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Abstract

Most distance metric learning (DML) approaches focus
on learning a Mahalanobis metric for measuring distances
between examples. However, for particular feature repre-
sentations, e.g., histogram features like BOW and SPM,
Mahalanobis metric could not model the correlations be-
tween these features well. In this work, we define a non-
Mahalanobis distance for histogram features, via Expected
Hitting Time (EHT) of Markov Chain, which implicitly con-
siders the high-order feature relationships between different
histogram features. The EHT based distance is parameter-
ized by transition probabilities of Markov Chain, we conse-
quently propose a novel type of distance learning approach
(LED, Learning Expected hitting time Distance) to learn ap-
propriate transition probabilities for EHT based distance.
We validate the effectiveness of LED on a series of real-
world datasets. Moreover, experiments show that the learned
transition probabilities are with good comprehensibility.

Introduction

Effectiveness of learning methods like k-means, k-NN sub-
stantially rely on the distance metric invoked. Most Distance
Metric Learning (DML) methods, e.g., (Davis et al. 2007;
Guillaumin, Verbeek, and Schmid 2009), focus on learn-
ing a (squared) Mahalanobis distance which is defined as:
dM(xi,xj)

2 = (xi − xj)
�M(xi − xj), where xi and xj

are two instances in R
d, M ∈ R

d×d is a symmetric positive
semi-definite (PSD) matrix. M in above equation gives the
definition of Mahalanobis distance metric, and it implicitly
measures the second-order correlations between features.

It is noteworthy, however, that the second-order correla-
tions could not express higher-order feature interactions in
Mahalanobis metric; this may cause some problems on dis-
tance measurements. Fig. 1 gives a concrete example: The
left two photos contain a same dog with different poses,
while the right two subplots are the gray channel histograms
respectively. The significant differences between histograms
will lead to a large distance between these two images of
dog, and may hurt the generalization ability no matter what
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Figure 1: Illustration on the reason of classical Mahalanobis
distance metric learning failure on histogram features: his-
togram changing tremendously on images of the same dog.
The x-axis is the intensities, and the y-axis is the normal-
ized frequencies (histogram), i.e., these histograms can be
regarded as the intensities distribution.

kinds of Mahalanobis distances are learned and used. This
phenomenon owes to the fact that traditional Mahalanobis
distance metric only handle second-order correlations of in-
dividual features and leaves the high-order feature interac-
tions unconsidered. While in reality, e.g., the case of Fig. 1,
adjacent intensities are very similar on visual sense, and
features in these photos should be strongly related. Simi-
lar phenomena occur on other histogram style features like
BOW (Sivic and Zisserman 2003) and SPM (Lazebnik,
Schmid, and Ponce 2006), etc. Mahalanobis distance metric
could be inapplicable for these histogram feature represen-
tations where high-order feature interactions exist.

Non-Mahalanobis distances are raised in very recent. Ke-
dem et al. (2012) proposed GB-LMNN, an extension of
LMNN (Weinberger and Saul 2009), which utilizes gradi-
ent boosting regression trees to obtain a non-linear distance
function; DeepML (Hu, Lu, and Tan 2014) learns nonlinear
mappings for different views with deep brief networks for
face verification; EMD (Rubner, Tomasi, and Guibas 2000)
and Kullback-Leibler divergence investigate dissimilarities
between two distributions yet itself a pre-defined distance
measurement rather than performing distance learning; Shi,
Bellet, and Sha (2014) proposed a sparse distance metric
learning approach which can learn a group of local Maha-
lanobis distances based on fixed metric bases. These ap-
proaches are designed according to the characteristics of real
problems, and have achieved better performance than ordi-
nary Mahalanobis metrics in particular tasks. Nevertheless,
those fixed non-linear distance functions or fixed distance
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bases in above approaches have less flexibilities than learn-
ing distance metrics/measurements.

