La-
grangian can be updated as below,

L = −1

2
α�

(
(XX�)� ỹỹ�

)
α+ 1�α, (5)

where α ∈ A and A = {α|0 ≤ αi ≤ C1, 0 ≤ αj ≤
C2, 1 ≤ i ≤ l, l + 1 ≤ j ≤ n}. We can then replace the
inner minimization problem of Problem (3) by its dual as
below,

min
ỹ∈Y

max
α∈A

−1

2
α�

(
(XX�)� ỹỹ�

)
α+ 1�α, (6)

where X = [x1,x2, ...,xn]
�. It is usually difficult to op-

timize ỹ due to the significant number of possible values.
Inspired by ideas from crowdsourcing, which obtain suf-
ficiently qualified labels on unlabeled data by exploiting a
set of weak annotators, we propose to solve Problem (6) by
MLKL (Li et al. 2013; 2009).
Definition 1. Given a size-M label set {ỹ1, ỹ2, ..., ỹM},
multiple label kernel learning (MLKL) refers to the problem
as below,

min
μ∈U

max
α∈A

−1

2
α�

(
(XX�)� (

M∑
m=1

μmỹmỹ�
m)

)
α+ 1�α,

(7)

which aims to find a weighted combination of the label ker-
nels

∑M
m=1 μmỹmỹ�

m to approximate the ground-truth la-
bel kernel ỹ∗ỹ∗�, where U = {μ|∑M

m=1 μm = 1, μm ≥
0}, A = {α|0 ≤ αi ≤ C1, 0 ≤ αj ≤ C2, 1 ≤ i ≤ l, l+1 ≤
j ≤ n}, and μ = [μ1, μ2, ..., μM ]� denotes the weight vec-
tor of base label kernels.

Similar to crowdsourcing, a set of pseudo-labels of unla-
beled data are generated in the first step by bootstrap sam-
pling. In the second step, we propose to obtain the SSL clas-
sifier by MLKL. Assume that there are M pseudo-labels,
namely YM = {ỹ1, ỹ2, ..., ỹM}, then we can complete the
primal formulation of Problem (7) as,

min
μ∈U ,wm,ξ

1

2

M∑
m=1

1

μm
||wm||22 + C1

l∑
i=1

ξi + C2

n∑
i=l+1

ξi

s.t.

M∑
m=1

ỹmiw
�
mxi ≥ 1− ξi, ξi ≥ 0, i = 1, ..., n,

(8)

where ỹmi denotes the label for the i-th sample in ym.
By setting ŵ = [ w1√

μ1
, ..., wM√

μM
]�, x̂i =

[
√
μ1xi,

√
μ2ỹ1iỹ2ixi, ...,

√
μT ỹ1iỹMixi]

�, and ŷ = ỹ1,
the primal problem of MLKL (7) becomes

min
ŵ,ξ

1

2
||ŵ||2F + C1

l∑
i=1

ξi + C2

n∑
i=l+1

ξi

s.t. ŷiŵ
�x̂i ≥ 1− ξi, ξi ≥ 0, i = 1, ..., n.

(9)

Problem (9) is similar to the primal of a standard SVM
problem, and can be easily solved by existing SVM pack-
ages, such as LIBLINEAR. Compared to Problem (3), Prob-
lem (9) can be solved very efficiently.

ROSSEL is easy to extend to cope with multiclass prob-
lems by applying the one-vs-all strategy. The detailed
ROSSEL algorithm for a multiclass case can be found in
Algorithm 1.

Complexity Analysis

There are two main stages in the proposed method, namely
label generation and label aggregation. In the label gener-
ation step, M weak annotators are trained. Weak annota-
tors can be any cheap learner. In our experiments, we use
LIBLINEAR to train linear SVMs as the weak annotators.
Hence, this leads to a complexity of O(Mnd) where n and d
stand for the number and the dimension of data respectively.
In the label aggregation step, MLKL can be solved accord-
ing to Problem (9) by LIBLINEAR (Fan et al. 2008), and μ,
the coefficient of base label kernels, can be simply updated
by closed-form solution, which results in the complexity of
O(Mnd). Compared with many other SSL methods that
require a number iterations for label switching and model
training, the proposed ROSSEL only requires one iteration.
Therefore, the overall complexity of ROSSEL is O(Mnd),
which does not rely on T , the number iterations.

