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Abstract

We consider the problem of approximating order-constrained
transitive distance (OCTD) and its clustering applications.
Given any pairwise data, transitive distance (TD) is defined
as the smallest possible “gap” on the set of paths connect-
ing them. While such metric definition renders significant
capability of addressing elongated clusters, it is sometimes
also an over-simplified representation which loses necessary
regularization on cluster structure and overfits to short links
easily. As a result, conventional TD often suffers from de-
graded performance given clusters with “thick” structures.
Our key intuition is that the maximum (path) order, which
is the maximum number of nodes on a path, controls the level
of flexibility. Reducing this order benefits the clustering per-
formance by finding a trade-off between flexibility and reg-
ularization on cluster structure. Unlike TD, finding OCTD
becomes an intractable problem even though the number of
connecting paths is reduced. We therefore propose a fast ap-
proximation framework, using random samplings to gener-
ate multiple diversified TD matrices and a pooling to output
the final approximated OCTD matrix. Comprehensive exper-
iments on toy, image and speech datasets show the excellent
performance of OCTD, surpassing TD with significant gains
and giving state-of-the-art performance on several datasets.

Introduction

Clustering has been and continues to remain one of the most
fundamental machine learning problems. Today, with the
fast growth of digital media and storage, the growing speed
of annotation capability can hardly match the explosive in-
crease of data. In many problems and applications where su-
pervised information is difficult to obtain or even not avail-
able, clustering presents an important unsupervised learning
approach to analyze the useful latent patterns. In speech pro-
cessing for example, NIST recently organized the i-vector
Machine Learning Challenge (Greenberg et al. 2014) where
one is required to design speaker verification systems trained
on an unlabeled i-vector development dataset. Among the
participating works, clustering techniques are widely used
as indispensable learning components. In computer vision, a
number of important applications such as unsupervised im-
age segmentation (Shi and Malik 2000) and image catego-
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Figure 1: A toy example with densely aligned Gaussian dis-
tributed clusters. SVD (a) Clustering result with TD. (b)
Clustering result with OCTD (Min). Similar result is given
by OCTD (Mean) and is omitted. (c) (d) and (e) respectively
correspond to the (negative) distance matrices of pairwise
rows in TD, OCTD (Min) and OCTD (Mean) after SVD.

rization (grouping) (Feng et al. 2014; Hu et al. 2014) can be
naturally formulated as clustering problems.

A wide variety of clustering algorithms were proposed
in the past decades. Some famous early clustering meth-
ods include the k-means algorithm (Lloyd 1982), fuzzy clus-
tering (Bezdek 2013), hierarchical clustering (Sibson 1973;
Defays 1977), and mode seeking (Cheng 1995; Comaniciu
and Meer 2002). More recently, with the increase of com-
puter memory and computation power, more sophisticated
methods including the families of spectral clustering (Ng
et al. 2002; Shi and Malik 2000; Zelnik-Manor and Perona
2004) and subspace clustering (Elhamifar and Vidal 2009;
Lu et al. 2012; Liu et al. 2013; 2013; Peng, Zhang, and Yi
2013; Peng, Yi, and Tang 2015; Hu et al. 2014; Li et al.
2015) were proposed. Spectral clustering often includes an
eigen-decomposition on the affinity matrix and has wide ap-
plications in image segmentation. On the other hand, sub-
space clustering assumes a low dimensional subspace for
each cluster. it is therefore very successful in applications
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such as facial image clustering and motion segmentation
where the subspace assumption is satisfied.

Good clustering methods in general should maximally re-
veal both the similarity between intra-cluster data and the
dissimilarity between inter-cluster data. Finding such good
methods is nontrivial as the distribution of a cluster of-
ten shows much more dynamic shapes than convex ones.
The difficulty is further aggravated when cluster ambigu-
ity is present (noisy data and overlapping clusters). Often,
it is not that hard to design methods that can target spe-
cific scenarios. But it becomes considerably harder for a
single method to adaptively handle all situations, includ-
ing both varying cluster shapes and ambiguities. Spectral
clustering received much attention for its ability to ad-
dress clusters with arbitrary shapes. Besides spectral clus-
tering, an elegant alternative with strong flexibility on clus-
ter structure is the transitive distance clustering (also known
as path based clustering) (Fischer and Buhmann 2003b;
Yu et al. 2014). TD is an ultrametric which reveals the
strength of connectivity between pairwise points. The TD
between any pairwise samples is defined as the smallest pos-
sible “gap” on the set of paths1 that connect the samples,
where a “gap” of a path is the largest edge along it. In other
words, two samples are considered to be strongly correlated
if they are connected by at least one path with a very small
gap. Such definition renders clustering methods based on TD
very strong flexibility on cluster shapes.

