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Abstract

There are two classes of average reward reinforcement learn-
ing (RL) algorithms: model-based ones that explicitly main-
tain MDP models and model-free ones that do not learn
such models. Though model-free algorithms are known to be
more efficient, they often cannot converge to optimal poli-
cies due to the perturbation of parameters. In this paper, a
novel model-free algorithm is proposed, which makes use of
constant shifting values (CSVs) estimated from prior knowl-
edge. To encourage exploration during the learning process,
the algorithm constantly subtracts the CSV from the rewards.
A terminating condition is proposed to handle the unbound-
edness of Q-values caused by such substraction. The conver-
gence of the proposed algorithm is proved under very mild
assumptions. Furthermore, linear function approximation is
investigated to generalize our method to handle large-scale
tasks. Extensive experiments on representative MDPs and the
popular game Tetris show that the proposed algorithms sig-
nificantly outperform the state-of-the-art ones.

Introduction

Reinforcement learning (RL) is an effective learning tech-
nique for solving sequential decision-making problems. An
RL agent tries to maximize its cumulative reward by inter-
acting with the environment, which is usually modeled as a
Markov decision process (MDP) (Kaelbling, Littman, and
Moore 1996). Average reward MDPs are natural models of
many non-terminating tasks, such as the call admission con-
trol and routing problem (Marbach, Mihatsch, and Tsitsik-
lis 2000) and the automatic guided vehicle routing problem
(Ghavamzadeh and Mahadevan 2007). Average reward RL
has received much attention in the recent years (Ortner 2013;
Mahadevan 2014; Nguyen et al. 2014).

There are mainly two classes of average reward RL algo-
rithms (Tadepalli 2010). The first class is model-based al-
gorithms such as UCRL (Ortner and Auer 2007), UCRL2
(Jaksch, Ortner, and Auer 2010), and PSRL (Osband, Russo,
and van Roy 2013). They achieve efficient exploration by
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estimating the environment model of an MDP. It often takes
a very long time to obtain an accurate model though, es-
pecially when the state-action space is large. The second
class is model-free algorithms which do not explicitly main-
tain MDP models, including R-learning (Schwartz 1993;
Singh 1994), SMART (Das et al. 1999), RVI Q-learning
(Abounadi, Bertsekas, and Borkar 2001; Li 2012), and GR-
learning (Gosavi 2004), etc. They all use an adaptive shifting
value to approximate the optimal average reward to avoid
the unboundedness of Q-values. Their learning processes are
however typically sensitive to input parameters and may of-
ten result in long execution time or even non-convergence.
For example, R-learning can be easily perturbed by the
learning rates (Mahadevan 1996) and choosing a proper ref-
erence state for RVI Q-learning can be difficult when the
state space is large (Abounadi, Bertsekas, and Borkar 2001).

To overcome the instability and improve scalability of av-
erage reward RL, this paper proposes a novel model-free
stochastic approximation algorithm which takes advantage
of constant shifting values (CSVs) when such values can
be inferred from prior knowledge. A main feature of our
method (named CSV-LEARNING), is that it encourages a
more precise and accurate exploration until a stable policy
is reached. As will be discussed later, a CSV usually leads
to unboundedness of Q-values during the learning process.
Nonetheless, we have derived a terminating condition to se-
cure the convergence of policy, and proved that such a con-
vergence could be towards the optimal policy if CSVs are
wisely chosen (i.e., with good prior knowledge).

Linear function approximation is also considered in this
paper to handle large scale tasks. We compare our method
with other existing algorithms using representative MDPs
and the popular game Tetris. Experiment results show that
CSV-LEARNING converges to the optimal policy signifi-
cantly faster than existing algorithms.

Preliminaries and Related Work

In this section, we first introduce the average reward MDP,
and then briefly present some related work in this area.

An average reward MDP is a tuple 〈S,A,R, P 〉, where S
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is the state space, A the action space, R : S × A → R the
reward function, and P : S × A× S → [0, 1] the transition
function. The average reward under a policy π : S → A is

ρπ
def
= lim

N→∞
1

N

N−1∑
k=0

r(sk, π(sk)).