In Table 1, we list the complexity of various SSL algo-
rithms, including LapSVM (Belkin, Niyogi, and Sindhwani
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Table 1: Comparison of complexity of the proposed method and other related SSL methods.
Mthods LapSVM LapRLS meanS3VM CS4VM ASL ROSSEL

Complexity O(n3d) O(n3d) O(n2dT ) O(n2dT ) O(nd2T ) O(Mnd)

In this table, n, d, M and T represent the number of data, the dimension of data, the number of weak annotators and the number of
iterations of the algorithm respectively.

Algorithm 1 RObust Semi-Supervised Ensemble Learning
(ROSSEL)

1: Initialize M , the number of weak annotators.
2: for k = 1 to K do
3: Sample M bootstrap replicates

{(X̄1, ȳk1), (X̄2, ȳk2), ..., (X̄T , ȳkM )} from the
labeled set DL.

4: for m = 1 to M do
5: Train an SVM model Mkm on X̄m and ȳkm.
6: Derive ỹkm by predicting on the unlabeled data

XU using Mkm.
7: Add ỹkm into the working set YkM

8: end for
9: Compute {wk1,wk2, ...,wkM} and μk by solving

Problem (8).
10: Calculate prediction pjk =

∑M
m=1 μkmw�

kmxj for a
test data xj .

11: end for
12: Choose the class label for xj by argmaxk{pjk}Kk=1.

2006), LapRLS (Belkin, Niyogi, and Sindhwani 2006),
meanS3VM (Li, Kwok, and Zhou 2009), CS3VM (Li,
Kwok, and Zhou 2010) and ASL (Wang, Nie, and Huang
2014). LapSVM and LapRLS have high complexity w.r.t.
the number of instances n due to the inverse of a dense
Gram matrix. Note that meanS3VM, CS4VM and ASL re-
quire to update their models iteratively. Consequently, their
complexity contains T . It can be expensive if a large number
of iterations is required.

Experiments

In this section, we demonstrate the robustness and per-
formance of the proposed algorithm by comparing with
eight baselines. These baselines include three supervised
learning methods, namely LIBLINEAR (Fan et al. 2008),
LIBSVM (Chang and Lin 2011), ensemble LIBSVM, and
five SSL algorithms, namely LapSVM (Belkin, Niyogi,
and Sindhwani 2006), LapRLS (Belkin, Niyogi, and Sind-

Table 2: Data statistics.
Datasets # train # test # features # classes
CNAE9 800 280 856 9

dna 2,559 627 180 3
connect4-10k 8,000 2,000 126 3

protein 19,200 5,187 357 3
rcv1-train 12,384 3,114 47,236 38
rcv1-all 420,000 111,920 47,236 40
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Figure 2: Average accuracy on the CNAE9 and dna datasts
over 10 runs when label noise is present.

hwani 2006), meanS3VM (Li, Kwok, and Zhou 2009),
CS4VM (Li, Kwok, and Zhou 2010) and ASL (Wang, Nie,
and Huang 2014). In total six datasets are used, namely
CNAE9, dna, connect4, protein and rcv1-train and rcv1-all.
Three experiments are performed, which respectively inves-
tigate the resistance to label noise, performance on various
scale datasets and the impact of different numbers of weak
annotators in ROSSEL. All experiments are conducted on a
workstation with an Intel(R) CPU (Xeon(R) E5-2687W v2
@ 3.40GHz) and 32 GB memory.

Datasets

Five UCI datasets including CNAE9, dna, connect4, protein
and rcv1 are used in the experiments. Among them, CNAE9
and dna are two small scale datasets that every competing
method is able to handle. Protein, connect4 and rcv1 are
large scale datasets which are used to investigate both the
accuracy and scalability of competing methods. The size
of connect4 and rcv1, which contain 67,557 and 534,135
samples respectively, is very large for SSL algorithms. Con-
sequently, for the convenience of comparison on connect4,
we generate a new dataset called connect4-10k by sampling
10,000 instances from connect4 at random. We report results
of the rcv1 dataset on both the standard training set and the
full set.

In all experiments, to simulate the SSL scenario, we ran-
domly sample three disjointed subsets from each dataset as
the labeled set (5% samples), unlabeled set (75% samples)
and test set (20%). More information about the six datasets
is listed in Table 2. We report accuracy as the evaluation
metric for comparison in all tables and figures.