Expected Hitting Time (EHT) is one of the most criti-
cal concept in Markov Chains (Chen and Zhang 2008). A
discrete-time Markov Chain is a kind of random process
which involves dynamic systems represented as changing
states along with time or steps. In Markov Chain, Tpq de-
fines the direct transition probability between any of two
states p and q, thus describes the second-order relationships
between states. All these second-order transition probabili-
ties form a matrix, i.e., the probability transition matrix of
Markov Chain. Nevertheless, EHT implicitly makes use of
the time-series relationships which is a kind of high-order
interactions between state transitions. The EHT is defined
as the average time or number of steps needed in all tran-
sitional paths from state p to q. For example, a transitional
path from p to q can be with directly transiting p to q with
probability Tpq and the corresponding hitting time equals
to 1, or using other states as transients: state p can be tran-
sited to r and then to q with probability

∑
r TprTrq and the

hitting time equals to 2, etc. EHTp→q is the expected least
efforts of transiting from state p to q, and can be further con-
sidered as the dissimilarity between these two states. When
two states are with similar properties, the EHT can be hope-
fully smaller, and vice versa. Detailed definitions of EHT
distance are described in Section 3.

In this work, we focus on the classification and infor-
mation retrieval problems where features are represented as
histograms, and propose a novel non-Mahalanobis distance
function based on the Expected Hitting Time (EHT). It is no-
table that we de-emphasize the original physical meaning on
time-series of EHT but only model the feature-feature inter-
actions with the transition probabilities in Markov Chains,
and then the feature dissimilarities or distances with high-
order feature interactions can be naturally modeled by EHT.
Note that histogram representing an instance can be re-
garded as a type of distribution on features, and then the
distances between instances are also able to be represented
with averaged EHT under certain distributions. Since EHT
strongly depends on transition matrix T, in order to ac-
curately model the distances between instances with EHT,
T should be learned with supervised information, by mini-
mizing the EHT based dissimilarities/distance between in-
stances within the same class and maximizing that with
different labels. We present an effective approach named
Learning Expected hitting time Distance (LED) for the tran-
sition matrix T learning based on first order optimization
techniques. LED is further compared with existing state-
of-the-art metric learning algorithms on real-world datasets.
Experimental results reveal the effectiveness of LED. Our
main contribution includes:

• A novel EHT based distance for histogram representa-
tions: EHT can measure the distances between instances
represented by histograms.

• An effective distance learning approach: LED is brought
forward to learn an appropriate transition matrix and
achieve better generalization ability of EHT distances.

The paper is organized as follows: Section 2 is related

work. The novel EHT distance and LED are described in
Section 3 and Section 4 respectively. Section 5 contains the
experiments and finally Section 6 concludes.

Related work

The basic idea of distance metric learning is to find a dis-
tance metric with which the distance between data points
in the same class is smaller than that from different classes.
Representative algorithms for distance metric learning in-
clude: maximally collapsing metric learning (Globerson and
Roweis 2006), information-theoretic metric learning (Davis
et al. 2007), large-margin nearest neighbors (Weinberger and
Saul 2009), logistic discriminant metric learning (Guillau-
min, Verbeek, and Schmid 2009), optimization equivalence
of divergences improves neighbor embedding (Yang, Pelto-
nen, and Kaski 2014). More researches on Mahalanobis met-
ric learning can be found in surveys (Bellet, Habrard, and
Sebban 2013; Kulis 2013).

In recent years, some Non-Mahalanobis based distances
have also been proposed aiming at the nonlinearities of
problems. Typical works include distance defined with
CNN (Chopra, Hadsell, and LeCun 2005); instance spe-
cific DML (Frome et al. 2007; Zhan et al. 2009; Ye, Zhan,
and Jiang 2016); class specific DML (Weinberger and Saul
2008). However, most of these methods are variants to Ma-
halanobis distances or Mahalanobis distances in localities,
which cannot fundamentally get out of the barrier of prob-
lem in Fig 1.

The Expected Hitting Time (EHT), which depends on the
transition probabilities between states, is an important con-
cept in Markov chain. It is usually used for stochastic differ-
ential equations (Yamada 1983). It is also noteworthy that
the EHT of reaching the optimal solution for the first time,
i.e., the Expected First Hitting Time (EFHT), is a fundamen-
tal theoretical issue of evolutionary algorithms, in analogous
to time complexity of deterministic algorithms. It has been
shown that EFHT has close relation to the convergence rate,
and a powerful theoretical analysis approach has been devel-
oped (Yu and Zhou 2008).

In this paper, we adopt EHT to measure the distance be-
tween instances represented by histogram-like features, and
the EHT-based distance is able to capture higher-order fea-
ture interactions to some extent.

