
Learning Sparse Confidence-Weighted Classifier on Very High Dimensional Data

Mingkui Tan†, Yan Yan‡, Li Wang§, Anton Van Den Hengel†, Ivor W. Tsang‡, Qinfeng (Javen) Shi†
†ACVT, The University of Adelaide, Australia

‡QCIS, University of Technology Sydney, Australia
§Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, USA

†{mingkui.tan, anton.vandenhengel, javen.shi}@adelaide.edu.au, ‡{yan.yan,ivor.tsang}@uts.edu.au, §liwang8@uic.edu

Abstract

Confidence-weighted (CW) learning is a successful online
learning paradigm which maintains a Gaussian distribution
over classifier weights and adopts a covariance matrix to rep-
resent the uncertainties of the weight vectors. However, there
are two deficiencies in existing full CW learning paradigms,
these being the sensitivity to irrelevant features, and the poor
scalability to high dimensional data due to the maintenance of
the covariance structure. In this paper, we begin by present-
ing an online-batch CW learning scheme, and then present a
novel paradigm to learn sparse CW classifiers. The proposed
paradigm essentially identifies feature groups and naturally
builds a block diagonal covariance structure, making it very
suitable for CW learning over very high-dimensional data.
Extensive experimental results demonstrate the superior per-
formance of the proposed methods over state-of-the-art coun-
terparts on classification and feature selection tasks.

Introduction

Online learning, which starts from the perceptron and re-
lies on few statistical assumptions, has been successfully ap-
plied to many applications (Rosenblatt 1958; Cesa-Bianchi
and Lugosi 2006; Duchi, Hazan, and Singer 2011; Crammer
et al. 2006; Crammer and Singer 2003; Ma et al. 2009b).
It is one of the most popular topics in machine learning
community in the past decades (Yang, Jin, and Ye 2009;
Wang, Zhao, and Hoi 2012; Xu et al. 2014; Zhang et
al. 2015). Confidence-weighted (CW) learning (Crammer,
Dredze, and Pereira 2008; Dredze, Crammer, and Pereira
2008; Wang, Zhao, and Hoi 2012), which generalizes the
margin-based learning methods, has become a very powerful
online learning paradigm for constructing linear classifiers.

Operating with a passive-aggressive rule (Crammer et al.
2006), CW learning receives a d-dimensional example xi

and its label yi in the round i, and seeks to make the small-
est possible change to the weight vector μ. Different from
traditional margin-based learning methods like PA (Cram-
mer et al. 2006), CW learning maintains a probabilistic con-
straint over classifier weights. Basically, the classifier weight
w in CW learning is assumed to be drawn from a multi-
variate Gaussian distribution N (μ,Σ), and the label of xi

is assigned by sign(w�xi). In this sense, the margin M is

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

viewed as a random variable that follows a univariate Gaus-
sian distribution: M ∼ N (

yi(μ
�xi),x

�
i Σxi

)
. Then the

probability of a correct prediction (when M ≥ 0) is given
by Pr[M ≥ 0] = Prw∼N (μ,Σ)[yi(μ

�xi) ≥ 0].
To ensure good generalization performance, it is essen-

tial to maintain a large margin on the example. This can
be achieved by ensuring that the probability of a correct
prediction for a training example is no smaller than a
confidence level δ (Crammer, Dredze, and Pereira 2012):
Pr[yi(μ�xi) ≥ 0] ≥ δ. Given Φ the cumulative function of
a normal distribution and let φ = Φ−1(δ), this probabilistic
constraint can be written explicitly as

yi(μ
�xi) ≥ φ

√
xi

�Σxi. (1)

To update μ and Σ, CW classifier tries to make the least
changes to previous distribution N (μi,Σi). Using the KL
divergence to measure the distribution difference (Dredze,
Crammer, and Pereira 2008), the update can be made by

(μi+1,Σi+1) = arg min
μ,Σ

DKL(N (μ,Σ)||N (μi,Σi)),

s.t. yi(μ
�xi) ≥ φ

√
x�
i Σxi,

(2)

where function DKL can be formulated explicitly as: DKL :=
1
2 log

(
detΣi

detΣ

)
+ 1

2Tr(Σ−1
i Σ)+ 1

2 (μi−μ)�Σ−1
i (μi−μ)− d

2 .

Applying the KKT conditions of the problem w.r.t. μ and Σ,
we obtain the updating rules of μ and Σ:

μi+1 = μi + αiyiΣixi, Σi+1 = Σi + βiΣixix
�
i Σi.

(3)
where αi is the Lagrangian multiplier w.r.t. the constraint,
and βi is a scalar related to αi. In last several years,
many variants of CW method have been proposed (Cram-
mer, Dredze, and Pereira 2008; Crammer, Kulesza, and
Dredze 2009a; 2009b; Crammer, Dredze, and Pereira 2012;
Wang, Zhao, and Hoi 2012) (see Section 2 for more details),
but most of the them follow the above rules in (3) to update
μi+1 and Σi+1, and the difference lies on different calcula-
tions of αi and βi.