A known problem of TD is the degraded performance on
noisy data caused by short links. The TD metric also easily
overfits and loses necessary regularization on cluster struc-
ture, reducing discriminative cluster information on “thick”
clusters. Unfortunately, path-like cluster structures are not
commonly seen in non-synthetic datasets. Even for facial
image datasets with manifold structures, most of them do
have relatively “thick” clusters. To address this problem, we
propose the order-constrained transitive distance - a novel
dissimilarity measure more robust than TD by reducing the
maximum path order. Considering the intractability of find-
ing the OCTD, we approximate it by a min/mean-pooling
over a set of diversified TD matrices generated from ran-
dom samplings (without replacement). Following (Yu et al.
2015), a top-down grouping with SVD is conducted on the
OCTD matrix to give the clustering result. Fig. 1 gives a
toy example with densely aligned clusters. Clustering with
TD fails in this example due to the cluster ambiguity, while
clustering with the proposed OCTD (with min-pooling) cor-
rectly identifies the clusters.

Our major contributions are summarized as follows: 1. We
extend the current transitive distance framework with con-
strained path orders and propose a novel order-constrained
transitive distance. 2. We propose an approximation frame-
work to efficiently approximate OCTD. 3. Comprehensive
experiments indicate that the proposed method significantly
outperforms TD. The rest of the paper will describe the pro-
posed algorithm and its properties in details.

1Sequences of non-repeated intermediate samples and edges.

Related Works

A number of previous literatures investigated the problem of
clustering with TD. Several major works include the connec-
tivity kernel (Fischer, Roth, and Buhmann 2004), the tran-
sitive distance closure (Ding et al. 2006) and the transitive
affinity (Chang and Yeung 2005; 2008).

(Fischer and Buhmann 2003a) proposed bagging TD clus-
tering with resamplings and label-level maximum likeli-
hood fusion of multiple clustering results. It was shown that
bagging can effectively reduce clustering errors caused by
noise as resampling tend to filter out noisy samples. (Yu et
al. 2015) proposed a generalized transitive distance (GTD)
framework with minimum spanning forest and max-pooling
to incorporate more robustness. GTD was shown to be more
robust in finding weak contours in image segmentation, ob-
taining state-of-the-art image segmentation performance on
the BSDS-300 dataset.

While Our work is to some extend related to both meth-
ods, it also differs considerably in many aspects. Unlike
the grouping-level encoding of clustering robustness (Fis-
cher and Buhmann 2003a), we seek to directly output a ro-
bust distance measure before grouping. In addition, a top-
down grouping approach is used instead of the bottom-up
agglomerative one in (Fischer and Buhmann 2003a). Our
method also significantly differs from GTD as min and
mean-poolings are used instead of max-pooling, allowing
much more intense perturbations. This leads to more sig-
nificant boost of performance in data clustering tasks.

Transitive Distance with Constrained Order

Transitive distance is an ultrametric defined to shorten the
intra-cluster distances on long cluster structures. It is defined
as follows with respect to path connectivity:
Definition 1. Given certain pairwise samples (xp, xq) and
the edge weights d(e), the transitive distance is defined as:

Dtd(xp, xq) = min
P∈P

max
e∈P

{d(e)}, (1)

where P is the set of paths connecting xp and xq with at most
n nodes (including xp and xq). In addition:

max
e∈P

{d(e)} = max
(xu,xv)∈P

{d(xu, xv)}. (2)

An ultrametric is guaranteed to have a feasible Euclidean
embedding in another space. The projected cluster structures
in the TD embedded space can become much more compact
(Yu et al. 2014). Essentially, TD implicitly builds the follow-
ing non-linear mapping similar to spectral clustering:

φ : V ⊂ Rl �→ V ′ ⊂ Rs. (3)

As a result, clustering in the TD embedded space can handle
highly non-convex cluster structures.

