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Abstract

Recently, active learning has been applied to recom-
mendation to deal with data sparsity on a single do-
main. In this paper, we propose an active learning strat-
egy for recommendation to alleviate the data sparsity in
a multi-domain scenario. Specifically, our proposed ac-
tive learning strategy simultaneously consider both spe-
cific and independent knowledge over all domains. We
use the expected entropy to measure the generalization
error of the domain-specific knowledge and propose a
variance-based strategy to measure the generalization
error of the domain-independent knowledge. The pro-
posed active learning strategy use a unified function
to effectively combine these two measurements. We
compare our strategy with five state-of-the-art baselines
on five different multi-domain recommendation tasks,
which are constituted by three real-world data sets. The
experimental results show that our strategy performs
significantly better than all the baselines and reduces
human labeling efforts by at least 5.6%, 8.3%, 11.8%,
12.5% and 15.4% on the five tasks, respectively.

Introduction
Recommendation techniques are widely used in many real-
world applications, such as product recommendation in on-
line shopping (Linden, Smith, and York 2003), friendship
suggestion in social networks (Ding et al. 2013) or news
recommendation in web portals (Lu et al. 2015). The per-
formance of recommendation methods suffers from the data
sparsity problem due to the expensive cost of acquiring rat-
ings from users (Su and Khoshgoftaar 2009). Active learn-
ing techniques were proposed to alleviate the problem of
data sparsity in recommendation systems (Boutilier, Zemel,
and Marlin 2002; Elahi, Ricci, and Rubens 2014). Existing
active learning strategies for recommendation mainly focus
on querying ratings on a single domain (Harpale and Yang
2008; Houlsby, Hernández-Lobato, and Ghahramani 2014).
However, we have many real-world recommendation prob-
lems that involve more than one domain. For example, most
online shopping websites (e.g. Amazon) have more than
one product domain, such as Book, Beauty, Movie, and etc.
As ratings in different domains have different data distri-
butions, simply merging all ratings from different domains
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(e.g. Movie and Book domains) for model training could
hurt the recommendation quality. On the other hand, as some
user preferences are shared by different domains (e.g. youth
prefer sci-fi stories in both Movie and Book domains), train-
ing models for different domains separately could lead to
a sub-optimal model. How to select the most informative
products to generate new ratings poses a new challenge to
active learning in multi-domain recommendation.

In this paper, we propose an active learning strategy for
recommendation in the multi-domain scenario. The pro-
posed strategy aims to select ratings by simultaneously con-
sidering both the domain-specific and domain-independent
knowledge derived from multiple domains. Whether a user-
item pair is informative enough to generate new rating is
measured by the generalization error (Rubens, Kaplan, and
Sugiyama 2011). By decomposing multiple rating matrices
into several specific and independent factors, the general-
ization error of the model can be divided into a domain-
specific part and a domain-independent part correspond-
ingly. The generalization error of the domain-specific part is
measured by the expected entropy, which is the existing ac-
tive learning strategy used in the single domain recommen-
dation scenario (Harpale and Yang 2008). For the domain-
independent part, we propose to utilize variance to measure
its generalization error. By splitting the optimization goal
into two parts, our proposed active learning strategy can con-
sider both the domain-independent and the domain-specific
knowledge simultaneously, and therefore reduce the redun-
dant rating efforts.

Note that the problem of multi-domain recommenda-
tion (Li, Yang, and Xue 2009b; Zhang, Cao, and Yeung
2012) is different from that of cross-domain recommenda-
tion (Pan and Yang 2013; Zhao et al. 2013). The goal of
cross-domain recommendation is to utilize the knowledge
derived from the source domain with sufficient ratings to al-
leviate the data sparsity in the target domain. However, in
multi-domain recommendation, all domains suffer from the
problem of data sparsity. The goal of multi-domain recom-
mendation is to utilize the shared knowledge across multiple
domains to alleviate the data sparsity in all domains. The key
issue in active learning for multi-domain recommendation is
to acquire ratings from one domain, which can contribute not
only to the current domain but also other ones.