The goal of a learner is to find a policy π∗ to maximize ρπ .
The Q-value of a state-action pair (s, a) under a given

policy π is defined as

Qπ(s, a)
def
=

∞∑
k=0

E [r(sk, π(sk))− ρπ |s0 = s, a0 = a ] .

ρπ can be considered as a shifting value subtracted from the
immediate reward r, such that Qπ(s, a) is a bounded value.

Starting from an initial policy π0, a learning process
coutinuously improves the policy over time, thus generates a
sequence of policies {πt}, t = 0, 1, 2, · · · . Such a sequence
of policies {πt} is said to be convergent if after some time
T the policy becomes stable, i.e., πt = πT for all t > T .
We may use Qt as a shorthand for Qπt when discussing a
learning process.

Average reward MDPs can be solved by model-free al-
gorithms, e.g., R-learning (Schwartz 1993; Singh 1994),
SMART (Das et al. 1999), RVI Q-learning (Abounadi, Bert-
sekas, and Borkar 2001), and recently developed model-
based regret minimization (RM) algorithms, e.g., UCRL
(Ortner and Auer 2007), UCRL2 (Jaksch, Ortner, and Auer
2010), and PSRL (Osband, Russo, and van Roy 2013).

R-learning (Schwartz 1993; Singh 1994) uses a stochas-
tic estimattion of the shifting value ρπ; Q(s, a) and ρ are
updated alternately:

Q(s, a) ←(1− α) ·Q(s, a) +

α ·
(
r(s, π(s))− ρ+max

a′∈A
Q (s′, a′)

)
,

ρ ← ρ+ β ·
(
r(s, π(s))− ρ+max

a′∈A
Q(s′, a′)−Q(s, a)

)
,

where s′ is the next state after executing π(s) in state s; α
and β are learning rates.

RVI Q-learning (Abounadi, Bertsekas, and Borkar 2001)
uses the Q-values of a reference state as the shifting value:

Q(s, a) ←(1− α) ·Q(s, a) +

α ·
(
r(s, π(s))− f(Q) + max

a′∈A
Q(s′, a′)

)
,

where f(Q) : R|S|×|A| → R is a function of the Q-values
of some reference state s0; for example, f(Q) = Q(s0, a0)
or f(Q) = maxa Q(s0, a).

SMART (Das et al. 1999) estimates the shifting value by
averaging over the immediate rewards:

ρ ← (1− β) · ρ+ β · r(s, π(s)),
and the update of Q(s, a) is the same as in R-learning.

GR-learning (Gosavi 2004) udpates the shifting value as

ρ ← (1− β) · ρ+ β · ρ ·K + r(s, π(s))

K + 1
,

where K is the number of steps the learner has learned.
RM algorithms keep being optimistic about poorly un-

derstood states and actions (i.e., states and actions with high
uncertainty) in order to encourage exploration. They esti-
mate the MDP using some sampling techniques. Specifi-
cally, UCRL (Ortner and Auer 2007) and UCRL2 (Jaksch,
Ortner, and Auer 2010) use two upper confidence (UC) val-
ues about the reward function and transition function; in
each episode a policy is generated based on the MDP model
and UCs (Jaksch, Ortner, and Auer 2010; Ortner and Auer
2007). PSRL (Osband, Russo, and van Roy 2013) uses pos-
terior sampling: in each episode, it samples an MDP from
the posterior distribution and then generates a policy.

In many real world problems, the optimal (or a near-
optimal) average reward may be estimated based on our
knowledge on the learning task. The estimated average re-
ward can then be used as a (constant) shifting value to speed
up learning. Consider the video game Tetris as an example.
The goal of a Tetris player is to survive as long as possible
by clearing tetrominoes. Suppose that 1 line in Tetris con-
tains 10 blocks, and the player gets 1 point for clearing every
1 line. Under a good (i.e., ideally everlasting) policy, every
time a tetromino (consisting of 4 blocks) drops, 4 blocks
should be cleared on average, hence the average point per
step is ρ̂ = 4

10 = 0.4, which could be a good shifting value.
Table 1 summaries existing algorithms. Convergence for

UCRL2 and PSRL are regret bounds, in which T is the time
step, D the diameter of the MDP, and τ the length of a learn-
ing episode. In general, model-free methods are scalable in
terms that they can easily incorporate with function approx-
imation techniques, whereas for model-based methods it is
not that straightforward to do so.