EHT based Distance

Histograms are constituted by frequencies, and as a mat-
ter of fact normalized histograms are feature distribu-
tions. Mahalanobis distance, however, cannot capture the
divergences between distributions, which may lead to the
dilemma illustrated in Fig. 1: neglecting the high-order
feature interactions may consequently degenerate the final
performance, and specifically designed histogram similari-
ties/dissimilarities (Cha 2007; Kedem et al. 2012; Ma, Gu,
and Wang 2010) including HIK/EMD arbitrarily assign dis-
tances with pre-defined functions without comprehensive
reasons. We try to solve this problem with a novel proposed
Learning Expected hitting time Distance (LED) approach
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in this paper, and will first introduce the distance measure
based on EHT followed by the concrete LED approach.

Histogram features as Markov Chain states

Without any loss of generality, suppose we have
the set of labeled training examples denoted as
{(xi, yi)|i = 1, 2, · · · , n}, where xi ∈ R

d, yi ∈
{1, 2, · · · , c}, n is the number of training instances
and c is the number of categories. Note that xi is rep-
resented with d histogram features, and it is reasonable
to assume the feature space R

d is a finite discrete set.
xs
i is the quantity/frequencies of the s-th feature of xi.

It is obvious that xs
i ≥ 0 for any s. We can also denote

the must-link pairs and cannot-link pairs as in literatures:
S : {xi,xj} if yi = yj , D : {xi,xk} if yi �= yk.

In order to model the interactions between histogram fea-
tures, Markov Chain is employed. One of the most important
parts of Markov Chain is the probability transition matrix T,
in which the (p, q)-th element of T (denoted as Tpq) is the
transition probability from state p to q, and

∑
q Tpq = 1.

In this paper, we treat the states of Markov Chain process as
single histogram features and the physical meaning of Tpq is
the transiting probability of “moving one unit from feature p
to feature q”, where Tpp = 0. It is obvious that 0 < p, q ≤ d.
As a consequence, Tpq can be turned into a type of criterion
for measuring difference between feature p and q, i.e., the
first Hitting Time of transiting one unit of feature p to q,
which can be written according to (Chen and Zhang 2008):
HTp→q = min {t : v0 = p, vt = q}, where v0 indicates the
start state of Markov Chain, and v0 = p reveals at time 0,
the concerned instance x have the property that xp = 1 and
xs = 0 (s �= p). Similarly, we have vt reflects the hitting
state. Then HTp→q reflects “the minimized efforts for mov-
ing one unit of feature from p to q”. As a consequence, the
expectation of HTp→q , furthermore, figures out the average
efforts which are reasonable for measuring the divergence
between two different histogram features.

Matching distribution to feature

Following the Theorem 1 inspired by (Chen and Zhang
2008), we can straightly get the expected efforts for tran-
siting a given distribution xa ∈ R

d to feature s, that is
EHTxa→s = x�

a (I − T−s)
−11, where T−s denotes the

probability transition matrix obtained by letting the s-th row
(Ts·) and the s-th column (T·s) equal 0.
Theorem 1. Providing a finite irreducible Markov Chain on
state set V , ∀s ∈ V , the expected hitting time of transiting
from a certain distribution xa to state/feature s is :

EHTxa→s = x�
a (I−T−s)

−11, (1)

where I is the identity matrix, 1 is all one vector.
It is notable that (1d )

�(I−T−s)
−11 equals the expected

value for transiting uniform distribution to state/feature s,
while the physical meaning behind Theorem 1 is by setting
the s-th feature as the absorbing state, and EHTxa→s is the
expected value of (I − T−s)

−11 over distribution xa, i.e.,
Eq. 1 is the efforts should be made for transiting all com-
ponents (frequencies or counts) in xa to a single histogram
feature s.