The main contributions of our work include: We propose
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an active learning strategy for multi-domain recommenda-
tion by considering both the domain-specific knowledge and
domain-independent knowledge. To the best of our knowl-
edge, this is the first work which applies active learning to
recommendation in multi-domain scenario. The experimen-
tal results demonstrate its effectiveness and superiority on
five multi-domain recommendation tasks.

Related Work
The recommendation quality always suffers from the data
sparsity problem. Since acquiring enough ratings from users
is time-consuming and expensive, active learning techniques
were applied to recommendation to alleviate this prob-
lem (Boutilier, Zemel, and Marlin 2002; Rubens, Kaplan,
and Sugiyama 2011).

Existing active learning strategies (Rubens, Kaplan, and
Sugiyama 2011) select the user-item pair that can mini-
mizes the generalization error to generate the new rating,
which can save many human labeling efforts. The estima-
tion of the generalization error can be categorized into three
types: 1) expected entropy (Jin and Si 2004; Harpale and
Yang 2008), which selects the user-item pair with minimum
expected entropy; 2) mutual information (Silva and Carin
2012), which aims to select the user-item pair that is most
different from current observed ratings; 3) variance (Suther-
land, Póczos, and Schneider 2013), which selects the user-
item pair with highest prediction variance. According to the
adopted recommendation techniques, the aforementioned
active learning works can be divided into two types: as-
pect model (Boutilier, Zemel, and Marlin 2002) and matrix
factorization (Wang, Srebro, and Evans 2014). However, all
previous active learning strategies focused on querying rat-
ings from a single domain. To the best of our knowledge,
no previous active learning strategy for recommendation
work can consider not only the domain-specific knowledge
but also domain-independent knowledge that shared among
multiple domains.

Most multi-domain recommendation works focused on
deriving the connection among multiple domains (Li and
Lin 2014), which can be utilized in our multi-domain
active learning recommendation strategy. Li, Yang, and
Xue(2009b) proposed a multi-domain recommendation
method by constructing a cluster-level rating matrix shared
across multiple domains. Zhang, Cao, and Yeung(2012) pro-
posed to utilize a link function to connect all domains. Also,
there are several other methods for multi-domain recom-
mendation (Singh and Gordon 2008).

Our work is also related to cross-domain active learn-
ing recommendation. Zhao et al.(2013) proposed an active
learning strategy for cross-domain recommendation. How-
ever, it is quite different from our problem. They utilize ac-
tive learning to solve the problem of entity-correspondence
in transfer learning and the densities of two domains vary
substantially. In our problem, we propose an active learning
for the problem of data sparsity in multi-domain recommen-
dation and all domains are sparse.

Multi-domain active learning for text classification (Li et
al. 2012) is relevant to our work. However, active learning
for classification is quite different from active learning for

recommendation as classification and recommendation have
quite different optimization goals. Therefore active learning
strategy for classification cannot be directly applied to solve
the recommendation problem.

Problem Definition

In this section, we first present some definitions and then
give a formal definition of the problem addressed in this pa-
per.

Definition 1 (Domain) A domain is a collection of ratings
which are drawn under the same data distribution.

For example, ratings collected from different types of
products, such as Movie, Music, Electronics, can be re-
garded as different domains. More specifically, as defined
in the previous work (Li, Yang, and Xue 2009b), we regard
ratings collected from one web site as a domain in this paper.
For example, rating collection from a DVD online shopping
website is regarded as a domain.

Definition 2 (Multi-Domain Recommendation) Given
a set of ratings collected from D domains. Let X =
{X (1),X (2), ...,X (D)} be the training set and T =
{T (1), T (2), ..., T (D)} be the testing set. The task is to train
an accurate model to predict the rating r

(d)
uv in the test set T

Definition 3 (Multi-Domain Active Learning for Rec-
ommendation) Given a test set T and a rating pool
P = {P(1),P(2), ...,P(D)} where each user-item pair
(u(d), v(d)) ∈ P(d) represents that user u has interacted
with item v in the d-th domain but has not rated it, the task
is to build an accurate prediction model by selecting as few
ratings as possible from the rating pool P .