By modeling a full covariance structure, CW learning pro-
vides significant advantages for classification tasks (Cram-
mer, Dredze, and Pereira 2012; Ma et al. 2010; Wang, Zhao,
and Hoi 2012). However, there are two deficiencies in ex-
isting full CW learning methods. First, it is computationally

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2080

infeasible to maintain a full covariance structure for high-
dimensional data. The diagonalization technique (Crammer,
Dredze, and Pereira 2012) can be applied to address this is-
sue, but it ignores feature interactions and often leads to de-
graded performance (Duchi, Hazan, and Singer 2011). Sec-
ond, the learning performance might be severely degraded if
the data contain many irrelevant features to the output (Ma
et al. 2009a).

The main contributions of this paper are as follows.
First, we propose an efficient online-batch CW learning

scheme for low- and medium-dimensional data, motivated
by two common observations: 1) Most computers (even lap-
tops) nowadays allow us to load a batch of examples one
time. 2) In many applications, the data are often collected
in online-batch. For example, in (Ma et al. 2009b), data for
malicious web sites detection are collected by day. The batch
learning scheme significantly reduces the overall complex-
ity by avoiding repetitive covariance updating, and may also
help to learn a more accurate model. Empirical studies show
that it is much faster than existing methods while achieving
similar or even better accuracy.

Second, the proposed online-batch CW scheme however
cannot handle very high-dimensional data if maintaining a
full covariance structure. To address this and choose the
most relevant features, we further propose a novel paradigm
to learn sparse CW classifiers, which automatically chooses
groups of features and builds a block diagonal covariance
structure.

Related Studies

The original CW learning (Dredze, Crammer, and
Pereira 2008) has theoretical guarantees in the
mistake-bound (Crammer, Dredze, and Pereira 2012;
Dredze, Crammer, and Pereira 2008), but the aggressive
update rules in original CW learning in (Dredze, Crammer,
and Pereira 2008) may incur severe over-fitting when the
data or labels are noisy. To address this issue, Adaptive
Regularization of Weights (AROW) (Crammer, Kulesza,
and Dredze 2009a) employs an adaptive regularization for
each example by replacing the probabilistic constraint in (1)
with a squared hinge loss plus a confidence penalty:

(μi+1,Σi+1) = arg min
μ,Σ

DKL (N (μ,Σ)||N (μi,Σi))

+ C1ξ
q
i + C2x

�
i Σxi,

(4)

where ξi = max
(
0, 1− yiμ

�xi

)
, and C1 and C2 are trade-

off parameters. Another method, called Soft Confidence-
Weighted (SCW) (Wang, Zhao, and Hoi 2012), replaces the
constraint (i.e. equation (1)) with ξi = max(0, φ

√
x�Σx−

yiμ
�xi). There are some other variants of CW methods, see

(Crammer and Lee 2010; Orabona and Crammer 2010).
CW learning is related to second-order methods like

second-order perceptron (Cesa-Bianchi, Conconi, and Gen-
tile 2005; Gentile, Vitale, and Brotto 2008; Duchi, Hazan,
and Singer 2011), ellipsoid methods (Yang, Jin, and Ye
2009), and so on. All these methods update Σ in each round,
which cannot be applied to high-dimensional data. To extend
second-order methods to high-dimensional data, Ma et al.

developed a low-rank approximation to the covariance ma-
trix so it can be cheaply stored (Ma et al. 2010). However,
this method might be sensitive to irrelevant features (Wu,
Hoi, and Mei 2014).

Recently, a CW learning based second-order feature se-
lection (SOFS) method is proposed in (Wu, Hoi, and Mei
2014). However, this method relies on sparse data. More fea-
ture selection methods regarding classification problems can
be found in (Shalev-Shwartz and Zhang 2012; Tan, Tsang,
and Wang 2014; Yuan, Ho, and Lin 2012; Chang et al. 2014;
Han and Zhang 2015).

Online-Batch Confidence-Weighted Learning

Notation. Let the superscript � denote the transpose of a
vector/matrix, 0 be a vector/matrix with all zeros, diag(v)
be a diagonal matrix with diagonal elements equal to v, and
‖v‖p be the �p-norm of a vector v, A � B be the element-
wise product of two matrices A and B. Let [n] = {1, ..., n}.

Let μ̂ and Σ̂ be model parameters at the (h − 1)th time
slot (where h > 1). Given a batch of Nh training exam-
ples {Xh,yh} at the time slot h, where Xh ∈ R

d×Nh and
yh ∈ {1,−1}Nh , we seek to estimate parameters μ and Σ
regarding the hth time slot in an alternating scheme.

Procedure 1: Learning Σ. Motived by AROW (Cram-
mer, Kulesza, and Dredze 2009a), given μ, we learn Σ by
addressing the following problem:

minΣ DKL(N (μ,Σ)||N (μ̂, Σ̂)) + C
2

∑Nh

i=1 x
�
i Σxi,

(5)
where C > 0 is a trade-off parameter. By applying the KKT
condition, we have Σ−1 = Σ̂

−1
+ CXhX

�
h . Using the

Woodbury identity, we can update Σ by

Σ =
(
Σ̂

−1
+ CXhX

�
h

)−1

=Σ̂− Σ̂Xh(
1

C
INh

+X�
h Σ̂Xh)

−1X�
h Σ̂.

