
Scaling Simultaneous Optimistic Optimization for High-Dimensional
Non-Convex Functions with Low Effective Dimensions∗

Hong Qian and Yang Yu
National Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210023, China
{qianh,yuy}@lamda.nju.edu.cn

Abstract

Simultaneous optimistic optimization (SOO) is a re-
cently proposed global optimization method with a
strong theoretical foundation. Previous studies have
shown that SOO has a good performance in low-
dimensional optimization problems, however, its per-
formance is unsatisfactory when the dimensionality is
high. This paper adapts random embedding to scaling
SOO, resulting in the RESOO algorithm. We prove that
the simple regret of RESOO depends only on the ef-
fective dimension of the problem, while that of SOO
depends on the dimension of the solution space. Em-
pirically, on some high-dimensional non-convex testing
functions as well as hyper-parameter tuning tasks for
multi-class support vector machines, RESOO shows sig-
nificantly improved performance from SOO.

Introduction

Problem. Solving sophisticated optimizations is in the cen-
tral problems of artificial intelligence. Let f : X → R be a
function defined on a bounded region X ⊆ R

D, of which we
assume that a global maximizer x∗ ∈ X always exists. An
optimization problem can be formally written as

x∗ = argmaxx∈X f(x).
Without loss of generality, we assume X = [−1, 1]D in

this paper. We treat f as a black-box function that can only
be evaluated point-wisely, i.e., we can only access f(x) for
any given solution x ∈ X . We assume that f is deterministic,
i.e., every call of f(x) returns the same value for the same x.
The performance of an optimization algorithm is evaluated
by the simple regret (Bubeck, Munos, and Stoltz 2009), i.e.,
given n function evaluations, for maximization,

rn = maxx∈X f(x)− f(x(n)),
where x(n) ∈ X is the solution with the highest function
value found by the algorithm when the budget of n function
evaluations is used up. The simple regret measures the differ-
ence between the true maximum of f and the best found by
the algorithm. An algorithm is no-regret if it possesses the
desirable asymptotic property limn→∞ rn = 0.

∗This research was supported by the NSFC (61375061,
61422304, 61223003), Foundation for the Author of National Ex-
cellent Doctoral Dissertation of China (201451).
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work. Methods with different principles have
been proposed to address the black-box global optimization
problems. Most of them can be roughly categorized into three
kinds: meta-heuristic search, deterministic Lipschitz opti-
mization methods, and Bayesian optimization methods. Meta-
heuristic search algorithms are designed with inspired heuris-
tics, such as evolutionary strategies (Hansen, Müller, and
Koumoutsakos 2003) , which, however, are very weak in their
theoretical foundations. Deterministic Lipschitz optimization
methods require Lipschitz continuity assumption on f , either
globally (Pintér 1996; Kearfott 1996; Strongin and Sergeyev
2000) or locally (Kleinberg, Slivkins, and Upfal 2008;
Bubeck et al. 2011; Jones, Perttunen, and Stuckman 1993;
Bubeck, Stoltz, and Yu 2011; Slivkins 2011; Munos 2011),
which can have sound theoretical foundations. In addition,
when a function evaluation is very expensive, Bayesian op-
timization methods (Brochu, Cora, and de Freitas 2010;
Snoek, Larochelle, and Adams 2012) are particularly suitable,
which are often theoretically supported under the assumption
of Gaussian process priors.

We are interested in the deterministic Lipschitz optimiza-
tion methods, and particularly the recently proposed Simul-
taneous Optimistic Optimization (SOO) algorithm (Munos
2011; 2014), since the Local Lipschitz continuity that SOO
requires is intuitive, easy to be satisfied, and relatively easy
to be verified. SOO incorporates an optimistic estimation of
the function value with the branch-and-bound principle. It
is worth mentioning that, although SOO assumes the Local
Lipschitz continuity with respect to some semi-metric �, fortu-
nately � does not need to be known. Because of these advan-
tages, SOO has attracted attentions, such as the hybrid with
Bayesian optimization to eliminate the optimization of acqui-
sition functions (Wang et al. 2014). Also, variants of SOO
have been proposed for, e.g., stochastic optimization (Valko,
Carpentier, and Munos 2013) and parallel optimistic opti-
mization (Grill, Valko, and Munos 2015).

However, previous studies have noticed that SOO may
perform poorly in high-dimensional optimization prob-
lems (Preux, Munos, and Valko 2014; Derbel and Preux
2015). Meanwhile, it has been observed that in a wide range
of high-dimensional optimization problems, such as hyper-
parameter optimization in neural networks (Bergstra and
Bengio 2012), intrinsically only a few low dimensions are
effective. For these optimization problems with low effective

2000

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

dimensions, random embedding and projection techniques
are effective tools (Wang et al. 2013; Kaban, Bootkrajang,
and Durrant 2013).

Our Contributions. This paper proposes RESOO that
scales SOO to high-dimensional optimization problems via
random embedding. RESOO performs the optimization by
SOO in a low-dimensional solution space, where the function
values of solutions are evaluated through the embedding into
the original high-dimensional space. To perform the theoreti-
cal analysis of RESOO, we notice that the random embedding
can probably preserve the local distance. By injecting this
property into the Local Lipschitz continuity condition, we
prove that the simple regret of RESOO depends only on the
effective dimension of the problem. While the simple regret
of SOO depends on the dimension of the solution space, RE-
SOO is provably faster than SOO on the high-dimensional
problems having low effective dimensions. Empirically, on
both high-dimensional non-convex test function optimization
and hyper-parameter optimization for multi-class SVM tasks,
we show that RESOO performs better than SOO and random
search.