Matching distribution to distribution

Based on expectation value of EHTxa→s providing the
transitional efforts between distribution (or instance) xa and
features s, we can further define EHTxi→xj by treating
each element xs

j within the distribution of xj as the absorb-
ing state s and then taking average, consequently we have:

EHTxi→xj =
d∑

s=1

xs
j · EHTxi→s. (2)

EHT based Distance

Eq. 2 defines the transitional efforts of transiting distribu-
tion of instance xi to xj and can be directly used for mea-
suring the dissimilarity between these two instances, how-
ever, considering the substantive transiting are made on the
differences between this instances pair, we can further de-
fine xi,j = (xi − xj)+, where z+ is a vector function and
z+ = max(0, z); we then consider the Dis(xi,xj ,T) re-
lated to the efforts for transiting from xi,j to xj,i and vice
versa, i.e., we have the EHT based distance defined as

Dis(xi,xj ,T) = EHTxi,j→xj,i + EHTxj,i→xi,j . (3)

Here the bidirectional transitions are considered for the sym-
metry property for constructing a distance function, and the
EHTxi,j→xj,i

is a distribution to distribution EHT distance,
and the physical meaning of EHTxi,j→xj,i is the average
efforts of moving units from xi,j to the opposite direction
differences xj,i. To better illustrate the formation of EHT
distance in Eq. 3, a concrete example with fixed transition
matrix T is shown in Fig. 2. Fig. 2a gives the detailed tran-
sition diagram together with the transition probabilities in T
(diag elements of T are configured as zeros and not shown),
and the EHT between single features which are calculated
according to (Chen and Zhang 2008). It is noteworthy that
in Fig. 2d, there are four components, i.e., EHTp→q , etc.,
constituted the overall EHT distance, and each of these com-
ponents should be weighted by xs

j and xa according to Eq. 2
and Eq. 1 accordingly.

Note that the probability transition matrix T is the param-
eter and can strongly affect the EHT distance. Besides, in the
transition matrix, Tpq indicates the “one step” feature inter-
action (transition), while the high-order interactions can be
implicitly covered by the ”expected multiple steps” in EHT
distances/dissimilarities naturally.

Learning EHT Distance

In order to achieve better classification performance, clas-
sical distance metric learning approaches obtain the Maha-
lanobis distance metric with the help of side information.
While for EHT based distance, it’s a crucial problem how
to get a good probability transition matrix T rather than the
metric matrix M. Instead of manually designing transition
matrix according to feature similarities or correlations, in
this work we try to “learn” the transition matrix automati-
cally inspired by distance metric learning.

The formulation

We propose the Learning Expected hitting time Dissimilar-
ity (LED) approach to update the transition probabilities by
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Figure 2: A concrete example of EHT based distance calculation between two instances x1 and x2 with 3 features (p, q, r) given
a fixed probability transitional matrix, and the Dis(xi,xj ,T) = EHTx1,2→x2,1

+ EHTx2,1→x1,2
= 0.19+0.55 = 0.74.

minimizing or maximizing the pairwised expected hitting
time distance with side supervision information. Good dis-
tance metric always preserves the instances from the same
class close and separates the instances from different classes
apart. Inspired by this, we have a straight forward objective
function for EHT distance based on probability transition
matrix T:

argmin
T

F (T) =
∑
S

Dis(xi,xj ,T)−λ
∑
D

Dis(xi,xk,T),

s.t.
∑
q

Tpq = 1, Tpq ≥ 0, Tpp = 0, ∀p, q ≤ d. (4)

To simplify the consideration, we have ‖xi − xj‖22 ≤
ε, ‖xi − xk‖22 ≤ ε, i.e., here we restrict on discussion in lo-
calities. Moreover, λ is a trade off parameter, which is fixed
to 1 in our experiments and the constraints in Eq. 4 ensure
T a valid probability transition matrix.

The optimization problem of Eq. 4 is non-convex, yet
can be solved with gradient descent. However, according to
Eq. 3, the objective goal in Eq. 4 contains T−s (s ≤ d) rather
than the whole transition matrix T, and this becomes a bar-
rier for optimizating the matrix T. Considering in gradient
descent, the main target focuses on the update of Tt (the su-
perscript t indicates the iteration steps), we can update T−s

for each s and represent Tt with those T−s. For simplifying
the discussion, we can denote Ys = I − T−s, and update
Ys in each iteration first. Once we collect all updated Yt+1

s ,
we can obtain the updated T̂t+1 = 1

d

∑d
s=1(I−Yt+1

s ). By
taking differential of the objective goal on Ys for instance

pairs xi,xj , we have the gradient ∇F (Ys) equals:

−Ys
−1

⎛
⎝ ∑

xi,xj∈S
v(i, j)− λ ·

∑
xi,xk∈D

v(i, k)

⎞
⎠1� ·Y−1

s , (5)

where v(i, j) is defined as: xi,jx
s
j,i + xj,ix

s
i,j ,

By line search on the gradient step size τ , we can first get
the updated Yt+1 according to the derivative of objective
function, and we project each row of the updated transition
matrix T̂ into a simplex for obtaining the final T at the last
iteration, which ensures the constraints on transition matrix
T, i.e., condition of

∑
q Tpq = 1, Tpq ≥ 0, Tpp = 0 hold.