Resistance to Label Noise

In this experiment, we investigate the resistance of SSL al-
gorithms to label noise on the CNAE9 and dna datasets. We
randomly select 2%, 4%, ..., 10% labels from the labeled set
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Table 3: Average accuracy (±Standard Deviation(%)) over 10 runs.
Methods CNAE9 dna connect4-10k protein rcv1-train rcv1-all

LIBLINEAR 82.86(±2.56) 84.78(±1.52) 64.40(±1.73) 60.54(±0.64) 74.45(±1.89) 87.56(±0.09)
LIBSVM 83.04(±2.94) 85.96(±1.42) 63.43(±2.43) 61.84(±1.31) 74.93(±1.88) 87.57(±0.12)

ensemble-10SVM 79.75(±2.41) 83.32(±1.38) 65.26(±2.54) 60.78(±1.40) 72.39(±1.53) 87.46(±0.09)
ensemble-50SVM 81.56(±2.42) 84.63(±1.84) 65.70(±1.99) 60.91(±0.85) 73.17(±1.90) 87.60(±0.08)

LapSVM 85.33(±3.13) 85.63(±1.28) 64.39(±1.82) 60.46(±0.85) 74.91(±1.90) *
LapRLS 85.47(±2.72) 85.84(±1.23) 63.41(±1.63) 60.72(±0.61) 74.55(±1.92) *

meanS3VM 83.12(±3.57) 85.04(±1.17) – – – –
CS4VM 84.93(±2.98) 88.04(±1.12) 62.04(±2.14) – – –

ASL 82.61(±2.15) 90.03(±0.98) 60.83(±1.41) 58.94(±1.19) * *
ROSSEL10 85.11(±2.42) 88.50(±1.91) 67.89(±1.16) 61.88(±1.34) 79.22(±2.00) 89.20(±0.15)
ROSSEL50 85.04(±3.14) 88.52(±1.54) 68.20(±0.98) 62.33(±0.90) 78.77(±2.25) 89.18(±0.11)

We report the results of ensemble-SVM and ROSSEL with both 10 and 50 weak annotators. Semi-supervised methods with maximum
accuracy are in bold. Some of the compared algorithms either require much memory (indicated by “*” in the above table) or very
expensive in computation (e.g. more than a day, indicated by “–” in the above table). Therefore, these algorithms can not be applied to the
large datasets such as the rcv1-all dataset.

Table 4: Average training time (in seconds) over 10 runs.
Methods CNAE9 dna connect4-10k protein rcv1-train rcv1-all

LIBLINEAR 0.0008 0.0009 0.0909 0.0126 0.3405 1.6855
LIBSVM 0.0052 0.0385 0.1408 0.2387 1.3338 672.4409

ensemble-10SVM 0.0060 0.0136 0.0487 0.2329 2.1081 33.2070
ensemble-50SVM 0.0224 0.0405 0.3919 0.8019 14.5482 119.0243

LapSVM 0.1596 7.0668 14.3528 152.9257 494.4695 *
LapRLS 0.1715 7.0214 13.0248 152.8537 420.5253 *

meanS3VM 2.8588 13.8941 – – – –
CS4VM 1.3219 9.5178 539.8876 – – –

ASL 3.4355 16.3261 115.6894 1748.2612 * *
ROSSEL10 0.2123 0.2271 0.7955 3.4457 45.5584 815.0660
ROSSEL50 0.5481 1.4133 3.2811 16.5558 336.4487 6024.5965

We report the results of ensemble-SVM and ROSSEL with both 10 and 50 weak annotators. Semi-supervised methods with minimum
training time are in bold. Some of the compared algorithms either require much memory (indicated by “*” in the above table) or very
expensive in computation (e.g. more than a day, indicated by “–” in the above table). Therefore, these algorithms can not be applied to the
large datasets such as the rcv1-all dataset.

and switch them to wrong labels as label noise. The resul-
tant accuracy reported in Figure 2 demonstrates that our al-
gorithm can be more resistant to label noise than other base-
lines used in the experiment.

Comparison of Accuracy and Scalability

In this experiment, we investigate the accuracy and scalabil-
ity of SSL algorithms. We compare the proposed algorithm
with eight other methods, including three supervised learn-
ing algorithms and five SSL methods. The three supervised
learning baselines are listed as below:

• LIBLINEAR (Fan et al. 2008) is a supervised linear SVM
baseline, efficient for large scale data. In the experiment,
we tune two types of SVM including L2-regularized L2-
loss and L2-regularized L1-loss and report the best re-
sults. We apply the one-vs-all strategy for all experiments.