Our Methods

In this section, we describe our CSV-LEARNING method,
in which the key issue is to derive the terminating con-
dition by using two novel concepts, the action-value in-
crease ΔQ(s, a) (Definition 1) and the state-value differ-
ence d(s′, s) (Definition 2). We also extend the basic CSV-
LEARNING with linear function approximation to handle
large scale tasks.

Tabular CSV-Learning with prior knowledge ρ̂

We first make two mild assumptions on average reward
MDPs and the learner.

Assumption 1. The MDP is irreducible, aperiodic, and er-
godic; that is, under any stationary policy, the generated
Markov chain is communicating and has a recurrent state.

Note that this assumption is widely adopted in RL litera-
ture (see, e.g., (Abounadi, Bertsekas, and Borkar 2001)).

Assumption 2. The learner has a prior estimation ρ̂ on the
optimal average reward ρ∗.

This assumption is reasonable in many applications such
as Tetris (see our analysis of Tetris in the last section)
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Table 1: Summary of Average Reward RL Algorithms
How to estimate
shifting values

How to generate
policies

Exploration strategy Convergence Scalability

R-learning adaptively using Q-table ε-greedy, etc. no guarantee good
SMART estimate directly using Q-table ε-greedy, etc. no guarantee good

RVI Q-learning reference state using Q-table ε-greedy, etc. limit convergence good
GR-learning estimate directly using Q-table ε-greedy, etc. limit convergence good

UCRL not required using estimated R, T optimism to uncertainty logarithmic regret poor
UCRL2 not required using estimated R, T optimism to uncertainty Õ(DS

√
AT ) poor

PSRL not required using estimated R, T optimism to uncertainty Õ(τS
√
AT ) poor

CSV-LEARNING uses the prior knowledge ρ̂ as the (con-
stant) shifting value in the update

Qt+1(s, a) ←(1− α) ·Qt(s, a)

+ α ·
(
r(s, a)− ρ̂+max

a′
Qt(s

′, a′)
)
. (1)

If ρ̂ = ρ∗, {Qt} is guaranteed to converge to Q∗ (Abounadi,
Bertsekas, and Borkar 2001). However, the Q-values might
be unbounded when ρ̂ < ρ∗. Having a goal of finding the
optimal policy, we argue that it is acceptable to have un-
bounded Q-values as long as the policy converges. To see
this, we define the action-value increase ΔQt(s, a) and the
state-value difference dt(s

′, s) as follows.

Definition 1 (Action-value increase). The action-value in-
crease ΔQt(s, a) of state s and action a is the increase
of action-value Q(s, a) from time t − 1 to time t (with the
change of policy from πt−1 to πt),

ΔQt(s, a)
def
= Qt(s, a)−Qt−1(s, a). (2)

Let Mt be the generated Markov chain under policy πt,
and let Q-values of Mt be Qt.

Definition 2 (State-value difference). The state-value differ-
ence of two adjacent states s and s′ in Mt is the difference
between their maximum Q-values under a policy πt.

dt(s
′, s)

def
= max

a′
Qt(s

′, a′)−max
a

Qt(s, a). (3)

Note that following a policy π, states s and s′ are said to be
adjacent if ∃a, P (s, a, s′) > 0.

We have the following relationship between ρt (i.e., ρπt ),
dt(·, ·), and ρ̂.

Lemma 1. In Mt, dt(s′, s) = ρt − r(s, πt(s)).

Proof. Let W = maxa′ Qt(s
′, a′). Then,

dt(s
′, s) = W −max

a

∞∑
k=0

E [r(sk, πt(sk))− ρt|s, a]

= W − (r(s, πt(s))− ρt +W ).

Therefore, dt(s′, s) = ρt − r(s, πt(s)).

Lemma 2. If πt is stable, then ρt ≥ ρ̂.