SGD Acceleration

From Eq. 5, it can be found that the matrix inversion of Ys,
s ∈ {1, · · · , d}, will consume the computational resources
most. In this section, we focus on this issue for reducing
the time complexity with stochastic gradient optimization
techniques in incremental learning settings.

Different from batch updating, in incremental learning
configuration, instances come one by one and only a few
of instance pairs can be used at t. We can therefore rewrite
the stochastic gradient version of LED by constructing the
stochastic gradient approximation γF (Ys) of∇F (Ys). We
sample a training example pair {xi,xj} according to a
Multinomial distribution Multi (γ1,1, . . . , γn,k), where k is
the fixed size of neighborhoods, and compute γi,j as:

γi,j(F ) = −θ(i, j)Ys
−1v(i, j)1�Y−1

s , (6)
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Algorithm 1 LED-SGD pseudo code
Input: xi: Instances with histogram features,

i = 1, 2, · · · , n;
τ : Step size;
ε: Neighborhood threshold;
λ: Trade off;
tmax: the maximum iteration number

Output: updated transition matrix Tt+1

1: Initialize T1 with random matrix, setting T1
pp = 0

2: while true do
3: t = t+ 1
4: for each s ∈ [1, d] do
5: Yt+1

s = I−Tt
−s

6: for each ‖ xi − xj ‖≤ ε do
7: Update (Yt+1

s )−1 with Eq. 8
8: end for
9: T̂t+1 = 1

d

∑d
s=1(I−Yt+1

s )
10: end for
11: Project each row of T̂t+1 to be a simplex

to obtain the transition matrix Tt+1

12: if t > tmax then
13: break
14: end if
15: end while
16: return Tt+1;

where θ(i, j) is a scale function which equals 1 if {xi,xj} ∈
S, and −λ if {xi,xj} ∈ D. As a consequence, the update
rule for Ys becomes:

Yt+1
s = Yt

s − τγi,j(F )

= Yt
s + τθ(i, j)(Yt

s)
−1v(i, j)1(Yt

s)
−1

= Yt
s + τθ(i, j)(Yt

s)
−1 [xi,j xj,i] (7)[

1 0
0 1

] [
xs
j,i1

�

xs
i,j1

�

]
(Yt

s)
−1.

For simplification of the discussion, we can substitute some
variables in Eq. 7 as:

Ut = (Yt
s)

−1 [xi,j xj,i] ,

Vt =

[
xs
j,i1

�

xs
i,j1

�

]
(Yt

s)
−1,

where U ∈ R
d×2 while V ∈ R

2×d. From Eq. 7, it clearly
shows that the stochastic gradient of Ys on each instance
pair xi,xj in Eq. 6 is a matrix of rank 2. More important,
we observe that only the inverse of Ys are actually required
in calculating the stochastic gradient approximation, there-
fore following the Sherman-Morrison-Woodbury formula,
we have the update rule rewritten as:

(Yt+1
s )−1 = (Yt

s)
−1 − (Yt

s)
−1UtQ−1Vt(Yt

s)
−1, (8)

where I is the identity matrix, Q = (I+Vt(Yt
s)

−1Ut).
With the low rank update rule described in Eq. 8, the

stochastic gradient updating can be carried out efficiently.
Procedures for stochastic version of LED are listed in Al-
gorithm 1. With the transition matrix T obtained by LED
or LED-SGD, we can predict new instances with distance
based classifiers, such as k-NN.

Table 1: Brief dataset description including dataset type,
number of instances and number of classes.