(6)

In (6), the first matrix inverse takes O(d3+N2
hd) complexity,

which is unbearable when d is large; while the second one
takes O(N3

h+Nhd
2) complexity, which is unbearable when

Nh is large. Nevertheless, we only need to compute once for
the instances in the same batch. Moreover, as we consider all
examples in the same batch, this Σ should be more accurate
compared to the online updating (where the accuracy of Σ
is improved gradually w.r.t. rounds).

Procedure 2: Learning μ. After finding Σ, we learn the
classifier weight μ by solving the following problem:

minμ
1
2μ

�Σ−1μ+ C
q

∑Nh

i=1 ξ
q
i , (7)

where ξi = max(0, 1 − yiμ
�xi) is the hinge loss, and q is

either 1 or 2. By applying the KKT condition on μ, we have
μ =

∑Nh

i=1 αiyiΣxi, where αi is the Lagrangian multiplier
regarding the ith example. Based on this formula, we can
compute μt+1 = μt + αtytΣxt sequentially starting from
μ0 = 0, as in (Crammer, Kulesza, and Dredze 2009a). How-
ever, this method cannot deal with hinge loss (i.e q = 1).

We now present a method to deal with general loss func-
tions. Let Υ be the squared root of Σ (e.g., Υ2 = Σ),

2081

w := Υ−1μ and x̂i := Υxi. Problem (7) can be refor-
mulated as follows:

minw
1
2 ||w||22 + C

q

∑Nh

i=1 ξ
q
i , (8)

where ξi = max(0, 1 − yiw
�x̂i). This problem is a stan-

dard linear SVM problem (Hsieh et al. 2008), and can be
efficiently solved through dual coordinate descent(DCD)
method as in (Hsieh et al. 2008; Shalev-Shwartz and Zhang
2012; 2013). Following (Hsieh et al. 2008), we conduct the
online-batch CW learning in Algorithm 1.

Algorithm 1: Learning confidence-weighted classifiers
in online-batch.

Require: Parameters r, C > 0, and μ̂ = 0 and Σ̂ = I.
for h = 1 : H do

Receive a batch of data {Xh,yh}, where Xh ∈ R
d×Nh .

Compute Σ by (6) and Υ by the eigen-decomposition of
(Σ̂
−1

+ CXhX
�
h).

Compute X̂ = ΥXh, and initialize w0 = Υ−1μ̂ and α = 0.
for i = 1 : Nh do

Compute ξi = max(1 − yiw
�x̂i, 0).

if ξi > 0 then

Compute αi = min(ξi/||x̂i||22, C) for q = 1 or
αi = ξi/(||x̂i||22 + 0.5/C) for q = 2.
Compute w = w + αiyix̂.

Compute μ = Υw. Let Σ̂ := Σ, μ̂ := μ.

The inner for loop in Algorithm 1 is implemented in an
online setting, i.e., it only scans the data once; while DCD
method (Hsieh et al. 2008) which is a batch method may
need to scan the data many times to converge. By consider-
ing the covariance structure in learning w, Algorithm 1 often
converges faster and achieves comparable or even better pre-
diction performance than batch methods (See comparisons
with DCD in Table 2).

Algorithm 1 is related to the whitened Perceptron algo-
rithm (Cesa-Bianchi, Conconi, and Gentile 2005) (See SOP
method in Table 2). However, the updating of weight vector
in Algorithm 1 is different from SOP. In addition, in Algo-
rithm 1, one needs to compute Σ once for each batch, thus
the expensive parts, namely XhX

�
h and ΥX, can be effi-

ciently computed in parallel. So our algorithm has big ad-
vantages over existing second-order learning methods.

Learning Sparse CW Classifiers1

The proposed online-batch CW learning scheme, however,
cannot deal with very high-dimensional data due to the
maintaining of the full covariance matrix. However, in gen-
eral, for high-dimensional data, the number of relevant fea-
tures is often very small. What’s more, although there might
be many second-order feature interactions, only those inter-
actions involving relevant features are significant. These two
observations regarding the very high-dimensional data mo-
tivate us to learn sparse confidence-weighted classifiers and
sparse covariance structures.

1All the proofs can be found in the supplementary file which is
available from the author’s website.

To identify the most relevant features w.r.t. the output y,
we consider to introduce an index vector η ∈ {0, 1}d to
scale each instance x by (η�x). Here, a feature j is chosen
if ηj = 1; otherwise it will be dropped. Accordingly, the
hinge loss can be expressed as

ξi(η) = max
(
0, 1− yiμ

�(xi � η)
)
.

Without loss of generality, in the following, we assume
that μ = 0 at the beginning, i.e., no feature is selected when
h = 0. By introducing the new variable η, we will do the
CW learning under the following two goals. Firstly, we pre-
fer to select the least number of features that would fit the
data well. Secondly, only the features selected by η will be
considered in the second order feature interactions.