Proof. Based on Eq. 1, we have

ΔQt(s, πt(s)) = α · (r (s, πt(s))− ρ̂+ dt(s
′, s))

= α · (ρt − ρ̂) . (4)

πt being stable requires that ΔQt(s, πt(s)) being nonneg-
ative for all state s in Mt. This is because, if otherwise
ΔQt(s, πt(s)) were negative, then the value of action a =
πt(s) in state s would be ever decreasing and as a conse-
quence at some point a could be suboptimal, violating the
precondition that πt is stable. Hence, ρt ≥ ρ̂.

We now derive the terminating condition for the CSV-
LEARNING algorithm.
Theorem 1. During CSV-LEARNING, if for all adjacent
states s and s′ in Mt there holds dt(s′, s)+r(s, πt(s)) ≥ ρ̂,
then πt is stable. In addition, when πt is stable, if ρ̂ > ρπ

holds for all π �= π∗, then πt = π∗.

Proof. Given the condition dt(s
′, s) + r(s, πt(s)) ≥ ρ̂ and

Eq. 4, we have (at time t)

ΔQt(s, a) = α · (ρt − ρ̂) ≥ 0.

Then, for any state s and action a in Mt,

πt+1(s) = argmax
a′

Qt+1(s, a
′)

= argmax
a′

(Qt(s, a
′) + α · (ρt − ρ̂))

= argmax
a′

Qt(s, a
′)

= πt(s),

which means that πt becomes stable after time t. Due to
Lemma 2 and the fact ρ̂ > maxπ �=π∗ ρπ we know that
ρt ≥ maxπ �=π∗ ρπ , implying πt = π∗.

Algorithm 1 presents CSV-LEARNING.

CSV-Learning with linear function approximation

For large scale problems, tabular form of Q-values might be
inefficient. A remedy is to represent Q-values as the product
of a group of features and their corresponding weights. This
technique is known as linear function approximation (linear
FA). Formally,

Vθ = θφ� =

M∑
i=1

θiφi(s),
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Algorithm 1: CSV-LEARNING

Input: an MDP M = 〈S,A,R, P 〉, prior estimation ρ̂
Output: a policy π

1 Initialize Q(s, a) for all s, a arbitrarily, t ← 0
2 repeat
3 s ← current state
4 a ← argmaxa′ Q(s, a′)
5 Take action a, and observe r, s′

6 update Q-value using Eq. 1
7 generate Mt and calculate dt(s

′, s) using to Eq. 3
8 t ← t+ 1
9 until ∀s′, s ∈ Mt : dt(s

′, s) + r(s, πt(s)) ≥ ρ̂;
10 return policy π derived from Q(s, a).

where φ(s) = [φ1(s), φ2(s), ..., φM (s)] is M features of
state s and θ = [θ1, θ2, ..., θM ] is the weight vector.

To the best of our knowledge, little attention is paid to av-
erage reward learning with linear FA. In this paper, we con-
sider mean square error (MSE) as our objective function:

MSE(θ) = ||Vθ − V π||2D,

where V π is the value function under policy π and ‖ · ‖D
denotes the D-norm w.r.t. a diagonal matrix D. In our work,
we use TVθ = R − ρ̂ + Vθ to estimate V π since the latter
is practically unavailable. We use direct gradient to find an
optimal θ, i.e., to minimize MSE(θ):

Δθd = α
∑
s

(r(s, π(s))− ρ̂+ Vθ(s
′)− Vθ(s)) · ∇Vθ(s),

where ∇Vθ(s) = φ(s). We use this policy control strategy
together with the eligibility traces e. Algorithm 2 describes
our extension of CSV-LEARNING using linear FA.