Name Type #instances #classes

PASCAL-VOC2009 Image 7818 20
CalTech101 Image 9144 102

sub-ImageNet Image 119236 193
R8 of Reuters21578 Text 21578 8

20Newsgroups Text 16926 20

Experiments

In this section, we evaluate the proposed LED approaches
by comparing them with 5 state-of-the-art distance metric
learning methods. Datasets used in our empirical investi-
gations are from image and text classification problems. In
detail, 3 image and 2 text datasets are used in our experi-
ments, and the brief datesets descriptions are summarized in
Table 1. For PASCAL-VOC2009, the goal is to recognize
objects from 20 visual object classes in realistic scenes. Cal-
Tech101 collects pictures of objects from 102 categories and
contains 40 to 800 images per category. Reuters-21578 is a
collection of documents that published on Reuters Newswire
in 1987, from which a subset of 8 classes according to (Ca-
chopo 2007) is used in our experiments. 20Newsgroups
is a collection of newsgroup documents from 20 different
newsgroups, each of which corresponds to a different topic.
Histogram features are extracted for both image and text
datasets, i.e., for PASCAL-VOC2009, 1000 BOW features
are extracted; while 1000 BOW features and 1500 SPM fea-
tures are extracted from CalTech-101; 105 HOG+HSV fea-
tures for subset of imageNet and 1500 TF (term frequency)
features for both of the text datasets. BOW and SPM are
extracted based on sparse sampling SIFT descriptors (Lowe
1999). All histogram features are normalized. For facilitat-
ing the discussion, we denote the dataset in specific config-
urations with the notation of “dataset name-feature type”,
e.g., ‘CalTech101-BOW’ in result tables and figures.

In order to validate the effectiveness of LED, the 5 state-
of-the-art distance metric learning methods compared are:

• Information Theoretic Metric Learning (ITML) (Davis et
al. 2007) which minimizes differential relative entropy on
the distance functions;

• Logistic Discriminant Metric Learning (LDML) (Guillau-
min, Verbeek, and Schmid 2009) which uses logistic dis-
criminant to learn a metric from labeled instance pairs;

• Laplacian Regularized Metric Learning (LRML) (Hoi,
Liu, and Chang 2010) which learns robust distance met-
rics in an effective graph regularization framework.

• Parametric Local Metric Learning (PLML) (Wang,
Kalousis, and Woznica 2012) which learns a smooth met-
ric matrix function over the data manifolds defined by lo-
cal metric;

• Divergences Neighbor Embedding (DNE) (Yang, Pelto-
nen, and Kaski 2014) which minimizes information di-
vergences in generalized stochastic neighbor embedding.
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Table 2: Accuracy (Avg.± Std.) comparisons with 6 other approaches on datasets with histogram feature representations. The
best performance is marked with bold.

Datasets k-NN DNE ITML PLML LDML LRML LED LED-SGD

CalTech101-BOW .153±.005 .132±.007 .384±.008 .411±.012 .424± .017 .086± .002 .448±.022 .444±.020

CalTech101-SPM .501±.009 .587±.015 .688±.009 .645±.011 .604± .003 .281± .007 .732±.005 .731±.008

ImageNet-HOG .315±.005 .071±.060 .242±.008 .138±.009 .275± .004 .184± .003 .322±.006 .325±.005

VOC2009-BOW .529±.012 .155±.002 .597±.013 .627±.009 .602± .016 .337± .027 .629±.011 .628±.010

20NewsGroups-TF .481±.021 .136±.014 .663±.034 .649±.014 .632± .031 .203± .042 .671±.007 .670±.007

Reuters-TF .920±.004 .795±.028 .940±.004 .938±.004 .944± .004 .815± .008 .946±.003 .940±.004

Figure 3: CBIR retrieved results (LED, Euclidean and ITML) and histograms. The first column is two random picked up
query images, column 2–4 are top-1 retrieved results for compared methods, remain columns are RGB histograms for query or
retrieved images. LED learned EHT distance can retrieve accurate objects (plane, sailboat) with different dominant hue.

Experimental results on k-NN with Euclidean distance are
also listed as baseline in our experiments. All compared im-
plementations are with the form as their respective litera-
tures reported. 5-NN is utilized as the final classifier, while
all other parameters of compared methods are tuned accord-
ing to the original reports respectively. For LED and LED-
SGD, the probability transition matrix T is initialized ran-
domly and projected to a simplex described by the con-
straints in Eq. 4. Step size is tuned with line search, and λ is
simply configured to 1 for default.