The consequent sections introduce the SOO, describe the
proposed RESOO, prove the regret bounds, present the em-
pirical results, and finally conclude the paper.

Simultaneous Optimistic Optimization
Simultaneous Optimistic Optimization (SOO) combines the
branch-and-bound principle with the optimistic optimiza-
tion idea from multi-armed bandit for black-box optimiza-
tion in continuous domain (Munos 2011; 2014). It is im-
plemented via resorting to a hierarchical partitioning of the
solution space X by building a K-ary tree. Let (h, i) denote
a node of the tree indexed by its depth h (h ≥ 0) and index i
(0 ≤ i ≤ Kh − 1), and Xh,i ⊆ X denote the corresponding
cell. The root node (0, 0) (cell X0,0) of the tree represents the
whole solution space X . Each node (h, i) possesses K chil-
dren nodes {(h+1, ik)}1≤k≤K , and the children partition the
corresponding parent cell Xh,i into cells {Xh+1,ik}1≤k≤K .
For each node (h, i), a specific solution xh,i ∈ Xh,i, which
is always the center of cell Xh,i, is evaluated. The corre-
sponding function value f(xh,i) represents the quality of
node (h, i).

Let t and t′ denote the number of node expansions and the
number of function evaluations, respectively. SOO first initial-
izes the tree T0 = {(0, 0)} that only contains the root node.
Then, it incrementally builds a tree Tt for t = 1, . . . , n/K,
where n is the number of function evaluation budget and we
assume that n/K is a positive integer for simplicity. Let Lt

denote the set of leaves in Tt. SOO expands several leaves
simultaneously. When a node is expanded, its children nodes
are evaluated. At each round, SOO expands at most one leaf
per depth, and a leaf is expanded if and only if it has the
highest function value among all leaves of the same or lower
depths. When function value budget is used up, i.e., t′ = n,
SOO returns the solution x(n) with the highest function
value among all nodes of the current tree. In addition, we
should note that SOO regards hmax(t), which restricts the
maximum depth of the tree after t node expansions, as a pa-
rameter of the algorithm. The purpose of introducing hmax(t)

is to make a trade-off between deep exploitation and broad
exploration.

SOO has a solid theoretical guarantee on the convergence
rate of its simple regret. The theoretical guarantee relies on
the assumption that there exists a positive constant L and
a semi-metric � (� may not satisfy the triangle inequality)
such that f(x∗) − f(x) ≤ L · �(x∗,x) for all x, where
x∗ is a maximizer of f . This assumption characterizes the
local smoothness of f around the maximizer x∗. Although
SOO assumes the existence of such �, it does not require
the explicit knowledge of � (true local smoothness) when
implementing SOO. Thus, the assumption is not unrealistic.

However, it has been observed that the performance of
SOO in high-dimensional optimization problems is unsatis-
factory. We could intuitively imagine that SOO grows a tree to
partition the solution space into grids. In a high-dimensional
solution space, partitioning grids is of low efficiency, and thus
SOO may mainly focus on exploration only. Furthermore,
the inefficiency of SOO for high-dimensional problems could
be reflected from the simple regret bound, which we will
elaborate in the Theoretical Study section.

RESOO

For some high-dimensional functions, the function value
is affected by a few effective dimensions. For this kind of
problems, we adopt the concept of effective dimension which
has been formally defined in (Wang et al. 2013).

DEFINITION 1 (Effective Dimension)
A function f : RD → R is said to have effective dimension
de with de < D, if there exists a linear subspace V ⊆ R

D

with dimension de such that for all x ∈ R
D, we have f(x) =

f(xe+xc) = f(xe), where xe ∈ V ⊆ R
D, xc ∈ V⊥ ⊆ R

D

and V⊥ denotes the orthogonal complement of V . We call V
the effective subspace of f and V⊥ the constant subspace.

Intuitively, the definition means that f only changes along
the subspace V (effective subspace), i.e., the function value
does not vary along V⊥ (constant subspace). Given this defi-
nition, the following Lemma (Wang et al. 2013) indicates that
random embedding can be effective for problems with low
effective dimension. To apply random embedding, we only
need to know an upper bound of effective dimension d ≥ de
instead of getting de exactly. We omit the proof since it can
be found in (Wang et al. 2013). Let N denote the Gaussian
distribution with zero mean and 1/D variance.

LEMMA 1
Given a function f : RD → R with effective dimension de,
and a random matrix A ∈ R

D×d with independent entries
sampled from N where d ≥ de, then, with probability 1, for
any x ∈ R

D, there exists a y ∈ R
d such that f(x) = f(Ay).

Lemma 1 implies that, given a random embedding ma-
trix A ∈ R

D×d, for any maximizer x∗ ∈ R
D, there exists

y∗ ∈ R
d such that f(Ay∗) = f(x∗). Thus, we can optimize

the lower-dimensional function g(y) = f(Ay) rather than
optimizing the original high-dimensional f(x).