Algorithm 2: CSV-LEARNING with linear FA
Input: an MDP M = 〈S,A,R, P 〉, a group of features F ,
prior estimation ρ̂
Output: a policy π

1 Initialize θ arbitrarily, e ← 0, λ ∈ (0, 1)
2 repeat
3 s ← current state
4 Choose action a in s using a greedy policy
5 Take action a, and observe r, s′

6 for each i ∈ F do ei ← ei + 1
7 δ ← r(s, π(s))−∑

i∈Fa
θi

8 for each i ∈ F do Qa ← ∑
i∈Fa

θi
9 a ← argmaxa′ Qa′

10 δ ← δ − ρ̂+Qa; θ ← θ + αδe; e ← λe
11 t ← t+ 1
12 until the number of learning steps reaches the set value;
13 return policy π derived from θ

Convergence Analysis

In this section, we convert our algorithm to ordinary differ-
ential equations (ODEs) and track their solutions. Then we
show that the policy out of our algorithm is the same as the

one out of the bounded optimal Q-values Q∗. Finally, we
prove that the optimal policy learnt by CSV-LEARNING is
asymptotically achievable.

First, note that Eq. 1 can be rewritten as

Qt = Qt−1 + α(T (Qt−1)− ρ̂−Qt−1 +Mt), (5)

where TQt and Mt are defined by

TQt(s, a)
def
=
∑
s′

P (s, a, s′)
(
r(s, a) + max

a′
Qt(s

′, a′)
)
,

Mt(s, a)
def
= r +max

a′
Qt(s

′, a′)− TQt(s, a).

In (Abounadi, Bertsekas, and Borkar 2001), the martingale
difference sequence Mt is proved to be a noise term in Eq. 5.
We define T ′ and T̂ based on T :

T ′(Q)
def
= T (Q)− ρ∗,

T̂ (Q)
def
= T (Q)− ρ̂.

With operators T ′ and T̂ , and by eliminating the noise term
Mt, Eq. 5 becomes ODEs

Q̇(t) = T ′(Q(t))−Q(t), (6)

Q̇(t) = T̂ (Q(t))−Q(t). (7)

Let y(t) and x(t) be the solutions of Eq. 6 and Eq. 7, re-
spectively. Then the convergence proof turns into analyzing
the relationship between y(t) and x(t). Due to the mono-
tonicity of T ′, Eq. 6 converges to an equilibrium (Abounadi,
Bertsekas, and Borkar 2001), meaning that y(t) asymptoti-
cally converges to the unique optimal Q∗.

In Eq. 5, the Q-value can increase to infinity even though
the derived policy is stable and optimal. Thus, we focus on
the following critical Q-table Q̂∗.

Definition 3 (Critical Q-table). In CSV-LEARNING, the
critial Q-table Q̂∗ is defined as the first Qt from which the
derived policy is stable. In other words, let t be the number

satisfying πt−1 �= πt = πt+1 = · · · , then Q̂∗ def
= Qt.

To prove the convergence of CSV-LEARNING, it is then
sufficient to show that x(t) can reach Q̂∗ asymptotically.

Lemma 3. Let x(0) = y(0), then x(t) = y(t)+r(t)e, where
e is a matrix of all 1’s, and r(t) satisfies the ODE ṙ(t) =
−r(t) + c(t) + δ. Here c(t) : N → R is a function of time t
and δ = ρ∗ − ρ̂ ≥ 0.

Proof. According to the monotonicity of T ′(x), we have

T ′(x+ c(t)e) = T ′(x) + c(t)e. (8)

Lemma 3.3 in (Abounadi, Bertsekas, and Borkar 2001) says

‖x(t)− y(t)‖u ≤
∫ t

0

e−(t−u)‖x(u)− y(u)‖udu.

By Gronwall’s inequality, we get ‖x(t)−y(t)‖u = 0, mean-
ing that, when ρ∗ − ρ̂ ≤ minπ �=π∗ (ρ∗ − ρπ), the difference
between the critical Q-table Q̂∗ and Q∗ is a multiple of the
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constant matrix e. Thus, we have x(t) = y(t) + r(t)e, and,
according to Eq. 8,

ṙ(t)e = ẋ(t)− ẏ(t)

= (T ′(x(t))− x(t) + δe)− (T ′(y(t))− y(t))

= (−r(t) + c(t) + δ)e.

That is, ṙ(t) = −r(t) + c(t) + δ.