The Proposed Definition of OCTD

While TD reduces the intra-cluster distances, inter-cluster
samples can also be dragged much closer. Such disadvan-
tage becomes particularly obvious when clustering ambigu-
ities and noises are present since short links of path are eas-
ily formed upon them. Our key observation in this paper is
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that constraining the maximum path order can regularize the
path set P and significantly reduce such short links. Thus we
consider the following order-constrained TD:
Definition 2. Given certain pairwise samples (xp, xq) and
the edge weights d(e), the order-constrained transitive dis-
tance is defined as:

Doctd(xp, xq) = min
P∈P,

O(P)<L

max
e∈P

{d(e)}, (4)

where O(P) denotes the order of path P .

Diversified Spanning Graphs with Samplings

Given the TD defined on a graph G, an elegant property
is that the transitive edges (gaps) always lie on the min-
imum spanning tree (MST) of G (Fischer and Buhmann
2003b). Therefore, finding TD has a practical solution de-
spite its seemingly difficulty. Such property, however, no
longer holds when the maximum path order is constrained.
As a result, an alternative framework is needed to approxi-
mate the order-constrained TD that we want.

Inspired by the work of Nyström method (Drineas and
Mahoney 2005; Williams and Seeger 2001), we propose
a random sampling based approximation for TD. Suppose
X

(t)
S = {xi|i ∈ S(t)} denotes the sampled data each time

and X
(t)
R = {xi|i ∈ S(t)C} the rest of the data. We use X(t)

S

to construct a spanning graph G
(t)
S = (V,E

(t)
S ) from the

original complete graph G = (V,E). The first step contains
a kernel density estimation with a Gaussian kernel:

p̂(xi) = C
N∑

j=1

exp(−‖xi − xj‖2
2σ2

), (5)

where σ is the bandwidth and C is a normalization constant
such that

∑N
i=1 p̂(xi) = 1 . The bandwidth parameter is

automatically estimated as:

σ̂ =
1

N

N∑

i=1

‖xi − knn(xi, k)‖2. (6)

For most experiments in this paper, k is fixed to 10. With the
estimated density at each data location, we randomly sam-
ple multiple subsets X

(t)
S without replacement, each con-

tains M < N data. The data are sampled with probabilities
proportional to the estimated density.

To construct the corresponding spanning graph G
(t)
S from

G given every sampled subset X
(t)
S , we first construct a

clique (fully connected graph) on X
(t)
S :

G
(t)
C = (Ṽ (t) = S(t), Et

C = {e(i, j)|i, j ∈ S(t)}). (7)

The spanning graph G
(t)
S is then defined by connecting

the rest of non-sampled data to the closest ones in X
(t)
S :

G
(t)
S = (S,E

(t)
S = {E(t)

C , E
(t)
N }), (8)

where E
(t)
N = {e(i, nn(i, S\S(t)))|i ∈ S(t)}.

There are several reasons for random samplings. First,
multiple samplings will provide diversified spanning graphs
and order-constrained path sets to approximate OCTD. Sec-
ond, certain level of regularization is incorporated by sam-
pling more important samples to form the major frameworks
of spanning graphs. Third, the final ensemble of multiple
samplings is expected to bring additional robustness.

Approximating OCTD with Spanning Graphs

Here we show that the TD matrix obtained on G
(t)
S is order-

constrained and is therefore an approximation of OCTD.

Theorem 1. The maximum possible path order on the span-
ning graph G

(t)
S is upper bounded by |S(t)|+ 2.

Proof: There are three possible cases at both ends of the
path: 1. Two sampled nodes; 2. A sampled node and a non-
sampled node; 3. Two non-sampled nodes.
Case 1: We use contradiction to prove that O(P) ≤ |S(t)|.
Suppose O(P) > |S(t)|, by definition at least one node from
non-sampled set is part of the path. This indicates that the
node from non-sampled set is connected to at least two other
nodes, which contradicts to our original setup.
Case 2: It is easy to prove that O(P) ≤ |S(t)| + 1 using
contradiction similar to Case 1.
Case 3: One can prove that O(P) = 2 if two nodes share the
same nearest node in the sampled set, and O(P) ≤ |S(t)|+2
otherwise, again with contradiction.

