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Abstract

A large amount of ordinal-valued data exist in many do-
mains, including medical and health science, social science,
economics, political science, etc. Unlike image and speech
datasets of real-valued data, learning with ordinal variables
(i.e., features) presents unique challenges. In particular, the
nominal differences between those feature values, which are
just ranks, do not necessarily correspond to the real distances
between the corresponding categories. Given their wide exis-
tence, it is imperative to develop machine learning algorithms
that specifically address the need to model and infer with such
data. In this paper, we present a novel metric learning algo-
rithm that takes into consideration the nature of ordinal data.
Our approach treats ordinal values as latent variables in in-
tervals. Our algorithm then learns what those intervals are as
well as distance metrics to measure distances between latent
variables in those intervals. We derive the corresponding op-
timization algorithm and demonstrate how that can be solved
effectively. Experimental results show that the proposed ap-
proach significantly improves baselines that do not explicitly
model ordinal features.

Introduction

Ordinal data arises frequently in behavioral, medical, ed-
ucational, psychological and social science. For these do-
mains, people usually provide their “measurements” in the
forms of subjective and imprecise opinions. For example,
college students rate the overall quality of the class as “ex-
cellent”,“good”,“fair”,“poor” and “very poor”; consumers
rate the product on a 5-point scales; the degree of agree-
ment can be measured by different levels such as “strongly
agree”, “agree”, “neutral”, “disagree”, etc. We can easily
find application domains for such ordinal data where human-
generated data plays important role (Fen Xia 2007).

The focus of this paper is to investigate how we can
use ordinal data (i.e., features) in machine learning mod-
els for prediction and classification. One popular way is to
treat them as real-valued continuous variables. However, the
difference in numerical scales does not necessarily reflect
the true distances between the corresponding categories.
For example, the true distance between “strongly agree”
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and “agree” is usually different from “agree” and “neu-
tral” (Torra et al. 2003; O’Brien 1979), despite nominally
they are just one scale apart from each other. Another com-
mon approach is to treat ordinal variables as categorical vari-
ables, which are then coded with 1-of-K encoding. However,
the major problem of this approach is that it ignores the or-
dering information which may be crucial for the learning
problems.

Ordinal values are qualitative in nature, and a common
view of ordinal values is that they are nonstrict monotonic
transformations of interval variables (Winship and Mare
1984). That is, one or more values within the same inter-
val are mapped into the same ordinal value. For example,
when individuals rank categories, such as “strongly agree”,
“agree”, “neutral”, etc, an underlying continuous variable
denoting individuals degrees of agreement is mapped into
categories that are ordered but are separated by unknown
distance (Winship and Mare 1984).

The contribution of this paper is to propose a novel way
of modeling and inference with ordinal variables when they
are treated as input features. We consider the problem within
the context of measuring distances/dissimilarity, which is
a fundamental problem in machine learning. In particular,
we consider the metric learning framework (Weinberger and
Saul 2009; Weinberger and Tesauro 2007; Kedem et al.
2012; Goldberger et al. 2004). Our main idea is to discover
the intervals as well as to learn a distance metric to measure
the distance between ordinal features.

To this end, we extend the popular algorithm large mar-
gin nearest neighbors (LMNN) (Weinberger and Saul 2009).
The idea is to compute expected distances between latent
ordinal variables. In order to compute such expectation, we
consider different types of distributions for the latent vari-
ables, namely, uniform, Beta and Beta rectangular distri-
butions. The optimization can be done efficiently via pro-
jected subgradient descent. Our experimental results on real-
world datasets show that properly learning ordinal informa-
tion from the data will improve the classification perfor-
mance. We also extend our algorithm to kernel regression
and obtain positive results (see the Supplementary Materi-
als1). Although this paper focuses on metric learning, all the
methods proposed here can be easily generalized to other

1Can be found at www-scf.usc.edu/∼yuanshi/

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2030



types of machine learning algorithms which use distances as
a measure of dissimilarity.