To perform SOO in low dimension, we need firstly
choose a low-dimensional bounded rectangle region (low-

2001

dimensional solution space) Y ⊆ R
d. The principle of choos-

ing Y is that the maximizer of original problem is contained
in the low-dimensional solution space Y with high probabil-
ity. The following Lemma indicates that, under this principle,
we can find an appropriate Y ⊆ R

d that only relies on d, i.e.,
the upper bound of the effective dimension de. This Lemma
is a slight modification of Theorem 3 in (Wang et al. 2013).

LEMMA 2
Given a function f : X → R with effective dimension de ≤
d, where X = [−1, 1]D. Denote x∗ ∈ X as a maximizer.
Assume that the effective subspace V of f is a span of de
basis vectors. Let x∗

e ∈ V∩X be a maximizer of f inside V . If
A is a D×d random matrix with independent entries sampled
from N , then, for any η ∈ (0, 1), there exists a maximizer
y∗ ∈ Y = [−d/η, d/η]d ⊆ R

d such that f(Ay∗) = f(x∗
e)

with probability at least 1− η.
Proof. By Theorem 3 in (Wang et al. 2013), it can be de-
rived directly that, with probability at least 1 − η, there
exists a maximizer y∗ ∈ R

d such that f(Ay∗) = f(x∗
e)

and ‖y∗‖2 ≤ ‖x∗
e‖2 ·

√
de/η. Note that X = [−1, 1]D,

x∗
e ∈ V ∩ X is a maximizer of f inside V and V is the span

of de basis vectors, we have
‖y∗‖2 ≤ ‖x∗

e‖2 ·
√
de/η ≤ de/η.

Therefore, by d ≥ de and ‖y∗‖∞ ≤ ‖y∗‖2, we deduce that,
with probability at least 1− η,

‖y∗‖∞ ≤ ‖y∗‖2 ≤ de/η ≤ d/η.

At last, letting Y = [−d/η, d/η]d proves the Lemma. �
To implement SOO in the low-dimension solution space

Y = [−d/η, d/η]d ⊆ R
d, an important issue is that there

may exist y′ ∈ Y such that Ay′ /∈ X . The fact results in
that f can not be evaluated at point Ay′. We overcome this
problem by Euclidean projection, i.e., Ay′ is projected to X ,
when it is outsideX , by PX (Ay) = argminx∈X ‖x−Ay‖2
for any y ∈ Y . Let [x]i denote the i-th coordinate of x. Since
X = [−1, 1]D, the Euclidean projection is:

[PX (Ay)]i =

⎧⎨
⎩
−1, if [Ay]i < −1;
[Ay]i, if −1 ≤ [Ay]i ≤ 1;
1, otherwise.

(1)

Hence, we employ SOO to optimize the low-dimensional
function g(y) = f(PX (Ay)) for y ∈ Y = [−d/η, d/η]d
via random embedding. Another issue is that Y contains the
maximizer only with a probability. One approach to handle
the issue is to restart SOO M ≥ 1 times each with an in-
dependently sampled random embedding matrix. Thus, the
probability of success for M times independent random em-
bedding is at least 1−ηM , which converges to 1 exponentially
with respect to M . In addition, note that the total function
evaluation budget is n, thus the function evaluation budget
for each random embedding SOO should be n/M and we
assume w.l.o.g. that n/M is a positive integer.

Summing up the discussions above gives the proposed si-
multaneous optimistic optimization with random embedding
(RESOO), which is shown in Algorithm 1. For exploration-
exploitation trade-off, we choose hmax(t) =

√
t. Note that

RESOO is restarted M times independently each with n/M
budget.

Algorithm 1 Simultaneous Optimistic Optimization with
Random Embedding (RESOO)
Input:

Low-dimensional solution space Y = [−d/η, d/η]d;
Branching factor K;
Maximum depth function hmax(t) =

√
t;

Number of running algorithm independently M .
Procedure:

1: Initialize S = ∅.
2: for k = 1 to M do
3: Sample a random matrix A ∈ R

D×d with Ai,j ∼ N .
4: Initialize the tree T0 = {(0, 0)}, and evaluate

f(PX (Ay0,0)), set t = 0, t′ = 1.
5: while t′ < n/M do
6: Set vmax = −∞.
7: for h = 0 to min{depth(Tt), hmax(t)} do
8: Select (h, i) = argmax(h,j)∈Lt

f(PX (Ayh,j))

among all leaves (h, j) ∈ Lt with depth h.
9: if f(PX (Ayh,i)) ≥ vmax then

10: Node expansion: add the K children {(h +
1, ik)}1≤k≤K of (h, i) to Tt.

11: Function evaluation: evaluate these K children
f(PX (Ayh+1,ik)), where 1 ≤ k ≤ K.

12: Set vmax = f(PX (Ayh,i)), t = t + 1 and
t′ = t′ +K.

13: if t′ ≥ n/M then
14: Find x(n) = argmax(h,i)∈Tt

PX (Ayh,i),
let S = S ∪ {x(n)}, and break.

15: end if
16: end if
17: end for
18: end while
19: end for
20: return x(n) = argmaxx∈S f(x).

Theoretical Study

In this section, we will prove the simple regret bound of
RESOO, and compare it with that of SOO. For the purpose
of self-contained and the convenient of comparison, we first
state the assumptions made in (Munos 2011) when analyzing
SOO and the simple regret bound of SOO.