Regarding the first goal, we impose an �0-norm constraint
on η to induce the sparsity, i.e., ||η||0 ≤ r (where r 	 d).
For convenience, let Λ := {η|η ∈ {0, 1}d, ||η||0 ≤ r} be
the set of all feasible η’s. As |Λ| = ∑r

i=0

(
d
i

)
, i.e., there are

|Λ| feasible η’s in total. Then the feature selection task can
be cast as an optimization problem to pick up an optimal η
from Λ. Focusing on the fitness of data only, we may find an
optimal η by solving the following optimization problem:

minη∈Λ minμ,ξ
C
q

∑Nh

i=1 ξi(η)
q. (9)

For each feasible η, solving the inner minimization problem
w.r.t. μ and ξ will obtain the fitness of the associated fea-
tures. However, this objective may over-fit and ignores the
feature interactions. Therefore, we need to consider the sec-
ond goal, that is, we will maintain a covariance matrix w.r.t.
the features indexed by η. If a good η is given, motivated
by the batch CW learning, we can compute the covariance
matrix Σ by solving the following problem:

min
Σ

DKL(N (μ,Σ)||N (μ̂, Σ̂)) +
C

2

Nh∑
i=1

(xi � η)�Σ(xi � η).

Let Xr
h = diag(η)Xh. By the KKT condi-

tion on Σ, we achieve a closed solution of Σ

by Σ(η) =
(
Σ̂

−1
+ C(Xr

h)(X
r
h)

�
)−1

= Σ̂ −
Σ̂Xr

h

(
1
C INh

+ (Xr
h)

�Σ̂(Xr
h)
)−1

(Xr
h)

�Σ̂.

Remark 1. The matrix inverse above is operated on r fea-
tures only, thus the computation of Σ(η) takes O(r3+N2

hr)
complexity. Σ(η) can be cheaply computed since r 	 d.

Once Σ(η) is computed, we incorporate it into formula-
tion (9). Similar in (7), we obtain the following problem:

minη∈Λ minμ
1
2μ

�Σ(η)
−1

μ+ C
q

Nh∑
i=1

ξi(η)
q. (10)

The integer r denotes the number of features we intend to
select, which actually represents our basic prior knowledge
about the data. For example, setting r = 1 means that there
might be one relevant feature. However, as will be shown,
our later proposed optimization scheme guarantees to find
more features (if relevant) even when we set r = 1. Nev-
ertheless, a relatively large r is useful and also necessary to
detect the correlated features via our optimization paradigm.

2082

Problem (10) is a mixed integer programming problem
which is hard to solve. However, we can transform it into
a standard convex programming problem via convex relax-
ation (Tan, Wang, and Tsang 2010):

max
θ∈R,α∈A

θ, s.t. θ ≤ f(α,η), ∀η ∈ Λ. (11)

Here, the function f(α,η) is defined as f(α,η) :=

−1
2μ(α,η)�Σ(η)μ(α,η) − (q − 1)α

�α
2C +

∑Nh

i=1 αi,

where μ(α,η) :=
∑Nh

i=1 αiyi(xi � η), α ∈ R
Nh

is the dual variable regarding constraint ξi(η) =
max

(
0, 1− yiμ

�(xi � η)
)
, ∀i ∈ [Nh], and A := {α ∈

R
Nh |0 ≤ αi ≤ U} is the domain of α (here, U = C for

q = 1 and U = ∞ for q = 2). Recall that each feasible
η ∈ Λ corresponds to a constraint, thus problem (11) has
exponentially many constraints as there are

∑r
i=0

(
d
i

)
ele-

ments in Λ, making it hard to address directly.

General Optimization Paradigm

Note that there are exponentially many constraints in prob-
lem (11). Motivated by the cutting-plane approach (Kor-
tanek and No 1993), we propose to address it by Algo-
rithm 2. As this algorithm is based on the online-batch CW
model, hereafter we refer to it as sparse BCW (SBCW).

Algorithm 2: Sparse CW learning in online-batch.
Require: Parameters r, C > 0, H , μ̂ = 0 and Σ̂ = I.

for h = 1 : H do

Load data {Xh,yh}, where Xh ∈ R
d×Nh and yh ∈ {1,−1}Nh ,

Λ0 = ∅ and Th =
∑r

i=0

(d
i

)
.

for t = 1 : Th do

Find η̂ by solving the problem (12). Let Λt = Λt−1
⋃{η̂}.

Update αt by solving the subproblem in (13) w.r.t. Λt.
Terminate if stopping conditions are achieved.

Let Λh = Λt.

Instead of dealing with all T =
∑r

i=0

(
d
i

)
constraints, we

iteratively find a constraint until some stopping conditions
are achieved. Given αt−1, the most-violated constraint can
be found by solving the following optimization problem:

η̂ =arg min
η∈Λ

f(αt−1,η)

= argmax
η∈Λ

μ(α,η)�Σ(η)μ(α,η).
(12)

where μ(αt−1,η) :=
∑Nh

i=1 α
t−1
i yi(xi �η). This problem,

unfortunately, is non-trivial to solve due to the involvement
of η in Σ(η).

After obtaining an active constraint, associated with η̂, we
add it into the active set Λt = Λt−1

⋃{η̂}, and then address
the following subproblem w.r.t. constraints defined by Λt:

θt := max
θ∈R,α∈A

θ, s.t. θ ≤ f(α,η), ∀η ∈ Λt. (13)

In this following, we discuss the optimization of (12) and
(13).