• LIBSVM (Chang and Lin 2011) is a supervised non-linear
SVM baseline, which is usually slower than LIBLINEAR
when kernels are present. In the experiment, we tune var-
ious kernels, including the linear kernel, polynomial ker-
nel, Gaussian kernel and sigmoid kernel. We apply the

one-vs-all strategy for all experiments.

• Ensemble-SVM is an ensemble supervised learning base-
line, by which we demonstrate the effectiveness of the
proposed SSL method. Each of the base classifier is
trained by LIBLINEAR on a bootstrap replicate. The pre-
dicted label on a test instance is computed by plurality
voting of all base classifier.

The five SSL competing methods are listed as follows:

• LapSVM (Belkin, Niyogi, and Sindhwani 2006) is a
graph-based SSL algorithm. The objective function of
SVMs is regularized by graph Laplacian.

• LapRLS (Belkin, Niyogi, and Sindhwani 2006), similar
to LapSVM, is regularized by graph Laplacian. The ob-
jective function is based on the least squared loss.

• meanS3VM (Li, Kwok, and Zhou 2009), instead of esti-
mating the label of each unlabeled data, exploits the label
means of unlabeled data, and maximizes the margin be-
tween the label means.

• CS4VM (Li, Kwok, and Zhou 2010) is a cost-sensitive
semi-supervised SVM algorithm, which treats various
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(f) rcv1-all

Figure 3: Average accuracy over 10 runs on various datasets with different number of weak annotators.

misclassification errors with different costs.

• ASL (Wang, Nie, and Huang 2014) is a recently proposed
SSL method that avoids expensive graph construction and
adaptively adjusts the weights of data, which can be ro-
bust to boundary points.

In this experiment, we use Gaussian kernel K(xi,xj) =

exp(− ||xi−xj ||2
2σ2 ) to compute the kernel matrix. The kernel

parameter σ is fixed as 1, and all feature matrices are nor-
malized before the experiment. We select from the range
of {10−5, 10−3, 10−1, 100, 101, 103, 105} for the parame-
ters to be tuned in all methods. We empirically set the pa-
rameter k-nearest neighbour as 5 for the graph-based meth-
ods, LapSVM and LapRLS.

Ensemble-SVM and ROSSEL are two ensemble based
methods. In this experiment, we report the results of these
two methods with both 10 and 50 weak annotators. When
sampling, we bootstrap 50% labeled data into a bootstrap
replicate.

For comparison, we perform the experiment 10 times on
various splits of the labeled, unlabeled and test sets. Aver-
age accuracy on the test set and average training time of all
competing methods over 10 runs are reported in Table 3 and
Table 4 respectively. Results in the two tables demonstrate
that the proposed method is very competitive in terms of ac-
curacy and scalability. SSL algorithms usually suffer from
poor scalability. As can be seen from the results, even on the
full rcv1 dataset that contains more than 400,000 training
examples with 47,236 features, ROSSEL provides promis-
ing accuracy within much less training time.

Impact of Number of Weak Annotators

In this experiment, we study the effect of various numbers
of weak annotators used in the two ensemble based methods,
ROSSEL and ensemble-SVM. We perform this experiment
on all the six datasets.To investigate the influence of differ-
ent numbers of weak annotators, 5, 10, 20, 30, 40, 50 weak
annotators are used in these two methods. We run the ex-
periment over 10 different splits of labeled, unlabeled and
the test sets. The accuracy on test data of different numbers
of weak annotators of the two algorithms is reported in Fig-
ure 3.

As observed, ensemble-SVM usually performs better with
more weak annotators. However, our method with different
numbers of weak annotators gives very close performance.
This observation demonstrates that our algorithm is stable
and will provide competitive performance even when there
are a small number of weak annotators involved.

Conclusions

SSL is proposed to improve the performance by exploit-
ing both labeled data and unlabeled data. It plays an in-
creasingly crucial role in practical applications due to the
rapid boosting of the volume of data. However, conventional
SSL algorithms usually suffer from the poor efficiency and
may degenerate remarkably when label noise is present. To
address these two challenges, we propose ROSSEL to ap-
proximate ground-truth labels for unlabeled data though the
weighted aggregation of pseudo-labels generated by low-
cost weak annotators. Meanwhile ROSSEL trains an induc-
tive SSL model. We formulate the label aggregation problem
as a multiple label kernel learning (MLKL) problem which
can be solved very efficiently. The complexity of ROSSEL
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is much lower than related SSL methods. Extensive experi-
ments are performed on five benchmark datasets to investi-
gate the robustness, accuracy and efficiency of SSL methods.
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