Let �(x1,x2) = ‖x1 − x2‖α2 with α > 0 denote the
semi-metric, which means that � may not satisfy the triangle
inequality. Assumption 1 is on the local smoothness with
respect to � of f around any global maximizer x∗. The local
smoothness is characterized by locally one-sided Lipschitz
continuity. Although this assumption is a special case of As-
sumption 2 in (Munos 2011), it does not affect the generality
of this assumption and the corresponding regret bound.

ASSUMPTION 1 (Locally One-sided Lipschitz Continuity)
There exists L > 0 such that, for all x ∈ X and x∗ ∈ X ∗,
f(x∗)−f(x) ≤ L · �(x∗,x), where X ∗ is the set containing
all the global maximizers of f .

Assumption 1 implies that the function does not decrease
too fast around any global maximizer. Assumptions 2 and 3,

2002

which are as same as Assumptions 3 and 4 in (Munos 2011),
are about the property of hierarchical partitioning with re-
spect to � for the solution space.

ASSUMPTION 2 (Bounded Diameters)
There exists a decreasing sequence δ(h) > 0, such that for
any depth h ≥ 0 and any cell Xh,i of depth h, we have
supx∈Xh,i

�(xh,i,x) ≤ δ(h), where δ(h) = Cγh for some
C > 0 and 0 < γ < 1.

ASSUMPTION 3 (Well-shaped Cells)
There exists ν > 0 such that for any depth h ≥ 0, any cell
Xh,i contains an �-ball of radius νδ(h) centered in Xh,i.

To satisfy Assumptions 2 and 3, C and γ would have to
take different values that rely on the values of α and the
dimension of solution space. In fact, Assumptions 2 and 3
can be satisfied when X = [−1, 1]D and the split is done
along the largest dimension of a cell, which is the case in
following of the paper. Since �(x1,x2) = ‖x1 − x2‖α2 ,
for high-dimensional solution space X , we can derive that
supx∈Xh,i

�(xh,i,x) ∈ O(Dα/2K−αh/D). In addition to
the above assumptions, the regret bound of SOO is closely
related to the near-optimality dimension defined in (Munos
2011). Let Xε = {x ∈ X | f(x) ≥ f(x∗)− ε}, which is the
set of ε-optimal solutions. We state the definition below.

DEFINITION 2 (Near-optimality Dimension)
The near-optimality dimension is the smallest dno ≥ 0 such
that there exists C̃ > 0, for all ε > 0, the maximal number of
disjoint �-balls with radius νε and center in Xε that Xε can
be packed by is less than C̃ε−dno .

Obviously, the near-optimality dimension dno depends
on the dimension of solution space D. Let ϕ(z) be a non-
negative and monotonically non-descending function with
respect to z, for X = [−1, 1]D, dno = ϕ(D). Now, we intro-
duce the simple regret bound of SOO described in Theorem 1,
and derive it from Corollary 2 in (Munos 2011).

THEOREM 1
Under Assumption 1, 2 and 3, letting hmax(t) =

√
t, if the

near-optimality dimension dno > 0, then, for large enough n,
the simple regret rn of SOO is upper bounded:

rn ≤ L · C
dno+1
dno

(C̃

1− γdno

) 1
dno

(n

K

)− 1
2dno

∈ O
(
D

α(ϕ(D)+1)
2ϕ(D) n− 1

2ϕ(D)

)
;

If the near-optimality dimension dno = 0, then the simple
regret rn of SOO is upper bounded:

rn ≤ L · C · γ
√

n/K min{1/ ˜C,1}−1 ∈ O
(
D

α
2 γ̃

√
n
)
,

where γ̃ = γmin{1/ ˜C,1}/
√
K ∈ (0, 1).

Proof. By Corollary 2 in (Munos 2011), we directly have

that, rn ≤ L · C
dno+1
dno

(
˜C

1−γdno

) 1
dno

(
n
K

)− 1
2dno if dno > 0,

and rn ≤ L · C · γ
√

n/K min{1/ ˜C,1}−1 if dno = 0.
Since X = [−1, 1]D, the split is done along the largest

dimension of a cell and �(x1,x2) = ‖x1 − x2‖α2 , it is easy

to verify that supx∈Xh,i
�(xh,i,x) ∈ O(Dα/2K−αh/D)

for high-dimensional solution space X . Therefore, letting
δ(h) = Cγh ∈ Θ(Dα/2K−αh/D) will meet Assump-
tion 2. Note that dno = ϕ(D) for X = [−1, 1]D and ϕ(z)
is a non-negative and monotonically non-descending func-
tion, we have dno ≥ ϕ(1). Thus, if dno > 0, we have
(C̃(1− γdno)−1)1/dno ∈ O(1) and K1/2dno ∈ O(1).

Hence, if dno > 0, then rn ∈ O
(
D

α(ϕ(D)+1)
2ϕ(D) n− 1

2ϕ(D)
)
. If

dno = 0, then rn ∈ O
(
D

α
2 γ̃

√
n
)
. �

In the low-dimensional solution space Y = [−d/η, d/η]d,
the split is also done along the largest dimension of a cell.
Thus, we can verify directly that g(y) = f(PX (Ay)) also
satisfies Assumption 2 and 3 in the low-dimensional so-
lution space Y . Note that the random embedding in RE-
SOO can preserve the local distance, which is stated for-
mally by the Johnson-Lindenstrauss lemma (Achlioptas 2003;
Vempala 2004) below. By injecting this property into the lo-
cal Lipschitz continuity assumption, we prove that the simple
regret of RESOO relies only on the upper bound of effective
dimension of the problem, which is shown in Theorem 2.