2/3 instances are used as training examples while remains
are used for testing. Experiments on each dataset are per-
formed 30 times with random splits. Average classifica-
tion accuracies together with the standard derivations are
recorded in Table 2. The best result is marked with bold.

Table 2 clearly shows, both of the proposed methods, i.e.,
LED and LED-SGD, are superior to those compared ap-
proaches obviously. In detail, LED outperforms other 7 com-
pared methods, including LED-SGD, on 5 datasets, i.e., Cal-
Tech101 with BOW features and SPM features, VOC2009
with BOW features, and both of the text datasets (20News-
Groups and Reuters); LED-SGD outperforms other 7 com-
pared approaches on sub-ImageNet with HOG features.
Moreover, LEG-SGD is superior to other 5 state-of-the-art
distance metric learning methods and k-NN on 4 datasets,
including CalTech101 with BOW and SPM, VOC2009 with
BOW and 20Newsgroups. Experimental results have vali-

Table 3: Words corresponding to the top Tpq in transition
matrix learned by LED on text data.

Word (q) Words (p) with top transition probability

time speed, scale, earlier, quality
people company, official, responsibility, hurt
government illegal, shooting, nsa, vote
phone Hd, game, location, voice
windows computing, network, electronics, systems

dated the effectiveness of LED/LED-SGD.
In order to reveal the superiority of LED comprehen-

sively, we conduct more investigations on both image and
text datasets. On CalTech101 with RGB color histogram, we
perform random queries, and due to the page limits, Fig. 3
only gives the top-1 (1-NN) images retrieved by LED, Eu-
clidean and ITML metric on two of the random queries, each
of which is plotted in a row. The x-axis of RGB color his-
tograms in Fig. 3 are ordered by color Red, Green and Blue.
From the visualization effects, we can find LED can pick
up the CBIR results with totally different dominant hues
nonetheless including similar semantical meanings, while
other distance metrics lean to choose images with similar
RGB histograms.

Since the physical meanings of color histograms for
images is not intuitively expressed, to reveal the under-
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lying reasons why LED and EHT distance can perform
well, we carry out a further investigation on text dataset
(20Newsgroups-TF). The transition probabilities learned by
LED are recorded. We randomly pick up 5 different words
(features q), and then list 4 words (features p) which are with
top-4 Tpq for each q. In this way, the pairs of feature p and
q are strongly related with high-order interactions. The re-
sults are shown in Table 3. Considering the comprehensibil-
ity of texts, the inner relationships between word p and q
in Table 3 are apparent: taking the word “government” for
example, the words with top transition probabilities are “il-
legal”, “shooting”, “nsa” and “vote”, which often appear in
the category of “talk.politics.guns” and belong to the topic
focused by “gevernment”. This phenomenon indicates that
the transition probabilities learned by LED are meaningful.

Conclusion

In this paper, we figure out the natural weakness of Maha-
lanobis metric when instances are represented by histogram
features, and then propose a novel non-Mahalanobis dis-
tance learning approach, LED, based on the expected hitting
time (EHT) distances which can utilize the high-order inter-
actions between histogram features. In EHT distance, fea-
ture relationships are modeled by Markov Chain and only
depend on the probability transition matrix, therefore the
main target of LED is seeking for an appropriate transition
matrix for better EHT distance to improve the generalization
ability of successive classifiers.

It is noteworthy that the LED can be solved with stochas-
tic gradient descend and the efficiency is guaranteed by the
low-rank update in each iteration. Our experiments on image
and text datasets reveal the effectiveness of LED comparing
to 5 state-of-the-art distance metric learning methods. Ad-
ditional experiments on discovering the comprehensibility
and underlying reasons for superiorities of LED are also per-
formed and the results demonstrate that the transition matrix
learned by LED can provide meaningful results.