Consider (12) first, which is difficult. However, on one
hand, for feature selection, we focus on choosing the most

relevant features to the output. On the other hand, Σ(η) is
not in the loss ξi(η) = max

(
0, 1− yiμ

�(xi � η)
)
. We

thus assume that Σ(η) is an identity matrix, and reduce
problem (12) to the following problem:

η̂ = argmaxη∈Λ

∑d
j=1 ηj

∑
j s

2
j , (14)

where s =
∑Nh

i=1 αiyixi. For this problem, its optimal so-
lution can be easily obtained by finding the r features with
the largest score (e.g. sj), and then setting the corresponding
ηj to 1 and the rest to 0. In this sense, s2j can be considered
as the feature score for the jth feature, i.e., s2j essentially
measures the importance of the feature.

Theorem 1. Let T = |Λ| < ∞, assume that both problems
(12) and (13) can be addressed, then {θt}Tt=1 is monotoni-
cally decreasing and Algorithm 2 stops after a finite number
of iterations with a global solution of problem (11).

Remark 2. The solution to problem (14), however, is not
necessary to be the optimal solution of problem (12). In Al-
gorithm 2, finding the solution of problem (12) is to update
the constraint set Λt. It is easy to see that any update of set
Λt will make {θt}Tt=1 monotonically decreasing, but the up-
dating by solving (14) will make the decreasing faster.

Stopping Conditions

We may use following stopping criteria. First, as the objec-
tive θt decreases monotonically (see Theorem 1), the algo-
rithm can be stopped if |θt−θt−1|/|θt| ≤ ε is true, where ε is
a small tolerance value. Second, given limited memory, we
stop the algorithm if the memory is not enough. Third, given
a fixed r, the algorithm can be stoppled after miter = �p/r
iterations in order to choose p features. For example, in our
experiments on feature selection task, we stop SBCW after
miter = 15 iterations, and set r = �p/miter in order to
select p features, which often produces satisfactory results.

Optimization of Subproblem (13)

Solving the subproblem in (13) w.r.t. α is computationally
expensive. In the following, we study how to solve it effi-
ciently by applying a proximal primal-dual coordinate as-
cent method. Let K = |Λt| be the number of active con-
straints. For each ηk ∈ Λt, where k ∈ [K], we let xk

i ∈ R
r

denote the ith instance w.r.t. features associated with ηk ∈
Λt, and μk ∈ R

r and Σk ∈ R
r×r be associated model pa-

rameter and covariance matrix, respectively. Let Υk be the
square root of Σk , wk := Υ−1

k μk, x̂k
i := Υk

�xk
i .

Proposition 1. Let ξi = max(0, 1 − ∑t
k=1 w

�
k x̂

k
i). The

subproblem (13) is the dual of the following problem:

minw,ξ
1
2

(∑K
k=1 ‖wk‖

)2

+ C
q

Nh∑
i=1

ξqi . (15)

The �22,1-norm regularizer 1
2 (
∑K

k=1 ‖wk‖)2 in problem
(15) is non-smooth, and would encourage sparsity among
wk’s. Focusing on large-scale data, we apply a proximal
primal-dual coordinate ascent method (Shalev-Shwartz and
Zhang 2012) to find a nearly accurate solution of problem

2083

(15) efficiently. To apply this algorithm, we add a small reg-
ularization term σ

2 ‖w‖2 (i.e., σ 	 1), and address the fol-
lowing optimization problem instead:

min
w

σ
2 ‖w‖2 + 1

2 (
∑K

k=1 ‖wk‖)2 + C
∑Nh

i=1 Li(w
�x̂i)

q

(16)
where w = [wk]

K
k=1, x̂i = [x̂k

i]
K
k=1 and Li(w

�x̂i) := ξ2i /q.

Remark 3. Let w∗ be an ε
2 -accurate minimizer of (16). By

choosing a sufficiently small σ, w∗ is also an ε-accurate so-
lution of (15) (Shalev-Shwartz and Zhang 2012). Therefore,
the optimal solutions of problems (15) and (16) are close.

Let Ω(w) := σ
2 ‖w‖2 + 1

2 (
∑K

k=1 ‖wk‖)2 which is
strongly convex. Note that Li is γ-Lipschitz for some
γ > 0 (Shalev-Shwartz and Zhang 2012). Let Ω∗(z) =
maxw w�z − Ω(w) be the conjugate of Ω(w), and L∗

i
be the conjugate of Li. The conjugate dual of prob-
lem (16) can be written as: maxα∈[0,1]Nh D(α), where

D(αi) = −Ω∗
(
C

∑Nh

i=1 αix̂i

)
− C

∑Nh

i=1 L
∗
i (−αi). Here,

L∗
i (−αi) = −αiyi for hinge loss, and L∗

i (−αi) = − 1
2α

2
i −

αiyi for squared hinge loss. Following (Shalev-Shwartz and
Zhang 2012), we define

w(α) = ∇∗Ω(z(α)) and z(α) = C
∑Nh

i=1 αix̂i, (17)

where ∇∗Ω(z(α)) denotes the gradient of the conju-
gate Ω, and is also the minimizer of problem Ω∗(z) =
maxw w�z − Ω(w).2 The proximal primal-dual coordi-
nate ascent for solving problem (15) is shown in Algorithm
3. Note that it is implemented in the online setting.