LEMMA 3
A set of m points y1, . . . ,ym in R

d can be embedded (or pro-
jected) to x1, . . . ,xm in R

D such that all pairwise distances
are preserved, i.e.,

(1− ε)‖yi − yj‖22 ≤ ‖xi − xj‖22 ≤ (1 + ε)‖yi − yj‖22,

if D > 9 lnm
ε2−ε3 and 0 < ε ≤ 1/2, where x = Ay, A ∈ R

D×d

and Ai,j are sampled i.i.d. from N (0, 1/D).

THEOREM 2
Under Assumption 1, 2, 3, given 0 < ε ≤ 1/2, if D ∈
Ω(ε−2), hmax(t) =

√
t, and the near-optimality dimension

dno > 0, then, for large enough n, with probability at least
1− ηM , the simple regret rn of RESOO is upper bounded:

rn ≤ (1 + ε)
α
2 L · C

dno+1
dno

(C̃

1− γdno

) 1
dno
(n

MK

)− 1
2dno

∈ O
(
(η−1d3)

α(ϕ(d)+1)
2ϕ(d) n− 1

2ϕ(d)

)
;

If the near-optimality dimension dno = 0, then with probabil-
ity at least 1− ηM , the simple regret rn of RESOO is upper
bounded:

rn ≤ (1 + ε)
α
2 L · C · γ

√
n/MK min{1/ ˜C,1}−1

∈ O
(
(η−1d3)

α
2 γ̃

√
n
)
,

where γ̃ = γmin{1/ ˜C,1}/
√
MK ∈ (0, 1).

Proof. Applying Theorem 1 to prove this theorem, we
only need to check whether Assumption 1 holds in
low-dimensional solution space Y or not. Let g(y) =
f(PX (Ay)) for y ∈ Y = [−d/η, d/η]d. By Lemma 2 and
the procedure of RESOO, we have that for RESOO, with
probability at least 1 − ηM , g(y∗) − g(y) = f(Ay∗) −
f(PX (Ay)), where y∗ is any global maximizer in Y .

Since f satisfies Assumption 1 in the high-dimensional
solution space X with respect to �, we have g(y∗)− g(y) =

2003

f(Ay∗)− f(PX (Ay)) ≤ L · �(Ay∗, PX (Ay)). According
to the definition of Euclidean projection (cf. formula (1)), it
can be verified directly that ‖Ay∗ − PX (Ay)‖2 ≤ ‖Ay∗ −
Ay‖2 and thus �(Ay∗, PX (Ay)) ≤ �(Ay∗,Ay).

Combining the discussions above with the Johnson-
Lindenstrauss lemma, we deduce that, with probability at
least 1− ηM ,

g(y∗)− g(y) ≤ (1 + ε)
α
2 L · �(y∗,y), ∀y ∈ Y,

where y∗ is any global maximizer in Y . That is to say, As-
sumption 1 holds in low-dimensional solution space Y with
probability at least 1− ηM . Therefore, we can invoke Theo-
rem 1 here to derive the simple regret bound of RESOO.

At last, for low-dimensional solution space Y , we have
that supy∈Yh,i

�(yh,i,y) ∈ O(η−α/2d3α/2K−αh/d) and
dno = ϕ(d) where ϕ is a non-negative and monotonically
non-descending function, which proves the theorem. �

It is worthwhile to point out that, when dno = 0, which
is often the case as discussed in (Munos 2011), and M = 1,
the convergence rate of simple regret for RESOO is approxi-
mately (ηD/d3)

α
2 times faster than that of SOO, when d is

much smaller than D. This indicates that RESOO is more
efficient for high-dimensional optimization problems with
low effective dimensions, and thus RESOO possesses the
better scalability than SOO.

Empirical Study

In this section, we verify the scalability and effectiveness of
RESOO empirically.In our experiment, for SOO and RESOO,
the split is done along the largest dimension of a cell and the
branching factor K is set to be 3.

Testing Functions

Two popular non-convex optimization test functions, Branin
function (Lizotte 2008) and Rosenbrock function (Picheny,
Wagner, and Ginsbourger 2013), are used. Branin function
has de = 2 effective dimensions and Rosenbrock function
has de = 4 effective dimensions. They are embedded in a D-
dimensional space X with a large D. The embedding is done
by, firstly, adding additional D − 2 dimensions for Branin
and D − 4 dimensions for Rosenbrock, but the additional
dimensions do not affect the value of the functions at all.
Secondly, the embedded functions are rotated via a random
rotation matrix. We set X = [−1, 1]D and it is easy to be
implemented by rescaling. We compare RESOO with SOO
and random search. Random search, which uniformly and
randomly sample points in each dimension, has been applied
to optimize some difficult problems and shows acceptable
performance (Bergstra and Bengio 2012). The simple regret
value is adopted here to measure the performance of opti-
mization algorithms.