Related Work

Although there has been a considerable amount of work in
the case when the response variables/labels are ordinal (Mc-
Cullagh 1980; Ananth and Kleinbaum 1997; Paquet, Thom-
son, and Winther 2012; Cardoso and Pinto da Costa 2007;
Frank and Hall 2001; Li and Lin 2006), limited work has
considered the case where the input features are ordinal,
which are common in many domains. The problem is largely
unexplored both in machine learning and statistics commu-
nities. In this section, we review two main lines of previous
work that explicitly deal with ordinal features.

One line of work focuses on measuring distances by ex-
ploring the statistical properties without considering the la-
bels. In (Bar 1995; Leon and Carriere 2007; De Leon and
Carriere 2005), the authors propose distance measure for
mixed nominal, ordinal and continuous data by applying
the KL divergence to the general mixed data model, which
is an extension of the general location model (Olkin and
Tate 1961). All these methods are based on multivariate nor-
mal assumptions under some structural constraints on co-
variance matrices. However, these models are tractable only
when dealing with a small number of features. Also it is not
clear how to extend them to supervised learning setting. (Po-
dani 1999) proposes another unsupervised method but uses
a much simpler and tractable similarity measure, which is
built on top of Gower’s coefficient measure (Gower 1971).
We have used this approach as one of the baselines and also
extended it to supervised learning.

Another line of work is to use latent variable models under
Bayesian framework. They assume that the ordinal observa-
tions are drawn from generative models with latent threshold
variables (Poon and Wang 2012; Webb and Forster 2008;
Kottas, Mller, and Quintana 2005; Gerd Ronning 1996;
Johnson 2006; Kukuk 1998; Tran, Phung, and Venkatesh
2012). However, most of these methods make strong as-
sumptions on the probabilistic models, partially for identi-
fiability issues. Besides, due to the intractability of the pos-
terior distributions, they have to use approximate inference
techniques such as Markov Chain Monte Carlo (MCMC),
which generally scales poorly to the size of models and
data. Finally, those Bayesian approaches cannot be easily
extended to learning the distance metrics.

Background and Notations

Assume we have N data points (x1, y1), · · · , (xN , yN ),
where xi ∈ RD and each dimension is ordinal (i.e. with
ordinal scales as 1, 2,· · · ), yi is the corresponding label. We
further assume that each input variable xid is associated with
a continuous latent variable zid where d = 1, 2, · · · , D. xid

and zid satisfy the following threshold model: if xid = t,
then md(t) ≤ zid < md(t+1), where md(t) and md(t+1)
are two thresholds corresponding to the tth ordinal scale at
the dth dimension.

Let md be a vector containing all thresholds for the dth
dimension, then md should satisfy following ordinal con-

straints

−∞ < md(1) < md(2) < · · · < md(kd + 1) < ∞ (1)

where kd is the total number of ordinal scales for the dth
dimension. We denote the constraint set as P . In the fol-
lowing, we use vector m to denote the stack of all {md}:
m = [m�

1 ,m
�
2 , · · · ,m�

D]�.

Metric learning Many machine learning models are based
on some forms of dissimilarity measure between data sam-
ples. Typically Euclidean distance, ‖xi−xj‖22, is used as the
default metric2, which is a special case of the more general
Mahalanobis distance

D2
M (xi,xj) = (xi − xj)

�M(xi − xj)

where M ∈ RD×D and M � 0.
The choice of M may significantly affect the perfor-

mance of the underlying machine learning models. For ex-
ample, in classification setting, an ideal metric would pull
data points in the same class closer and push data points in
different classes away (Weinberger and Saul 2009). When a
set of labeled training samples are available, a better M can
often be learned using metric learning algorithms.

Methodology

Distance Metric for Ordinal Features

For ordinal data, when measuring the distance between sam-
ples xi and xj , we do not directly compute the distance on
x. We instead compute the distance on the corresponding
latent variables zi and zj which represent the ground truth
values for ordinal inputs xi and xj :

D̃2
M (xi,xj) = (zi − zj)

�M(zi − zj) (2)

where the notation D̃ indicates that the distance is computed
on the latent variables.