Lemma 3 tells us that, with a proper ρ̂, CSV-LEARNING
can find an optimal policy and the terminating condition in
Theorem 1 is satisfiable.
Theorem 2. The critical Q-table Q̂∗ is asymptotically
achievable when ρ̂ satisfies maxπ �=π∗ ρπ < ρ̂ ≤ ρ∗. As time
t → ∞, the difference between Q̂∗ and Q∗ is m(t) · e, where
m(t) : N → R is a function of time t.

Proof. Solving the ODE in Lemma 3, we have

r(t) =

∫ t

0

e−(t−u)(c(t) + δ)du = (δ + c(t))(1− e−t),

thus r(t) → c(t) + δ when t → ∞. Assume w.o.l.g. that
Q̂∗ = Q(t0). Then, Q̂∗(t0) = Q∗(t0) + (c(t0) + δ)e. Note
that ċ(t) = ΔQt; hence,

c(t) = c(t0) +

∫ t

t0

ΔQudu

= c(t0) + α

∫ t

t0

(r(s, π(s))− ρ̂+ du(s
′, s))du.

Since u is beyond the critical time t0, we know that
du(s

′, s) = d∗(s′, s), thus continuing the calculation,

c(t) = c(t0) + α

∫ t

t0

(r(s, π(s))− ρ̂+ d∗(s′, s))du

= c(t0) + αδ(t− t0).

Eventually, we conclude that for any t > t0

Q̂∗(t) = Q∗(t) +m(t) · e,
with m(t) = c(t0) + δ + αδ(t− t0)(1− e−t).

m(t) becomes a constant when t → ∞, thus if ρ̂ in CSV-
learning satisfies maxπ �=π∗ ρπ < ρ̂ ≤ ρ∗ then πt = π∗ for
sufficiently large t.

Experiments

In this section, the proposed CSV-LEARNING algorithms
are evaluated in two average reward MDPs used by Schwartz
and Osband (Schwartz 1993; Osband, Russo, and van Roy
2013) (Figure 1(a) & 1(b)), as well as Tetris (Figure 1(c)).

Experiments on two average reward MDPs

The 4-circle MDP (Figure 1(a)) contains 40 states and the
action in each state is either staying or moving to the next
state. The reward of 5, 20, 45, or 80 is given to the agent if it
goes back to State 1 from State 5, 10, 15, or 20, respectively;
the rewards are 0 in all the other cases. The optimal policy is
to get the highest distant reward 80 with an average reward

of 4. The RiverSwim MDP consists of 6 states of which the
arrangement is shown in Figure 1(b). The agent begins at
the leftmost state and has the choice to swim left or right.
Swimming left (along the stream) is always successful while
swimming right (against the stream) can fail with probability
0.1 (0.05 stay and 0.05 swim left). The optimal policy is to
swim to the right and then stay there.

For comparison, we implemented well known algorithms
including R-learning (Schwartz 1993; Singh 1994), SMART
(Das et al. 1999), RVI Q-learning (Abounadi, Bertsekas, and
Borkar 2001), GR-learning (Gosavi 2004), UCRL (Ortner
and Auer 2007), UCRL2 (Jaksch, Ortner, and Auer 2010)
and PSRL (Osband, Russo, and van Roy 2013). All the
tested algorithms were run 100 times in each MDP and the
results were averaged. In MDP 1(a), the learning rates α
and β of all model-free algorithms were both 0.1 and explo-
ration was executed by a fixed ε-greedy policy with ε = 0.1.
The reference of RVI Q-learning was State 1. In our method,
the CSV was set to 4. In MDP 1(b), the following settings
worked the best: learning rates α = β = 0.01, and the refer-
ence of RVI Q-learning was the starting state. The CSV was
set to 0.2 in our method. In both MDPs, we implemented
UCRL2 with δ = 0.05.

It can be found that in Figures 2(a) & 2(b), our method
learned the optimal policy after about 10 thousand steps
while other model-free algorithms required at least 60 thou-
sand steps. PSRL and UCRL2 failed to converge to the op-
timal policy within 100 thousand steps. The reason could be
that they need more steps to build sufficiently good MDP
models. From Figures 3(a) & 3(b), we see that our methods
beated PSRL by a particular of margins in its benchmark
SwimRiver. In Figures 2(c) & 3(c) and Figures 2(d) & 3(d),
the learning curves of average reward and total regret of dif-
ferent CSVs are presented to show that, with different CSVs,
our proposed algorithm can converge. Especially, when the
CSV was close to the optimal average reward, the algorithm
converged to an optimal policy.