Our active strategy is based on pool-based sampling. In
the pool-based sampling, the active learning strategy is to
iteratively select the most informative items from the pool,
which is assumed to be stationary, for users to rate and add
the ratings to the training set (Houlsby, Hernández-Lobato,
and Ghahramani 2014). Typically, the learning system scans
the unlabeled item pool and chooses the most informative
item to ask for users’ ratings.

Our Solution

In this section, we will first define the general active learn-
ing strategy. Then, we will briefly review the multi-domain
recommendation method adopted in this paper. Finally, we
present our active learning strategy for multi-domain recom-
mendation.

The General Active Learning Strategy

Existing active learning strategies for recommendation on
a single domain select the most informative user-item pair
that can minimize the generalization error (i.e. expected
entropy) (Harpale and Yang 2008; Rubens, Kaplan, and
Sugiyama 2011). However, in multi-domain recommenda-
tion scenario, the learning system should measure the global
generalization error by considering both the domain-specific
error and domain-independent error.

In this paper, we propose to select the most informative
user-item pair (u(d), v(d))∗ from the pool P which can min-
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imize the global generalization error. And the global gener-
alization error Ĝ is defined as follow:

Ĝ(u(d), v(d)) = μĜin + ωĜsp (1)

We divide the global generalization error Ĝ introduced
by the user-item pair (u(d), v(d)) into a domain-independent
part Ĝin and a domain-specific part Ĝsp, where μ and ω are
parameters, which control the influence between these two
parts. Note that only one parameter (μ or ω) is needed to
decide Ĝ(u(d), v(d)), but it is more convenient to define the
baselines by using two parameters.

Our multi-domain active learning optimization goal can
be formulated as follows:

(u(d), v(d))∗ = argmin
(u(d),v(d))∈P

Ĝ(u(d), v(d)) (2)

Multi-Domain Recommendation

This section reviews the multi-domain recommendation
method used in this paper. Recently, several multi-domain
recommendation models have been proposed. Rating-Matrix
Generative Model (RMGM ) (Li, Yang, and Xue 2009b) is
one of the state-of-the-art method among them. RMGM
is a two-side aspect model (Hofmann and Puzicha 1999)
for mining shared knowledge across different domains
and uses transfer learning technique to alleviate the spar-
sity problem in cross-domain recommendation, which can
be easily extended to multi-domain recommendation. In
RMGM , a cluster-level rating matrix is learned to capture
the shared relationship between user and item groups across
domains. More specifically, the rating of each user-item pair
(u(d), v(d)) is generated as follows:

r(d)uv =
∑

r

r
∑

kl

P (r|c(k)u , c(l)v )P (c(k)u |u(d))P (c(l)v |v(d)) (3)

c
(k)
u and c

(l)
v represent the user group of user u(d) and

the item group of item v(d), respectively. P (c
(k)
u |u) and

P (c
(l)
v |v) are the probability of the user u(d) belonging to

the user group c
(k)
u and the probability of the item v(d) be-

longing to the item group c
(l)
v , separately. P (r|c(k)u , c

(l)
v ) is

the probability of the user-item pair (u(d), v(d)) co-cluster.
Equation 3 can be simplified as below.

r(d)uv = p�
u(d)Bqv(d) (4)

where P (c
(k)
u |u) and P (c

(l)
v |v) are simplified as [pu]k and

[qv]l, respectively. And P (r|c(k)u , c
(l)
v ) is simplified to Bu,v .

Note that pu(d) and qv(d) are specific in different domains
and B is shared by all domains.

In addition to RMGM , several other multi-domain
recommendation works about mining the shared knowl-
edge across multiple domains can be integrated into the
proposed strategy, such as Collective Matrix Factoriza-
tion(CMF) (Singh and Gordon 2008), CodeBook Trans-
fer(CBT) (Li, Yang, and Xue 2009a). CBT is very similar to
RMGM . In CMF, user factors are shared across domains
and item factors are specific across different domains, so

user factor is the shared knowledge and item factor is the
specific knowledge. Both models can be easily adopted in
our strategy by using the domain-independent knowledge
and domain-specific knowledge correspondingly.