The challenge is that we do not know the true values of z.
To address this, we make assumptions on the distribution of
z and consider the expected distance

E[D̃2
M (xi,xj)] = (E[zi]− E[zj ])

�M(E[zi]− E[zj ])

+Tr(MVAR[zi]) + Tr(MVAR[zj ]) (3)

where E[z] is a D dimensional vector for the expectation of
z, VAR[zi] is a diagonal D×D matrix storing the variances
of zi, and Tr denotes the trace of a matrix.

Distribution of zid According to the threshold model, we
model zid as a random variable drawn from the interval
[md(xid),md(xid + 1)]. In particular, we model zid as

zid = md(xid) + δd (md(xid + 1)−md(xid)) (4)

where δd ∈ [0, 1] is a random variable. Then we have

E[zid] = md(xid) + E[δd] (md(xid + 1)−md(xid))

VAR[zid] = VAR[δd] (md(xid + 1)−md(xid))
2

2In this paper, we follow the popular terminology in the metric
learning literature, calling the squared distance as distance.
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By recognizing that E[zi] is linear in m and VAR[zi] is
quadratic in m, it is easy to write them in more compact
forms

E[zi] = Aim VAR[zi] = (Bimm�B�
i )� ID

where � denotes the Hadamard product of matrices.
Ai,Bi ∈ RD×W and W is the dimensionality of m. The
value of Ai depends on E[δd] and xi, while the value of Bi

depends on VAR[δd] and xi. Note that we assume {δd} are
independent with each other.

Now we can rewrite the distance function as:

E[D̃2
M (xi,xj)] = Tr(M(Ai −Aj)mm�(Ai −Aj)

�)

+Tr
(
M(Bimm�B�

i +Bjmm�B�
j )� I

)
(5)

which is linear in M and quadratic in m.

Distribution of δd To model δd, we consider three types
of distributions

• Uniform distribution: E(δd) = 0.5 and VAR(δd) = 1/12.

• Beta distribution, which has two parameters α and β con-
trolling the shape of distribution: E(δd) = α/(α+β) and
VAR(δd) = αβ/((α+ β)2(α+ β + 1)).

• Beta rectangular distribution, which is a finite mixture of
Beta distribution and uniform distribution. In addition to
parameter α, β, it has a third parameter θ. The form of
mean and variance are more complicated than the Beta
distribution: E(δd) = θα/(α + β) + (1 − θ)/2 and
VAR(δd) = (θα(α+1))/(k(k+1))+(1−θ)/3− ((k+
θ(α− β))2)/(4k2) where k = α+ β.

For simplicity, we stack the parameters for {δd} into a vector
θ, and denote its domain as Θ.

Margin Based Metric Learning

In the following, we show how an optimal metric can
be learned in classification tasks where discrete labels are
given, i.e. y ∈ {1, 2, · · · , C}.

We follow the Large Margin Nearest Neighbor (LMNN)
framework (Weinberger and Saul 2009) which learns a Ma-
halanobis metric to reduce the classification error of k-
nearest neighbor (kNN). For any point xi in the training set,
LMNN differentiates two sets of neighboring data points:
target neighbors - points whose labels are the same as xi,
and imposters - points whose labels are different from xi.

LMNN optimizes the following objective to find an opti-
mal metric M

min
M�0,ξ≥0

∑
i

∑

j∈S+
i

D2
M (xi,xj) + λ

∑
ijk

ξijk

s.t. D2
M (xi,xj)−D2

M (xi,xk) + 1 ≤ ξijk

∀j ∈ S+
i , k ∈ S−i (6)

where S+
i and S−i denote the set of target neighbors and im-

posters of xi, respectively. λ is the tradeoff parameter which
balances two forces, pulling the target neighbors towards xi

and pushing the imposters away so that the distance to an

imposter should be greater than the distance to the target
neighbor by a margin of 1 using the slack variable ξijk. Be-
cause the problem is linear in its parameters, we set the mar-
gin equal to 1 as its exact value only impacts the scale of
M .