We test the algorithms using the function evaluation bud-
get n ∈ {101, 2 × 102, 4 × 102, 6 × 102, 8 × 102, 103, 5 ×
103, 104}, and the dimension of solution space D =
102, 104, 105 for Branin function and Rosenbrock functions.
For RESOO maximizing Branin, let d = 4 > de = 2, and for
RESOO maximizing Rosenbrock, let d = 7 > de = 4. We
set M = 2 and η = 1/3, which means that we run RESOO

101 102 103 10410-4

10-2

100

102

Number of Function Evaluations

Random Search
SOO
RESOO

Sim
ple

 R
eg

re
t

D = 102

101 102 103 10410-4

10-2

100

102

Random Search
SOO
RESOO

Number of Function Evaluations

Sim
ple

 R
eg

re
t

D = 104

101 102 103 10410-4

10-2

100

102

Random Search
SOO
RESOO

Number of Function Evaluations

Sim
ple

 R
eg

re
t

D = 105

(a) on rotated Branin functions embedded in D-dimensions

101 102 103 10410-1

100

101

102

Random Search
SOO
RESOO

Number of Function Evaluations

Sim
ple

 R
eg

re
t

D = 102

101 102 103 104
10-1

100

101

102

Random Search
SOO
RESOO

Number of Function Evaluations

Sim
ple

 R
eg

re
t

D = 104

101 102 103 10410-1

100

101

102

Random Search
SOO
RESOO

Number of Function Evaluations

Sim
ple

 R
eg

re
t

D = 105

(b) on rotated Rosenbrock functions embedded in D-dimensions

Figure 1: The convergence performance of RESOO.

Table 1: The simple regret (mean±standard deviation) of
RESOO with different parameters d and M .

d M = 1 M = 2 M = 4 M = 10

1000-dimensional Branin function
1 3.816±1.940 2.797±0.997 1.710±0.276 3.320±0.627
2 0.004±0.002 0.002±0.001 0.001±0.001 0.107±0.092
4 0.003±0.001 0.075±0.010 0.093±0.020 0.236±0.101
10 0.191±0.174 0.130±0.071 0.118±0.022 0.592±0.294

1000-dimensional Rosenbrock function
2 2.986±0.782 2.925±0.502 2.894±0.239 2.992±0.172
4 1.353±0.201 1.213±0.172 1.556±0.107 2.691±0.105
7 2.486±1.178 1.472±0.482 2.116±0.141 2.812±0.092
20 1.726±0.112 1.877±0.102 2.687±0.073 2.973±0.065

twice independently (each of them only have n/2 budget) in
low-dimensional solution space Y = [−3d, 3d]d. Random
search and RESOO are repeated 30 times independently to
report their mean performance.

The convergence results are depicted in Figure 1. We can
observe that, firstly, in every sub-figure, the simple regret
curve of RESOO is the lowest, showing that RESOO has
the best convergence rate; Secondly, comparing sub-figures
with different dimensions, the convergence rate of RESOO
is almost not effected, which verifies the theoretical result
that the simple regret of RESOO relies on the upper bound
of effective dimension d instead of D; Finally, we notice that
SOO may even be worse than random search (on Rosenbrock
functions), while RESOO shows to be consistently better
than both SOO and random search. We hypothesize that this
advantage might be due to the randomness of the random
embedding and restarts.

In addition, we investigate how the estimated upper bound
d and the number of restarts M affect the performance of
RESOO. It should be noticed that when M is as large as
the budget n, RESOO will degenerate to random search. We
test on 1000-dimensional Branin function with de = 2 and
1000-dimensional Rosenbrock function with de = 4, and set
η = 1/3, the budget of function evaluations n = 600. We
run RESOO independently M times (each of them only have
600/M budget) in the low-dimensional solution space Y =
[−3d, 3d]d. RESOO is repeated 30 times. The simple regret
of RESOO under different parameters is shown in Table 1.

2004

Table 2: Testing accuracies of the tuned multi-class SVM. An entry is bolded if the mean value is the highest in the row. RESOO
is performed with two different estimates of effective dimension, i.e., d1, d2 with d1 < d2.

Shared hyper-parameter (D = 1) Separated hyper-parameters (D = 0.5 ·#class(#class− 1))
Dataset (#class) Random Search Grid Search SOO Random Search SOO RESOO (d1) RESOO (d2)

MNIST (10) 93.75%±0.12% 94.58% 94.61% 94.13%±0.18% 94.33% 94.81%±0.05% 94.75%±0.04%
PenDigits (10) 95.55%±0.06% 95.56% 95.65% 95.72%±0.10% 95.58% 95.92%±0.06% 95.86%±0.05%

Vowel (11) 82.51%±0.17% 82.29% 82.73% 82.79%±0.21% 82.30% 83.40%±0.03% 83.16%±0.06%
Letter (26) 84.38%±0.19% 85.12% 85.22% 85.08%±0.23% 85.06% 85.47%±0.04% 85.38%±0.05%

It can be observed that, as we expected, a better estimation
of the effective dimension, i.e., a smaller d, leads to a better
performance, as long as d ≥ de. But when d < de, RESOO
has a very poor performance. This is intuitive since d < de
violates the theoretical assumption. For the parameter M ,
since RESOO succeeds with probability at least 1− (1/3)M ,
if M is too small, the success probability is insufficient, e.g,
when M = 1, d = 2 for Branin function and M = 1, d = 7
for Rosenbrock function. Meanwhile, if M is too large, the
budget for each run of RESOO will be insufficient, which also
results in unsatisfied performance. Therefore, a moderate M
is needed to balance the success probability and the budget
for RESOO.