Theorem 1 states that the approximated pairwise transi-
tive distance obtained on every spanning graph satisfies a
constraint on the path order. This forms one of the core the-
oretical bases of our proposed framework.

Theorem 2. For any pair of nodes, the number of connect-
ing paths on G

(t)
S is upper bounded by (|S(t)| − 2)!

Proof: There are three cases: 1. Non-sampled nodes sharing
the same nearest sampled node; 2. A non-sampled node with
a nearest sampled node. 3. Other situations.
Case 1 & 2: It is easy to prove there is only one path.
Case 3: When both are sampled nodes, any non-sampled
nodes can not be part of the path. Since G

(t)
S is a clique,

a path can be formed by non-repeatedly selecting one out
of |S(t)| − 2 nodes, which leads to (|S(t)| − 2)! possibili-
ties. When having one or two non-sampled nodes, the non-
sampled node is connected to the clique with only one edge,
which does not contribute any additional path candidates.
Again we have (|S(t)| − 2)! possibilities.

Theorem 3. The transitive distance obtained on G
(t)
S is

lower-bounded by the order-constrained transitive distance
obtained on the original fully connected graph G:

D
(t)
td (xi, xj |G(t)

S ) ≥ Doctd(xi, xj |G). (9)

Proof: This is a conclusion from the fact that G(t)
S is a sub-

graph of G, therefore the sets of connecting paths in G
(t)
S is

only a subset of that in G. Based on the definition of TD, we
can prove the above theorem.
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Pooling with Multiple Subgraphs

Given the set of T diversified TD matrices computed from
spanning graphs, we seek to ensemble them and output a
final distance matrix. A natural way of ensemble to consider
is the min-pooling, which is computed as:

Doctd1(xi, xj) � min
t

D
(t)
td (xi, xj |G(t)

S ). (10)

For OCTD obtained by min-pooling, one has the follow-
ing approximation optimality theorem:

Theorem 4. Given the set of D(t)
td (xi, xj |G(t)

S ), min-pooling
gives the optimal approximation of Doctd(xi, xj |G).

Proof: There are two alternative ways we can look into this:
1. According to Theorem 3, the OCTD is the lower bound of
every diversified TD matrices. Therefore, min-pooling gives
the optimal approximation. 2. Computing pairwise transi-
tive distance in D

(t)
td (xi, xj |G(t)

S ) is looking for the smallest
possible gaps among a set of order-constrained paths. Per-
forming min-pooling basically equals to extending the set of
connecting paths to the union of those in G

(t)
S , and therefore

optimally complies with the definition of TD.
We will denote the computed distance with min-pooling

as OCTD (Min). Note that OCTD (Min) is no longer an
ultrametric or even a metric since the metric triangle in-
equality may not hold any more. Such pairwise distances
violate metricity and cannot be naturally embedded in a vec-
tor space (Roth et al. 2003). We therefore also consider an
alternative strategy with mean-pooling:

Doctd2(xi, xj) �
1

T

T∑

t=1

D
(t)
td (xi, xj |G(t)

S ). (11)

We will denote the computed distance with mean-pooling
as OCTD (Mean). The mean pooling no longer strictly fol-
lows the definition of TD, yet the obtained distance is still a
reasonable approximation of OCTD and shares many simi-
lar clustering properties.

Lemma 1. D
(t)
td (xi, xj |G(t)

S ) is an ultrametric.

This is a proved conclusion from (Fischer, Roth, and Buh-
mann 2004). The lemma indicates that D(t)

td (xi, xj |G(t)
S ) ≤

max(D
(t)
td (xi, xk|G(t)

S ), D
(t)
td (xj , xk|G(t)

S )), ∀{i, j, k}. We
will use this lemma to obtain the following theorem.

Theorem 5. OCTD (Mean) is a metric.

Proof: Using Lemma 1, we have the triangle inequality:

Doctd2(i, j) ≤ 1

T

∑

t

max(D
(t)
td (i, k), D

(t)
td (j, k))

≤ 1

T

∑

t

(D
(t)
td (i, k) +D

(t)
td (j, k))

=Doctd2(i, k) +Doctd2(k, j)

. (12)

Other properties such as non-negativity, symmetry and co-
incidence axiom are easy to prove and omitted.