Algorithm 3: Online proximal primal-dual coordinate
ascent for solving problem (13)

Require: Parameters C > 0, input data {X̂k
h}K

k=1 and yh, and {Υk}K
k=1.

Initialize z0 = 0 and w0 = 0.
for i = 1 : Nh do

Compute loss ξi = max
(
0, 1 − yi

∑K
k=1 w�k x̂k

i

)
.

if ξi > 0 then

Compute αi = min(ξi/(C||x̂i||22), 1) for q = 1 or
αi = ξi/(C||x̂i||22 + 0.5) for q = 2.
Compute zi = zi−1 + Cαiyix̂i.
Compute wi = ∇∗Ω(zi).

Complexity Analysis

Based on Algorithm 3, we summarize the complexity of
SBCW as follows.

Proposition 2. Let K be the number of active η’s being
chosen. Depending on the permutation of features via η,
SBCW essentially maintains a block diagonal covariance
structure Σ ∈ R

Kr×Kr regarding all selected features with
K submatrices Σk on the diagonal. The overall time and
space complexities thus are O(dr2 + dNhr + dNh) and
O(dr + dNh), respectively.

2The computation of ∇Ω∗(z) is put in the supplementary file.

Experiments

We conduct two sets of experiments to verify our meth-
ods. First, we compare the proposed BCW method with sev-
eral state-of-the-art online learning methods on several low-
dimensional data sets. Second, we verify the feature selec-
tion performance of our proposed SBCW method on several
high-dimensional data sets. The sources of our methods are
available from http://www.tanmingkui.com/sbcw.html.

All data sets are widely used benchmarks in machine
learning, and are summarized in Table 1. URL is orig-
inally from http://sysnet.ucsd.edu/projects/url/ for identi-
fying suspicious URLs, astro-ph is from (Hsieh et
al. 2008), and others are from http://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets/. From Table 1, all data sets are
sparse data sets except epsilon. For each data set, we
load all instances into the memory as our machine can af-
ford enough memory, which is consistent with our earlier
claim that Most computers nowadays allow us to load a
batch of examples one time. All experiments are conducted
on a PC installed a 64-bit operating system with an Intel(R)
Core(TM) Xeon CPU 3.00GHz and 32GB memory.

Table 1: Data sets used in the experiments.
Data set d Ntrain Nte # nonzeros per inst
covtype 54 581,012 – 12
epsilon 2,000 400,000 100,000 2,000
real-sim 20,958 32,309 40,000 52
rcv1 47,236 677,399 20,242 74

astro-ph 99,757 62,369 32,487 77
URL 3,231,961 2,396,130 – 115

Experiments on Low-dimensional Data Sets

We compare the proposed BCW method on three low-
dimensional data sets (see Table 1) with several well-
known online learning methods, including PA (Crammer
et al. 2006), SOP (Cesa-Bianchi, Conconi, and Gentile
2005), AROW (Crammer, Kulesza, and Dredze 2009a),
NAROW (Orabona and Crammer 2010), SCW (with hinge
loss) (Wang, Zhao, and Hoi 2012), SCW2 (with squared
hinge loss) (Wang, Zhao, and Hoi 2012). Except PA, others
are second-order methods, and NAROW, SCW and SCW2
are considered as the state-of-the-arts. Since BCW is closely
related to batch DCD method (hinge loss) (Hsieh et al.
2008), we also include DCD as a baseline. For all com-
peting methods, we apply 5-cross-validation to choose their
parameters. All compared online methods are from http:
//libol.stevenhoi.org; while DCD is from the Liblinear pack-
age http://www.csie.ntu.edu.tw/∼cjlin/liblinear/.

For covtype, we sample 450k examples from the en-
tire set as training data and the rests as testing data. The full
epsilon data set contains 400k training samples, which is
too huge to other CW methods. We thus sample 50k exam-
ples randomly for the comparison. Nevertheless, our BCW,
PA and DCD can handle the entire data set (See Table 1).

Online learning methods are often affected by sample or-
ders. Therefore, we run the experiments 10 times with ran-
dom orders, and record the mean and standard variance of

2084

Table 2: Experimental results on low-dimensional data sets, where time is reported in seconds.