Table 2 shows the runtime and mean total regret results of
the tested algorithms. We can see that, due to the process
of building the MDP, model-based algorithms were time-
consuming. Especially, in the 4-circle MDP with 20 states,
our algorithm used one third of the running time of PSRL
and got the best performance. Because there were just 6
states in RiverSwim, the runtime of each tested algorithm
was almost the same. With regard to the mean total regret,
our method outperformed PSRL by more than 10 percent.

Experiments on the video game Tetris

Tetris is a popular video game since 1984. A player pursu-
ing a high score must clear the tetrominoes as many as pos-
sible. Although the rules of Tetris are simple, finding an op-
timal strategy for playing Tetris is NP-hard (Demaine, Ho-
henberger, and Liben-Nowell 2003). This makes Tetris an
appealing benchmark problem for testing RL algorithms.

We used a 10 × 20 board for the game and selected 14
features (Table 4(a)) to represent the value of a state. The
agent would get 1 point if it removed one line.
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(a) (b) (c)

Figure 1: Two average reward MDPs: (a) A 4-circle MDP with different distant rewards; (b) RiverSwim - continuous and dotted
arrows represent the MDP under the actions “right” and “left”; (c) The popular video game Tetris and the 7 tetrominoes.
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Figure 2: Results out of the 4-circle MDP: (a) Average reward learning curves; (b) Total regret curves; (c) Average reward
learning curves under different CSVs; (d) Total regret curves under different CSVs.
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Figure 3: Results out of the RiverSwim MDP: (a) Average reward learning curves; (b) Total regret curves; (c) Average reward
learning curves under different CSVs; (d) Total regret curves under different CSVs.

Table 2: Experiment Results of the Two MDPs.

Algorithm
4-circle MDP RiverSwim

Runtime (s) Mean total regret (×104) Runtime (s) Mean total regret (×103)
R-learning 4.89 7.5721 2.57 7.2891

on-policy R-learning 8.80 7.1694 4.65 7.9683
SMART 4.79 8.9903 2.55 6.8463

RVI Q-learning 4.92 9.0489 2.58 9.1724
GR-learning 4.78 19.0780 2.51 6.2835

UCRL2 13.93 23.0385 2.48 3.7207
PSRL 13.31 9.8138 2.53 0.0530

CSV-learning 4.74 0.9730 2.50 0.0477

We tested three well-known FA algorithms: TD(λ) (Barto
1998), GTD (Sutton, Maei, and Szepesvári 2009), and TDC
(Sutton et al. 2009). All the algorithms were run 5 times; in
each run, every algorithm played 200 rounds of the game and
the results were averaged. We used the learning rate α = 0.1
for our method, α = 0.1 and β = 0.1 for R-learning, α =
0.5 and λ = 0.1 for TD(λ), α = 0.1 and β = 0.6 for TDC,

and α = 0.1 and β = 0.9 for GTD. The parameters above
all performed the best via tuning.

From Figure 4(b), we see that after 100 games the policy
out of our method cleared near 2,500 lines on average which
was twice as many as that of R-learning. The performance
of TD(λ), TDC and GTD was poor as the policies learnt by
them cleared less than 400 lines.
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(a) Features and corresponding weights learnt by our method
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Figure 4: Results of the experiments on Tetris

Conclusion

In this paper we propose CSV-LEARNING for solving aver-
age reward MDPs to make the learning process more stable
and faster. In CSV-LEARNING, no extra exploration strategy
is needed. We find that if the CSV lies below but close to the
optimal average reward, the learned Q-values could be un-
bounded but the derived policy can converge to the optimum.
We thus develop a mechanism to terminate the algorithm as
soon as the policy is stable. We also prove the convergence
of the proposed method. In addition, we conduct extensive
experiments and demonstrate the efficiency of the proposed
algorithm as compared with existing approaches.
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