Top-Down Clustering with SVD

With the obtained approximated OCTD distances, we follow
(Yu et al. 2015) to perform top-down clustering where SVD
is used for the low rank approximation and noise reduction
of the distance matrix. For clustering with K clusters, the
eigenvectors of SVD with the K largest eigenvalues are se-
lected to form an N × K matrix U , followed by k-means
over the rows of U to generate the final clustering labels.

Experimental Results

In this section, we describe the details of a comprehensive
set of experiments, ranging from toy datasets to the widely
used datasets of both image and speech.

Results on Toy Datasets

A set of challenging toy examples are used to test the al-
gorithm performance. Our proposed methods are compared
with two popular spectral clustering methods, which are
spectral clustering (SC) (Ng et al. 2002) and normalized cuts
(Ncut) (Shi and Malik 2000). Euclidean distance k-means
(Kms (Euc)) and TD+SVD (Yu et al. 2015) are also used as
baselines in addition to SC and Ncut.

To reduce the influence of fluctuated performance from k-
means due to different initializations, the k-means grouping
stages in SC, k-means, TD and the proposed methods are
repeated 10 times. The result with the minimum distortion
is selected. Euclidean distance input is used for all methods.
The affinity matrices for SC and Ncut are then computed on
this Euclidean input with a Gaussian kernel. For TD and the
proposed methods, the edge weights of constructed graphs
are also based on the Euclidean distance.

The clustering results of the comparing methods are visu-
alized in Fig. 2 and Fig. 3. In addition, quantitative results of
different methods are listed in Table 1. The parameters for
every method on every example is tuned to optimize it clus-
tering result. The proposed methods are not very sensitive to
parameters as a set of fixed parameters can be easily found
to work well on most examples. Only a few requires more
detailed tuning of parameters.2

One could see that OCTD (Min) and OCTD (Mean) ob-
tain the best results on most toy examples. While both meth-
ods maintain characteristics similar to TD by showing sim-
ilar correct results on “Compound”, they significantly im-
proved the algorithm robustness over TD on a number of
other examples where clustering ambiguities exist.

Results on Image Datasets

We also report our results on several widely used image
datasets and describe the experimental setup, including the
preprocessing of images and the parameters of our methods.

2For OCTD (Min) and OCTD (Mean), having a sample rate of
0.3 and 500 diversified TD matrices works well on most examples.
Increasing or decreasing these parameters does not change the re-
sults too much. Special tunings are only required on “Pathbased”
and ’Spiral’ where elongated structures exist. The sample rates on
the two examples are increased to 0.8. In addition, the KNN num-
ber for bandwidth estimation on “Pathbased” is reduced to 2.
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Figure 2: Results of comparing methods on toy examples with varying cluster shapes (Best viewed in color). Row 1-6 respec-
tively correspond to Kms (Euc), SC, Ncut, TD+SVD, OCTD (Min) and OCTD (Mean). Names of examples are respectively
“Aggregation”, “Bridge”, “Compound”, “Flame”, “Jain”, “Pathbased”, “Spiral” and “Two Diamonds”.

Table 1: Quantitative results of comparing methods on toy datasets. Accuracies are measured with %.
Method Aggregation Bridge Compound Flame Jain Path. Spiral TwoDiam. Gaussian R15

Kms (Euc) 93.91 99.14 83.21 83.75 78.28 74.58 33.97 100 93.13 92.5
SC 99.37 99.14 91.73 97.92 100 87.63 100 100 95.2 99.67

Ncut 99.37 99.14 86.72 98.75 77.48 98.66 87.18 100 95.8 99.67
TD+SVD 87.94 60.78 99.5 98.75 100 96.99 100 99.25 78.6 92.33

OCTD (Min) 99.87 99.57 99.75 100 100 96.66 100 100 95.33 99
OCTD (Mean) 99.75 99.57 99.75 98.33 100 96.32 100 100 95.8 99.67

Table 2: Quantitative results of comparing methods on im-
age datasets. Accuracies are measured with %.

Method Kms SC Ncut TD OCTD (Min)

ExYB 44.74 87.28 83.76 82.81 90.64
AR 64.29 80.64 87.29 83.85 88.28

USPS 64.38 82.94 82.38 54.31 85.13

The Extended Yale B dataset (ExYB) contains 2414
frontal-faces (192×168) of 38 subjects. We use the complete
dataset and resize the images to 55× 48. For preprocessing,
PCA whitening with 99% of energy is used.