Method
covtype 450k epsilon 50k epsilon (entire set)

Test error rate Time Test error rate Time Test error rate Time
AROW (Crammer, Kulesza, and Dredze 2009a) 0.2461 ± 0.0000 21.72 0.1105 ± 0.0004 3506.0 – –

CW (Dredze, Crammer, and Pereira 2008) 0.4330 ± 0.0335 19.13 0.1522 ± 0.0023 3405.1 – –
NAROW (Orabona and Crammer 2010) 0.3703 ± 0.0352 22.05 0.1423 ± 0.0019 3468.6 – –

PA (Crammer et al. 2006) 0.3443 ± 0.0433 13.87 0.1751 ± 0.0221 5.77 0.1821 68.60

SCW (Wang, Zhao, and Hoi 2012) 0.2382 ± 0.0003 20.75 0.1136 ± 0.0003 3381.4 – –
SCW2 (Wang, Zhao, and Hoi 2012) 0.2964 ± 0.0159 20.40 0.1126 ± 0.0004 3452.7 – –

SOP (Cesa-Bianchi, Conconi, and Gentile 2005) 0.4653 ± 0.0298 20.77 0.3705 ± 0.0522 3511.6 – –
DCD 0.2460 29.85 0.1102 2.62 0.1021 81.52

BCWL1 0.2402 ± 0.0003 0.41(0.06) 0.1093 ± 0.0000 5.73(0.39) 0.1019 32.06(1.19)
BCWL2 0.2462 ± 0.0005 0.47(0.07) 0.1102 ± 0.0002 6.35(0.41) 0.1016 30.87(1.22)

testing errors, and the training times in Table 2. For the pro-
posed BCWL1 and BCWL2, we need to compute the covari-
ance Σ before learning w. For ease of comparison, in Table
2, we record the time in computing Σ (former one) and con-
ducting Algorithm 1 (in parentheses) separately. Note that
the results for some methods on entire epsilon are absent
since these methods require more than 15,000 seconds for
training.

From Table 2, BCW achieves the fastest training speed
while achieving comparable or better testing accuracy than
others. In particular, BCW is much faster than all second-
order methods, including all CW methods. There are several
reasons for this: BCW only need to compute Σ once, which
can be done very efficiently (See computation time in paren-
theses); while other CW methods need to update Σ for each
example. For PA, the covariance structure is not considered,
thus the convergence is very slow, leading to worse accuracy.
It is worth mentioning that, BCW is faster than DCD, a batch
training method, with comparable or even better accuracy.
This demonstrate the significance of maintaining covariance
structure Σ in BCW.

Feature Selection on High-dimensional Data

We compare the proposed SBCW method with four state-
of-the-art feature selection methods, namely �1-norm SVM
by Liblinear (Yuan et al. 2010) (L1SVM), �1-norm SVM
by dual coordinate ascent method (similar to Algorithm 3
and denoted sparDCA) (Shalev-Shwartz and Zhang 2012),
feature generating machine (FGM) method (Tan, Tsang,
and Wang 2014) which employs similar feature selection
strategy to SBCW but does not consider covariance struc-
ture, and SOFS (Wu, Hoi, and Mei 2014), a CW based
second-order feature selection method. The comparison is
performed on four high-dimensional data sets in Table 1. For
url, we employ two settings: 1) We train on Day0 and pre-
dict Day1; 2) We train on data of even days and predict the
data of odd days. More details of experimental settings are
put in supplementary file. We only show figures of three data
sets.

Figure 1 shows the feature selection performance of var-
ious methods w.r.t. different number of selected features.
From Figure 1, SBCW shows comparable or better perfor-
mance over competing algorithms in terms of both training
speed and prediction accuracy under the same number of

features. The reasons are as follows. First, compared to other
methods (except SOFS), SBCW considers covariance struc-
ture, thus it can capture feature interactions, which will in
turn contribute to finding better features. Second, by main-
taining the block covariance structure, Algorithm 3 can well
and efficiently address the optimization subproblem in an
online manner, which contributes to both faster convergence
speed and better accuracy than FGM. For SOFS, it considers
the covariance structure, but it essentially solves an �0-norm
non-convex problem by hard thresholding, which possibly
leads to the relatively worse results.

Conclusion

In this paper, we start by proposing an efficient online-batch
CW learning scheme for medium-dimensional problems. To
deal with high-dimensional data and choose the most rele-
vant features, we propose a novel SBCW method to learn
sparse CW classifiers. SBCW can effectively find groups of
relevant features, and naturally maintain a block diagonal
covariance matrix. Empirical studies on several data sets
show that the superior performance of the proposed BCW
and SBCW methods over compared state-of-the-art methods
on two sets of tasks.

Acknowledgements

This work was in part funded by the Data to Deci-
sions Cooperative Research Centre, Australia, ARC Grant
DP140102270, National Natural Science Foundation Key
Project #61231016. Ivor W. Tsang is supported by the
ARC Future Fellowship FT130100746 and ARC grant
LP150100671.

References

Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learning, and
games. Cambridge University Press.
Cesa-Bianchi, N.; Conconi, A.; and Gentile, C. 2005. A second-
order perceptron algorithm. SIAM Journal on Computing.
Chang, X.; Nie, F.; Yang, Y.; and Huang, H. 2014. A convex
formulation for semi-supervised multi-label feature selection. In
AAAI.
Crammer, K., and Lee, D. 2010. Learning via gaussian herding. In
NIPS.

2085

0 100 200 300 400 500 600 700
0.84

0.86

0.88

0.9

0.92

0.94

0.96

Number of Selected Features

A
c
c
u

ra
c
y

SBCW

SOFS

sparDCA

L1SVM

FGM

(a) astro-ph.