To learn a metric for ordinal data, we replace the distance
D2

M (xi,xj) with the expected distance E[D̃2
M (xi,xj)] and

arrive at the following optimization problem

min
M�0,ξ≥0,m∈P,θ∈Θ

∑
i

∑

j∈S+
i

E[D̃2
M (xi,xj)] + λ

∑
ijk

ξijk

s.t. E[D̃2
M (xi,xj)]− E[D̃2

M (xi,xk)]

+ γ ≤ ξijk, ∀j ∈ S+
i , k ∈ S−i (7)

Besides the substituted distance function, there are two im-
portant changes in (7) compared to (6). First, we have addi-
tional constraints m ∈ P and θ ∈ Θ. Second, since (7) is
nonlinear in its parameters, we cannot arbitrarily set the mar-
gin value γ to 1. Instead, we treat γ as a hyper-parameter of
our model.

Optimization We substitute the slack variable ξijk with
the hinge loss function

ξijk =
[
E[D̃2

M (xi,xj)]− E[D̃2
M (xi,xk)] + γ

]
+

(8)

where [x]+ = max(0, x). We then follow an alternating op-
timization strategy to optimize M , m and θ. Each time we
fix two sets of parameters, and optimize the rest:

• Fix m and θ, optimize M . Note that the objective be-
comes convex in M , and M can be optimized using pro-
jected subgradient descent method. At each descent step,
we first obtain a candidate solution M̂ , and then project
it into the positive semidefinite cone.

• Fix M and θ, optimize m. Since E[D̃2
M (xi,xj)] is

quadratic in m, ξijk is the difference between two con-
vex functions. We therefore use the Convex Concave Pro-
cedure (CCCP) (Yuille, Rangarajan, and Yuille 2002) to
optimize m. The procedure iteratively solves the follow-
ing sequence of convex programs

min
m

∑
ij

E[D̃2
M (xi,xj)] + λ

∑
ijk

(E[D̃2
M (xi,xj)]

−m�∇m

(
E[D̃2

M (xi,xk)]
)
+ γ)+ (9)

where m�∇m

(
E[D̃2

M (xi,xk)]
)

is a linearization for
the concave part in the original objective function (8).
(9) can be optimized via projected subgradient descent.
In each descent step, we first obtain a candidate solution
m̂ and then do the projection by solving the quadratic
programming below

min
m

‖m− m̂‖22 s.t. m ∈ P (10)

where P denotes a set of linear ordinal constraints.
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• Fix m and M , optimize θ, which is done by coordinate
descent. In each descent step, we optimize the parameters
corresponding to a single δd

3.

Our alternating optimization strategy only converges to local
optimal solutions whose quality depend on the initialization.
In our implementation, m is initialized such that the mean of
z is the same as the ordinal scale value of x, M is initialized
with identity matrix, and θ is initialized such that the mean
of δd is 0.5 and its variance is closest to 1/12 (i.e. close to
uniform distribution).

Note that the computational complexity of our method is
arguably higher than LMNN (Weinberger and Saul 2009)
which learns a size D × D matrix M . The additional pa-
rameters our method learn are linear in D: m is O(D ·
Nmax scale) (Nmax scale denotes the maximum number of
ordinal scales that an ordinal feature could take, which is of-
ten a relatively small number in practice) and θ is O(D).
When m and θ are fixed, the computation for learning M
is the same as LMNN. When M is fixed, learning m and
θ is also straightforward with QP and gradient descent. The
alternating steps converge quickly (often fewer than 10 al-
ternations, and one does not need full convergence in each
alternation). Thus, empirically the overall complexity is not
substantially higher than LMNN and may be further im-
proved.

Experiments

We compare our methods to several baselines in a number of
classification tasks. Besides the classification performance,
we also study the learned intervals and low-dimensional em-
bedding derived from our methods.

We compare our methods to several baselines. The first
set of baselines consists of different encoding schemes for
ordinal data (Kurczynski 1970; Boriah, Chandola, and Ku-
mar 2008; Fitkov-Norris, Vahid, and Hand 2012), and the re-
maining ones are methods specially designed for measuring
similarities on ordinal data (Podani 1999). All these baseline
algorithms are summarized below:

Real-Eucl, Real-LMNN These methods treat ordinal
scales directly as continuous values. Eucl and LMNN in-
dicate the corresponding metric: Euclidean metric and the
metric learned by LMNN, respectively.