Multi-Domain Active Learning Strategy

In this section, we will present our active learning strategy
for multi-domain recommendation in detail.

Multi-domain recommendation model RMGM adopted
in this paper can be divided into a domain-independent part
(i.e. B) and a domain-specific part (i.e. pu(d) and qv(d) ). Ac-
cording to Equation 1, the global generalization error intro-
duced by an user-item pair (u(d), v(d)) can be specified as
follows:

Ĝ(u(d), v(d)) = μĜB + ω(Ĝp
u(d)

+ Ĝq
v(d)

) (5)

where Ĝp
u(d)

and Ĝq
v(d)

are domain-specific parts of

the global generalization error and ĜB is the domain-
independent part of it.

For the domain-specific factors pu(d) and qv(d) , we apply
the existing single domain active learning strategy for aspect
recommendation model (Hofmann 2004) as follows:

p(r|u, v) =
∑
k∈K

p(r|v, k)p(k|u) (6)

The generalization error (i.e. expected entropy) (Jin and
Si 2004) of the model is calculated as follows:

Ĝ(u(d), v(d)) = −〈
∑
k

[θu|v,r]k log[θu|v,r]k〉p(r|v,u) (7)

where [θu]k denotes the user-group mixture probability
p(k|u) and [θu|v,r]k denotes the model posterior after re-
training the aspect model with the estimated rating ruv .

However, in order to select the most informative instance,
the above strategy needs to re-train the model after adding
each user-item pair with each possible rating (i.e. 1, 2, 3,
4, 5), which is extremely time-consuming. To speed up this
strategy, we propose to use the posterior pu(d) and qv(d)

of current iteration to approximate the expected entropy
of the model for each user-item pair (u(d), v(d)). There-
fore, we only need to update the posterior once after adding
new acquired ratings from the pool. For each user-item pair
(u(d), v(d)), the expected entropy of model introduced by
domain-specific factors pu(d) and qv(d) can be computed as
follows:

Ĝp
u(d)

= −
∑
k

[pu(d) ]k log[pu(d) ]k (8)

Ĝq
v(d)

= −
∑
l

[qv(d) ]l log[qv(d) ]l (9)

Recall that, each element in matrix B represents the pref-
erence of one user-group on one item-group. For every can-
didate user-item pair (u(d), v(d)), pu(d) is the user-group dis-
tribution of user u(d) and qv(d) is the item-group distribution
of item v(d). Accordingly, the probability of choosing the
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Algorithm 1: Multi-Domain Active Learning
Input : (1) A pool P of unrated user-item pairs which

are collected from D domains; (2) Number of
initial ratings in each domain Ini; (3) Number
of iteration Iter; (4) Number of new labeled
ratings per iteration S(×D)

Output: The recommendation model M;
Randomly initialize Ini ratings of each domain to
construct the training set X ;
Learn pu(d) , qv(d) and B by training RMGM on X ;
for i ← 1 to Iter do

foreach user-item pair (u(d), v(d)) ∈ P do
Estimate the global generalization error
Ĝ(u(d), v(d));

end
Query the ratings Q∗ of the S(×D) user-item pairs
(u(d), v(d))∗ with least global generalization error;
Update the training set by
X ← X ∪ ((u(d), v(d))∗, Q∗), and remove
(u(d), v(d))∗ from P;
Update pu(d) , qv(d) and B by re-training RMGM
on the new training set X ;

end

preference in B for each user-item pair (u(d), v(d)) can be
calculated as follows:

Φ = p�
u(d)qv(d) (10)

For each user-item pair (u(d), v(d)) in the rating pool P , the
variance of the predicted rating caused by B can be com-
puted as follows:

V(u(d),v(d))[B] = EΦ[B− EΦ(B)]
2 (11)

where EΦ(B) is the expectation of the rating produced by
B for the candidate user-item pair (u(d), v(d)). A larger vari-
ance implies more uncertainty about the prediction. There-
fore, for the domain-independent part, our active learning
strategy is to select user-item pair with the largest variance.
And our total goal is to minimize ĜB. The generalization
error for B is defined as follows:

ĜB = −V(u(d),v(d))[B] (12)
The overall algorithm of our active learning strategy for

multi-domain recommendation is shown in Algorithm 1.