0 100 200 300 400 500 600 700
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Number of Selected Features

A
c
c
u

ra
c
y

SBCW

SOFS

sparDCA

L1SVM

FGM

(b) URL.

0 100 200 300 400 500 600 700
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Number of Selected Features

A
c
c
u

ra
c
y

SBCW

SOFS

sparDCA

L1SVM

FGM

(c) rcv1.

0 100 200 300 400 500 600 700

10
−1

10
0

Number of Selected Features

T
ra

in
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

SBCW

SOFS

sparDCA

L1SVM

FGM

(d) astro-ph.

0 100 200 300 400 500 600 700

10
−1

10
0

10
1

Number of Selected Features

T
ra

in
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

SBCW

SOFS

sparDCA

L1SVM

FGM

(e) URL.

0 100 200 300 400 500 600 700
10

0

10
1

10
2

Number of Selected Features

T
ra

in
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

SBCW

SOFS

sparDCA

L1SVM

FGM

(f) rcv1.

Figure 1: Feature selection performance of various methods on high-dimensional data sets in terms of accuracy (see (a)(b)(c))
and training time (see (d)(e)(f)) v.s. number of selected features.

Crammer, K., and Singer, Y. 2003. Ultraconservative online algo-
rithms for multiclass problems. JMLR.
Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and Y, S.
2006. Online passive-aggressive algorithms. JMLR.
Crammer, K.; Dredze, M.; and Pereira, F. 2008. Exact convex
confidence-weighted learning. In NIPS.
Crammer, K.; Dredze, M.; and Pereira, F. 2012. Confidence-
weighted linear classification for text categorization. JMLR.
Crammer, K.; Kulesza, A.; and Dredze, M. 2009a. Adaptive regu-
larization of weight vectors. In NIPS.
Crammer, K.; Kulesza, A.; and Dredze, M. 2009b. Multi-class
confidence weighted algorithms. In EMNLP.
Dredze, M.; Crammer, K.; and Pereira, F. 2008. Confidence-
weighted linear classification. In ICML.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradient
methods for online learning and stochastic optimization. JMLR.
Gentile, C.; Vitale, F.; and Brotto, C. 2008. On higher-order per-
ceptron algorithms. In NIPS.
Han, L., and Zhang, Y. 2015. Discriminative feature grouping. In
AAAI.
Hsieh, C.-J.; Chang, K.-W.; Lin, C.-J.; Keerthi, S.; and Sundarara-
jan, S. 2008. A dual coordinate descent method for large-scale
linear svm. In ICML.
Kortanek, K. O., and No, H. 1993. A central cutting plane algo-
rithm for convex semi-infinite programming problems. SIAM J. on
Optimization 3:4.
Ma, J.; Saul, L.; Savage, S.; and Voelker, G. 2009a. Beyond black-
lists: learning to detect malicious web sites from suspicious urls. In
KDD.
Ma, J.; Saul, L.; Savage, S.; and Voelker, G. 2009b. Identifying
suspicious urls: an application of large-scale online learning. In
ICML.
Ma, J.; Kulesza, A.; Dredze, M.; Crammer, K.; Saul, L.; and

Pereira, F. 2010. Exploiting feature covariance in high-dimensional
online learning. In AISTATS.
Orabona, F., and Crammer, K. 2010. New adaptive algorithms for
online classification. In NIPS.
Rosenblatt, F. 1958. The perceptron: a probabilistic model for
information storage and organization in the brain. Psych. rev.
Shalev-Shwartz, S., and Zhang, T. 2012. Proximal stochastic dual
coordinate ascent.
Shalev-Shwartz, S., and Zhang, T. 2013. Stochastic dual coordinate
ascent methods for regularized loss. JMLR.
Tan, M.; Tsang, I. W.; and Wang, L. 2014. Towards ultrahigh
dimensional feature selection for big data. JMLR 15:1371–1429.
Tan, M.; Wang, L.; and Tsang, I. W. 2010. Learning sparse svm
for feature selection on very high dimensional datasets. In ICML,
1047–1054.
Wang, J.; Zhao, P.; and Hoi, S. 2012. Exact soft confidence-
weighted learning. In ICML.
Wu, Y.; Hoi, S. C. H.; and Mei, T. 2014. Massive-scale online fea-
ture selection for sparse ultra-high dimensional data. arXiv preprint
arXiv:1409.7794.
Xu, T.; Gao, J.; Xiao, L.; and Regan, A. C. 2014. Online classifi-
cation using a voted rda method. In AAAI.
Yang, L.; Jin, R.; and Ye, J. 2009. Online learning by ellipsoid
method. In ICML.
Yuan, G.-X.; Chang, K.-W.; Hsieh, C.-J.; and Lin, C.-J. 2010. A
comparison of optimization methods and software for large-scale
l1-regularized linear classification. JMLR 11:3183–3234.
Yuan, G.-X.; Ho, C.-H.; and Lin, C.-J. 2012. An improved glmnet
for l1-regularized logistic regression. JMLR 13(1):1999–2030.
Zhang, L.; Yang, T.; Jin, R.; and Zhou, Z. 2015. Online bandit
learning for a special class of non-convex losses. In AAAI.

2086