Binary-Eucl, Binary-LMNN These methods treat ordi-
nal variables as categorical variables, and encode them using
1-of-K encoding scheme. For example, ordinal scales 1, 2, 3
are encoded into binary vectors [1, 0, 0], [0, 1, 0] and [0, 0, 1].

Binary-Ord-Eucl, Binary-Ord-LMNN These methods
use a binary encoding scheme which is capable of encod-
ing ordinal information. For example, ordinal scales 1, 2, 3
are encoded into [1, 0, 0], [1, 1, 0] and [1, 1, 1].

Ex-Gower The method uses a modified similarity mea-
sure proposed in (Podani 1999), as an extension of Gower’s

3Since the number of parameters are small, we use a grid search
to find the optimal parameters

coefficient measure (Gower 1971). It calculates the similar-
ity4 between two data points xi and xj by

Gij =

∑
d wd(i, j)sd(i, j)∑

d wd(i, j)
(11)

where sd(i, j) measures the similarity of xi and xj on the
dth feature. sd(i, j) is set to 1 if xid = xjd. When xid and
xjd are different, sd(i, j) is calculated by

sd(i, j) = 1− |xid − xjd| − (Td(i)− 1)/2− (Td(j)− 1)/2

kd − 1− (Td(kd)− 1)/2− (Td(1)− 1)/2

where Td(i) is the number of data points which have the
same ordinal scale for the dth feature as xi, and kd is the
total number of ordinal scales for the dth feature. Intuitively,
the numerator measures the number of steps required to
move a point with the same value as xid into the position
of another point with the same value as xjd, and denomina-
tor is for normalization purpose. wd(i, j) is the weight for
the dth feature which is typically set to 1.

Ex-Gower* We extend Ex-Gower to learn the weights
wd based on metric learning. Specifically, we learn these
weights by optimizing LMNN objectives, using the follow-
ing distance

DG(xi,xj) = C −
∑
d

wdsd(i, j) (12)

where 0 ≤ wd ≤ 1. C is a constant to maintain the non-
negativity of distances.

Ord-LMNN-Uni, Ord-LMNN-Beta, Ord-LMNN-
RecBeta Our methods that jointly learn the metric
and thresholds. Uni, Beta, and RecBeta indicate the
corresponding distribution of δd.

Thresh-Eucl The thresholds are learned using our pro-
posed methods, but with the metric M fixed as identity ma-
trix. We report the best results among different distributions
of δd. This baseline is designed to study the effect of learn-
ing the thresholds alone.

Parameters of these methods are tuned on the validation
data. Tunable parameters include the tradeoff parameter in
LMNN, as well as the tradeoff parameter and margin pa-
rameter in our methods.

Datasets and Evaluation

We use 9 real-world datasets from UCI machine learning
repository (Lichman 2013). For the first 5 datasets (Car,
Nursery, Cancer, Hayes-Roth, Balance), all features are or-
dinal, which are directly applicable for our methods. For the
rest 4 datasets (Vehicle, Vowel, Segmentation and Magic),
the original real-valued features are first discretized5 and
then used by all methods. The number of samples in these
datasets vary from a few hundreds to thousands. The largest

4We treat the negative similarity values as distances
5We discretize each dimension into 8 ordinal scales using

proper thresholding so that different ordinal scales have almost the
same frequency.
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Table 1: kNN classification error on the datasets with ordinal features