For the AR face dataset (Martınez and Benavente 1998),
we follow the exact setting of (Peng, Yi, and Tang 2015)
where a subset of 50 male subjects and 50 female subjects
is chosen. The subset contains 1400 cropped faces (55× 40)
which are not occluded. Again PCA whitening with 98% of
energy is used to preprocess the images.

The USPS dataset contains 9298 16 × 16 handwritten
digit images. We use the whole dataset and similarly per-
form PCA whitening with 98.5% of energy.

We take the AR face dataset and investigate how the per-
formance changes by varying the sampling rate and the num-
ber of samplings T . Each is repeated 10 times to return the
averaged performance curve. The results are shown in Fig.
4. As the sampling rate goes up, the clustering accuracy first
increases and then starts to decrease. Regularization by con-
straining the path order clearly improves performance and a
trade-off between regularization and flexibility is preferred.
Also, as T increases, so does clustering accuracy until it sat-
urates. This shows that a positive correlation exists between
approximating OCTD and clustering performance.

We compare the performance of different methods with
cosine distance used as the distance measure input. The
bandwidth parameters of both SC and Ncut are tuned to out-
put the best results. For OCTD (Min), we also vary the num-
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Figure 3: Results of comparing methods on toy examples with densely aligned Gaussian distributions (Best viewed in color).
Column 1-6 respectively correspond to K-Means, SC, Ncut, TD+SVD, OCTD (Min) and OCTD (Mean). Names of examples
are respectively “Gaussian” and “R15”.

Table 3: Quantitative results of comparing methods on speech datasets. Accuracies are measured with %.
Method Kms (Euclid) Kms (Cos) SC Ncut TD+SVD OCTD (Min) OCTD (Mean)

NIST 04 66.32 81.49 83.32 80.49 77.17 84.9 84.51
NIST 05 72.99 77.08 74.3 76.1 72.86 77.87 73.04
NIST 06 79.84 86.43 80.72 84.4 87.07 88.29 83.47
NIST 08 74.52 78.58 81.51 62.65 74.13 77.91 78.81

NIST Combined 70.85 78.97 76.21 71.66 72.07 80.89 77.24
Switch Board 86.03 90.80 87.79 80.83 78.73 87.53 90.88
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A
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c
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c
y

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(b)

Figure 4: Clustering performance with different parameters.
(a) Varying the sampling rate and fixing T = 500. (b) Vary-
ing T and fixing the sampling rate to be 0.06.

ber of random samplings and the sampling rate to optimize
the results. Table 2 shows the clustering performance of the
baselines and OCTD (Min). A significant gain over TD and
other baselines is obtained by the proposed method.

Results on Speech Datasets

Finally, we first conduct large scale clustering experiment
on several speech datasets. The NIST and Switch Board
datasets are formed by extracting the i-vectors under the
framework of (Li and Narayanan 2014)3. I-vectors from
Switchboard form the “Switchboard” dataset containing
11587 500-dimensional i-vectors and 1052 identities. The
rest from NIST SRE form the “NIST” dataset containing
21704 i-vectors and 1738 identities. Note that the NIST
dataset is the combined set of NIST 04, 05, 06 and 08.

3The i-vectors are trained on Switchboard II part1 to part3 and
NIST SRE 04, 05, 06, 08 corpora on the telephone channel.

For the experiment, no data preprocessing is conducted.
The cosine distance is used as the distance input for all
methods except Euclidean k-means. Again the parameters
of baselines, including the bandwidths of SC and Ncut are
tuned to output the best performance. We fix the sample rate
of OCTD (Min) to 0.06 and OCTD (Mean) to 0.2, while the
random sampling numbers of both methods are set to 2000.

Table 3 shows the results of comparing methods on speech
datasets. One could see that overall OCTD (Min) works best
and both OCTD (Min) and OCTD (Mean) show significant
gains over TD and other baselines.

Conclusion

In this paper, we propose the concept of using order-
constrained transitive distance for data clustering and an ef-
ficient approximation framework with random samplings to
extract it. The proposed method shows many nice theoreti-
cal properties, while demonstrating very promising practical
performance in a comprehensive set of experiments.
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