The drawback of EHT based distance is it could be non-
metric and may consequently lead to loss of potential good
properties. How to leverage the advantages of EHT and Ma-
halanobis metric in a learning framework should be inves-
tigated in future. Besides, EHT itself has the abilities on
modeling time-series information which are neglected in this
work, further discussions on how to explore these abilities
for distributional feature measuring can be an interesting
work as well.
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Cha, S.-H. 2007. Comprehensive survey on distance/similarity
measures between probability density functions. Int. Joul. Math.
Models and Methods in Applied Sciences 1(4):300–307.
Chen, H., and Zhang, F. 2008. The expected hitting times for finite
markov chains. Linea. Alge. and its Appl. 428(11):2730–2749.

Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learning a similarity
metric discriminatively, with application to face verification. In
Proc. CVPR, 539–546.
Davis, J. V.; Kulis, B.; Jain, P.; Sra, S.; and Dhillon, I. S. 2007.
Information-theoretic metric learning. In Proc. ICML, 209–216.
Frome, A.; Singer, Y.; Sha, F.; and Malik, J. 2007. Learning glob-
ally consistent local distance functions for shape-based image re-
trieval and classification. In Proc. ICCV, 1–8.
Globerson, A., and Roweis, S. T. 2006. Metric learning by collaps-
ing classes. In NIPS 19. Cambridge: MIT Press. 451–458.
Guillaumin, M.; Verbeek, J.; and Schmid, C. 2009. Is that you?
metric learning approaches for face identification. In Proc. ICCV,
498–505.
Hoi, S. C.; Liu, W.; and Chang, S.-F. 2010. Semi-supervised dis-
tance metric learning for collaborative image retrieval and cluster-
ing. ACM Trans. Multimedia Comp., Comm., Appl. 6(3):18–44.
Hu, J.; Lu, J.; and Tan, Y.-P. 2014. Discriminative deep metric
learning for face verification in the wild. In Proc. CVPR, 1875–
1882.
Kedem, D.; Tyree, S.; Sha, F.; Lanckriet, G. R.; and Weinberger,
K. Q. 2012. Non-linear metric learning. In NIPS 25. Cambridge:
MIT Press. 2573–2581.
Kulis, B. 2013. Metric learning: A survey. Foundations and Trends
in Mach. Learn. 5(4):287–364.
Lazebnik, S.; Schmid, C.; and Ponce, J. 2006. Beyond bags of
features: Spatial pyramid matching for recognizing natural scene
categories. In Proc. CVPR, 2169–2178.
Lowe, D. G. 1999. Object recognition from local scale-invariant
features. In Proc. ICCV, 1150–1157.
Ma, Y.; Gu, X.; and Wang, Y. 2010. Histogram similarity measure
using variable bin size distance. CVIU 114(8):981–989.
Rubner, Y.; Tomasi, C.; and Guibas, L. 2000. The earth mover’s
distance as a metric for image retrieval. IJCV 40(2):99–121.
Shi, Y.; Bellet, A.; and Sha, F. 2014. Sparse compositional metric
learning. Preprint ArXiv:1404.4105.
Sivic, J., and Zisserman, A. 2003. Video google: A text retrieval
approach to object matching in videos. In Proc. ICCV, 1470–1477.
Wang, J.; Kalousis, A.; and Woznica, A. 2012. Parametric local
metric learning for nearest neighbor classification. In NIPS 25.
Cambridge: MIT Press. 1610–1618.
Weinberger, K. Q., and Saul, L. K. 2008. Fast solvers and effi-
cient implementations for distance metric learning. In Proc. ICML,
1160–1167.
Weinberger, K. Q., and Saul, L. K. 2009. Distance metric learning
for large margin nearest neighbor classification. JMLR 10:207–
244.
Yamada, K. 1983. A bound for the expected hitting time of storage
processes. Stochas. Proce. and their Appl. 14(1):93–105.
Yang, Z.; Peltonen, J.; and Kaski, S. 2014. Optimization equiv-
alence of divergences improves neighbor embedding. In Proc.
ICML, 460–468.
Ye, H.-J.; Zhan, D.-C.; and Jiang, Y. 2016. Instance specific metric
subspace learning: A bayesian approach. In Proc. AAAI.
Yu, Y., and Zhou, Z.-H. 2008. A new approach to estimating
the expected first hitting time of evolutionary algorithms. AIJ
172(15):1809–1832.
Zhan, D.-C.; Li, M.; Li, Y.-F.; and Zhou, Z.-H. 2009. Learning in-
stance specific distances using metric propagation. In Proc. ICML,
1225–1232.

2315