Method Car Nursery Cancer Hayes-Roth Balance
Real-Eucl 11.4±0.7 8.6±0.1 4.3±0.2 38.5±3.1 15.2±1.1
Real-LMNN 5.0±0.3 2.4±0.1 4.3±0.3 23.1±1.6 17.6±0.9
Binary-Eucl 24.0±1.4 24.0±0.2 6.0±0.3 50.0±2.9 32.7±1.9
Binary-LMNN 4.1±0.3 2.3±0.1 4.7±0.4 16.0±1.0 17.8±1.2
Binary-Ord-Eucl 12.3±0.4 8.7±0.1 4.4±0.3 45.5±3.3 16.7±0.8
Binary-Ord-LMNN 4.1±0.2 1.9±0.1 4.3±0.4 15.4±1.2 13.4±0.8
Ex-Gower 12.1±0.7 8.8±0.1 6.1±0.8 37.2±1.9 32.8±1.3
Ex-Gower* 7.9±0.4 2.6±0.1 5.5±0.5 33.3±1.4 35.1±1.2
Thresh-Eucl 4.5±0.4 2.3±0.1 4.5±0.4 22.3±1.9 14.5±0.7
Ord-LMNN-Uni 3.8±0.3 1.8±0.1 4.3±0.4 20.5±1.3 6.8±0.5
Ord-LMNN-Beta 3.7±0.3 1.6±0.1 4.3±0.4 18.6±1.0 6.1±0.5
Ord-LMNN-RecBeta 3.4±0.3 1.6±0.1 4.3±0.4 18.6±1.0 6.4±0.5

ones are Nursery (12,960 samples) and Magic (19,020 sam-
ples).

For each dataset, we randomly split it into the training
(60% of samples), validation (20%) and test (20%) sets. The
validation set is used to tune the parameters, and the perfor-
mance is measured on the test set. All methods are evalu-
ated using k-nearest neighbor classifier with k set to 3. For
each dataset, we do 20 random splits, and the average results
(mean and standard error) are reported.

Classification results

Table 1 reports the classification results on datasets with or-
dinal features, and Table 2 reports the results on datasets
with discretized features6. Methods with the best error rates
are highlighted. From the results, we observe that no matter
what the underlying representation (Real, Binary, Binary-
Ord) is, metric learning often improves the classification per-
formance. Binary-LMNN and Binary-Ord-LMNN perform
better than Real-LMNN, due to the fact that the binary en-
coding scheme increases the parameter space thus enhances
the power of learned metrics. Binary-Ord-LMNN further
improves over Binary-LMNN, which demonstrates the ben-
efit of exploring ordinal information in the data. Among all
methods, our proposed ones consistently perform the best
or second best, with clear advantages on the Car, Nursery
and Balance datasets. The training time of our methods is
comparable to that of LMNN7. Note that by setting the dis-
tribution of δd other than uniform distribution, our methods
can obtain slightly smaller error rates. This suggests that a
relatively complicated distribution like the Beta-rectangular
distribution may better capture the structure in ordinal data.
The better performance of our methods over Thresh-Eucl re-
veals the importance of joint learning both the intervals and
distance metric.

6As a reference point, the error rates of LMNN on original real-
valued features are: 23.9±0.7 (Vehicle), 7.1±0.5 (Vowel), 3.4±0.2
(Segmentation), and 21.1±0.1 (Magic).

7On the Nursery dataset, Ord-LMNN-Uni takes 18 mins per
hyperparameter setting while LMNN takes 5 mins. On the Car
dataset, Ord-LMNN-Uni takes 2 mins and LMNN takes 1 min per
hyperparameter setting (1.4GHz CPU).

Learned intervals

Once the thresholds are learned, interpreting the ordinal in-
tervals is valuable and can reveal interesting properties in the
data, for example, the distances between different ordinal
scales, as well as the impact of particular scales. In Figure 1,
we plot the learned intervals on selected datasets.

The Car dataset is for evaluating cars based on several or-
dinal features. Figure 1 (a) shows the intervals on feature
person (number of persons to carry), with original ordi-
nal scales as 1 (2 persons), 2 (4 persons), 3 (more than 4
persons). We notice that the right-most curve is nearly flat,
which reveals that the distance between ordinal scale 2 and
3 is smaller than the one between ordinal scale 1 and 2. In
other words, “capacity exceeds 4” is perceived similarly to
“capcity of 4”, which is consistent with our experience as car
buyers generally pay more attention to whether a car carries
2 persons or 4 persons. Figure 1 (b) shows the intervals on
feature door (number of doors), where the distances be-
tween different ordinal scales are almost the same.