Hyper-parameter Tuning for Multi-class SVM

We apply RESOO to tune the hyper-parameters in a multi-
class SVM. Given a labeled training set {xi, yi}mi=1, the clas-
sification task in machine learning is to train a classifier from
{xi, yi}mi=1 to predict the label of unseen data. In this sec-
tion, we only consider the linear classifier h(x) = w
x+ b,
thus we need to learn parameters w, b from {xi, yi}mi=1. One
of the famous linear classifiers is support vector machines
(SVM) (Vapnik 1998) with linear kernel. If y ∈ {−1,+1},
SVM is formulated as minw,b,ξ

1
2‖w‖22 + λ

∑m
i=1 ξi subject

to yi(w

xi + b) ≥ 1− ξi ∧ ξi ≥ 0 for i = 1, . . . ,m, where

ξ = (ξ1, . . . , ξm)
. We should notice that there is a hyper-
parameter λ > 0 in SVM which determines the trade-off
between margin-maximization and the slack penalty mini-
mization. If we are faced with multi-class classification, one
common approach is to apply one-vs-one strategy to reduce
the multi-class classification problem to a set of binary clas-
sification problems. Let N denote the number of class, then
we need to train

(
N
2

)
= N(N−1)

2 binary classifiers, and thus
there are Θ(N2) number of hyper-parameters in all the clas-
sifiers. We often treat all the hyper-parameters λ as the same
(one hyper-parameter) to reduce the cost of hyper-parameter
tuning, assuming that the balance of every two classes is
the same. However, this assumption hardly holds. Therefore,
we try to optimize the

(
N
2

)
hyper-parameters in multi-class

SVM. Also, noticing that some classes may share the same
hyper-parameters, this optimization problem can have a low
effective dimension.

We compare RESOO with SOO, random search which
is also applied to optimize the hyper-parameters in neu-
ral networks and deep belief networks (Bergstra and Ben-
gio 2012), and grid search. The range of hyper-parameter
λ of each binary classifier is set as [10−3, 102]. For SOO

and random search, we both perform them under the set-
tings of same hyper-parameter value for different classi-
fiers (X = [10−3, 102]) and different hyper-parameter val-
ues for different classifiers (X = [10−3, 102]N(N−1)/2),
respectively. For grid search, which selects n (budget of
function evaluations) grid points over [10−3, 102] uniformly
as the value of hyper-parameter, we only perform it un-
der the setting of shared hyper-parameter value. We test
on the data sets MNIST (LeCun et al. 1998) and PenDigits,
Vowel, Letter (Blake, Keogh, and Merz 1998). They con-
tains 10, 10, 11, 26 classes respectively, and thus there are
45, 45, 55, 325 hyper-parameters when the hyper-parameters
are considered separately. All the features in each dataset
are normalized into [−1, 1] or [0, 1]. For each dataset, we
separate it into training set, validation set and testing set. The
hyper-parameter is tuned on the validation set, and the higher
accuracy on the validation set the better the hyper-parameters.
That is to say, we evaluate the quality of hyper-parameters
with the accuracy of multi-class classifier on the validation
set. The multi-class classifier with the best hyper-parameters
that each method finds will be tested on the testing set. The
accuracy on the testing set of each method on each dataset
is reported in Table 2. We set the budget of function evalua-
tions n ≈ 2D. Specifically, for MNIST, PenDigits and Vowel,
n = 100 and for Letter, n = 600. For RESOO, we choose
two upper bounds of effective dimension d1 = 15, d2 = 30
for MNIST, PenDigits and Vowel, and d1 = 50, d2 = 100 for
Letter. We set Y = [0, 10di/η]

di and M = 2 for RESOO,
where η = 1/3 and i = 1, 2. Each randomized methods are
repeated 30 times independently.

In Table 2, by comparing the two columns of random
search, it can be observed that the separated hyper-parameters
can lead to higher accuracy. Note that this higher accuracy
is free since the optimization budge is the same. Then we
observe that, although SOO has a better performance than
grid search in the low dimension, it has a worse performance
for optimizing the separated hyper-parameters, as it does not
scale well. RESOO shows the best performance on all the
four data sets, verifying its ability in high-dimensional prob-
lems. We also observe that a better estimate of the effective
dimension (d1 < d2) leads to the better performance.

Conclusion

This paper aims at addressing the scalability of SOO, which
is a remarkable theoretical-grounded black-box optimization
method. We adapt the random embedding technique to scal-
ing SOO, and propose the RESOO algorithm with better

2005

scalability. We prove that the simple regret of RESOO de-
pends only on the effective dimensions, even if the problem
has a high dimensionality. Empirically, we show that RE-
SOO performs better than SOO and random search on high-
dimensional non-convex testing functions. We also apply
RESOO to tune the hyper-parameters for multi-class SVM,
leading the best accuracy comparing with the shared hyper-
parameter multi-class SVM and separated hyper-parameter
multi-class SVM optimized by random search and SOO.

Although the performance of SOO might be limited com-
paring with other methods such as Bayesian optimization
algorithms, the studies with SOO are useful as the techniques
can be transferred into other methods, e.g., in (Wang et al.
2014). We will also study the random embedding technique
with other methods, e.g., (Yu, Qian, and Hu 2016). This pa-
per only touches the case when the effective dimension is
low. A more important and challenging issue is to optimize
high-dimensional functions with high effective dimensions.