The Nursery dataset is for ranking applications for nurs-
ery schools. Figure 1 (c) plots the learned intervals on fea-
ture has-nursery (level of the child’s nursery), with orig-
inal ordinal scales as 1 (proper), 2 (less proper), 3 (im-
proper), 4 (critical) and 5 (very critical). We can see that
the left-most curve is nearly flat, revealing that a child with
proper nursery is perceived similarly to the one with less
proper nursery. Figure 1 (d) plots the intervals on feature
health, with original ordinal scales as 1 (recommended), 2
(priority), and 3 (not-recommended). The figure shows that
the health condition “not-recommended” has a significant
impact, which is reasonable as a child with poor health con-
dition probably does not fit the nursery school.

The Cancer dataset is for breast cancer diagnosis. Fig-
ure 1 (e) and (f) show the learned intervals on two
features unif-shape (uniformity of cell shape) and
single-epi (single epithelial cell size). Both features
take ordinal scales from 1 to 10. The learned intervals clearly
reveal the uneven distances between different ordinal scales.

Visualization of the learned distances

Once the distance metric is learned, we can use it to com-
pute pairwise distances between samples. We further ob-
tain 2-dimensional embeddings from the distance matrix
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Table 2: kNN classification error on the datasets with discretized features

Method Vehicle Vowel Segmentation Magic
Real-Eucl 28.3±1.6 11.1±0.7 4.5±0.3 17.0± 0.1
Real-LMNN 27.8±0.6 11.3±0.5 4.4±0.2 17.1±0.2
Binary-Eucl 29.4±1.7 22.2±1.3 6.5±0.4 23.0±0.2
Binary-LMNN 25.1±0.7 12.8±0.4 3.6±0.2 19.1±0.1
Binary-Ord-Eucl 28.4±0.6 11.8±0.3 4.2±0.2 17.5±0.2
Binary-Ord-LMNN 25.2±0.8 10.9±0.5 3.3±0.2 17.1±0.1
Ex-Gower 30.8±0.7 22.6±0.5 7.4±0.2 20.2±0.2
Ex-Gower* 35.1±0.8 23.3±0.7 5.0±0.2 17.9±0.2
Thresh-Eucl 27.7±0.8 11.3±0.3 3.8±0.2 17.0±0.2
Ord-LMNN-Uni 25.4±0.8 10.8±0.5 3.4±0.2 17.0±0.2
Ord-LMNN-Beta 25.4±0.8 10.6±0.5 3.3±0.2 17.0±0.3
Ord-LMNN-RecBeta 25.5±0.8 10.6±0.5 3.3±0.2 17.0±0.3
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Figure 1: Learned intervals for selected features in different
datasets. The x-axis represents the index of the thresholds
for the corresponding feature, and the y-axis represents the
learned value for the thresholds

using multidimensional scaling (Kruskal 1964). Figure 2
shows the embeddings from different methods on the Nurs-
ery dataset, where the embeddings are colored according
to the class labels. We can see that Real-LMNN, Binary-
LMNN, Binary-Ord-LMNN have better embeddings over
Real-Eucl, Binary-Eucl, Binary-Ord-Eucl, respectively. The
embeddings of our methods display the most clean class
structures in which classes are more separable compared to
those in other methods.

Conclusion

In this paper, we develop novel ways to learn distance met-
ric on ordinal features. Our methods jointly learn the metric
and latent interval variables from labled ordinal data. This
provides important tools for ordinal data analysis which has
many real-world applications. Our experiments show that

(a) Real-Eucl (b) Binary-Eucl

(c) Binary-Ord-Eucl (d) Ord-LMNN-Uni

(e) Real-LMNN (f) Binary-LMNN

(g) Binary-Ord-LMNN (h) Ord-LMNN-Beta

Figure 2: Two-dimensional embeddings derived from the
learned distances for Nursery dataset

the proposed methods not only improve the classification
performance but also recover the latent thresholds. Our fu-
ture work include extending our methods to the case where
both input and output variables are ordinal, as well as exper-
imenting on ordinal datasets with higher dimensionality.
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