References

Achlioptas, D. 2003. Database-friendly random projections:
Johnson-lindenstrauss with binary coins. Journal of Computer
and System Sciences 66(4):671–687.
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. Journal of Machine Learning Research
13:281–305.
Blake, C. L.; Keogh, E.; and Merz, C. J. 1998.
UCI Repository of machine learning databases.
[http://www.ics.uci.edu/∼mlearn/MLRepository.html].
Brochu, E.; Cora, V. M.; and de Freitas, N. 2010. A tutorial on
bayesian optimization of expensive cost functions, with application
to active user modeling and hierarchical reinforcement learning.
CoRR abs/1012.2599.
Bubeck, S.; Munos, R.; Stoltz, G.; and Szepesvári, C. 2011. X-
armed bandits. Journal of Machine Learning Research 12:1655–
1695.
Bubeck, S.; Munos, R.; and Stoltz, G. 2009. Pure exploration in
multi-armed bandits problems. In Proceedings of the 20th Interna-
tional Conference on Algorithmic Learning Theory, 23–37.
Bubeck, S.; Stoltz, G.; and Yu, J. Y. 2011. Lipschitz bandits without
the lipschitz constant. In Proceedings of the 22nd International
Conference on Algorithmic Learning Theory, 144–158.
Derbel, B., and Preux, P. 2015. Simultaneous optimistic optimiza-
tion on the noiseless bbob testbed. In Proceedings of the 2015 IEEE
Congress on Evolutionary Computation, 2010–2017.
Grill, J.-B.; Valko, M.; and Munos, R. 2015. Black-box optimization
of noisy functions with unknown smoothness. In Advances in Neural
Information Processing Systems 29.
Hansen, N.; Müller, S. D.; and Koumoutsakos, P. 2003. Reducing
the time complexity of the derandomized evolution strategy with co-
variance matrix adaptation (CMA-ES). Evolutionary Computation
11(1):1–18.
Jones, D. R.; Perttunen, C. D.; and Stuckman, B. E. 1993. Lip-
schitzian optimization without the lipschitz constant. Journal of
Optimization Theory and Applications 79(1):157–181.
Kaban, A.; Bootkrajang, J.; and Durrant, R. J. 2013. Towards
large scale continuous EDA: a random matrix theory perspective.
In Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, 383–390.

Kearfott, R. B. 1996. Rigorous global search: continuous problems.
Nonconvex Optimization and Its Applications. Dordrecht, Boston,
London: Kluwer Academic Publishers.
Kleinberg, R.; Slivkins, A.; and Upfal, E. 2008. Multi-armed
bandits in metric spaces. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, 681–690.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE 86(11):2278–2324.
Lizotte, D. 2008. Practical Bayesian Optimization. Ph.D. Disserta-
tion, University of Alberta, Canada.
Munos, R. 2011. Optimistic optimization of a deterministic function
without the knowledge of its smoothness. In Advances in Neural
Information Processing Systems 24, 783–791.
Munos, R. 2014. From bandits to Monte-Carlo Tree Search: The op-
timistic principle applied to optimization and planning. Foundations
and Trends in Machine Learning 7(1):1–130.
Picheny, V.; Wagner, T.; and Ginsbourger, D. 2013. A benchmark
of kriging-based infill criteria for noisy optimization. Structural
and Multidisciplinary Optimization 48(3):607–626.
Pintér, J. D. 1996. Global Optimization in Action, Continuous and
Lipschitz Optimization: Algorithms, Implementations and Applica-
tions. Nonconvex Optimization and Its Applications. Dordrecht,
Boston, London: Kluwer Academic Publishers.
Preux, P.; Munos, R.; and Valko, M. 2014. Bandits attack func-
tion optimization. In Proceedings of the 2014 IEEE Congress on
Evolutionary Computation, 2245–2252.
Slivkins, A. 2011. Multi-armed bandits on implicit metric spaces. In
Advances in Neural Information Processing Systems 24, 1602–1610.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in Neural
Information Processing Systems 25, 2960–2968.
Strongin, R. G., and Sergeyev, Y. D. 2000. Global Optimization
with Non-Convex Constraints: Sequential and Parallel Algorithms.
Nonconvex Optimization and Its Applications. Dordrecht, Boston,
London: Kluwer Academic Publishers.
Valko, M.; Carpentier, A.; and Munos, R. 2013. Stochastic si-
multaneous optimistic optimization. In Proceedings of the 30th
International Conference on Machine Learning, 19–27.
Vapnik, V. 1998. Statistical learning theory. Wiley.
Vempala, S. S. 2004. The Random Projection Method, volume 65.
Providence, Rhode Island: American Mathematical Society.
Wang, Z.; Zoghi, M.; Hutter, F.; Matheson, D.; and De Freitas, N.
2013. Bayesian optimization in high dimensions via random embed-
dings. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, 1778–1784.
Wang, Z.; Shakibi, B.; Jin, L.; and de Freitas, N. 2014. Bayesian
multi-scale optimistic optimization. In Proceedings of the 17th
International Conference on Artificial Intelligence and Statistics,
1005–1014.
Yu, Y.; Qian, H.; and Hu, Y.-Q. 2016. Derivative-free optimization
via classification. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI’16).

2006