Experiments

To evaluate the effectiveness and superiority of our strategy,
we conduct the experiments on five different tasks which are
constructed by four real-world domains (i.e., DoubanBook1,
MovieLens2, eachMovie3 and Netflix4).

1http://www.douban.com
2http://www.grouplens.org/datasets/movielens/
3http://www.cs.cmu.edu/ lebanon/IR-lab.htm
4http://www.netflix.com

Data Sets

We first preprocess the data sets in a way similar to (Li,
Yang, and Xue 2009b). This step can provide active learn-
ing strategies with the largest pool of ratings to select
from (Houlsby, Hernández-Lobato, and Ghahramani 2014).
Doubanbook (DB): A collection of book ratings consists of
3.6 million ratings (ranging from 1 to 5). We randomly select
774 users and 1360 items both with more than 20 ratings to
comprise DB domain.
MovieLens (ML): It consists of 1 million ratings (ranging
from 1 to 5). We randomly select 891 users and 1029 items
to comprise ML domain.
EachMovie (EM): This domain consists of 2.8 million rat-
ings (ranging from 1 to 6). We randomly select 809 users and
756 items both with more than 20 ratings to comprise EM
domain. For unity, we replace rating 6 with 5 in the data set
which is similar to (Li, Yang, and Xue 2009b).
Netflix (NF): A collection of movie ratings contains 100
million ratings (ranging from 1 to 5). We randomly select
971 users and 784 items both with more than 20 ratings to
comprise NF domain.

After the preprocessing phase, we obtain four domains:
DB, ML, EM, NF. The density, which is calculated by
Equation 13, and the rating number of each domain are
shown in Table 1.

density(Z) = O/(M ×N) (13)

where Z is the dataset of one domain. O, M and N are the
numbers of the observed ratings, users and items, respec-
tively.

Table 1: The density and rating amount of four domains
���������Metric

Domain
DB ML EM NF

Density 2.94% 6.52% 6.24% 6.62%
Rating amount 30910 59746 38149 50396

By selectively combining some of the domains above,
we obtain five different multi-domain recommenda-
tion tasks denoted by DB+EM+NF, ML+DB+NF,
ML+EM+DB, ML+EM+NF, ML+EM+NF+DB. For
example, ML+EM+NF denotes the task including Movie-
Lens, EachMovie and Netflix domain.

Baseline Methods

In the experiment, we compare our active learning strategy,
which is denoted by MultiAL, with the following five state-
of-the-art strategies: (1) Single-RandomAL is to randomly
select the same amount of user-item pairs from each do-
main separately; (2) Multi-RandomAL is to randomly se-
lect user-item pairs from all domains together. The perfor-
mance difference between first two strategies is mainly in-
fluenced by whether the amount of ratings in each domain is
balanced; (3) Single-SpecificAL is to separately select the
same amount of user-item pairs from each domain according
to domain-specific part of the generalization error (set μ to
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Figure 1: Performances of different active learning strategies on five multi-domain recommendation tasks.

0 in Equation 1); (4) Multi-SpecificAL is to select the user-
item pair according to domain-specific part from all domains
without considering which domain it belongs to. Different
from the previous one, this strategy can select global op-
timal instance with regard for domain-specific knowledge;
(5) Multi-IndependentAL is to select the most informative
user-item pair according to the domain-independent part (set
ω to 0 in Equation 1). Note that our strategy and the strate-
gies with the prefix Multi- belong to multi-domain active
learning strategies and the remaining strategies belong to
single-domain active learning strategies.

Setting Ups and Evaluation

In the experiments, we randomly divided the whole rating
data set into three parts: training set (10%), test set (20%)
and rating pool (70%). The ratings in rating pool are as-
sumed to be those users who interacted with items but did
not rate. In each active iteration, we query 400×D unknown
ratings of the user-item pairs from P and then add the rating
of each user-item pair into the training set, where D is the
number of domains in the task. After that, the multi-domain
recommendation model is re-trained on the new training set.
In total, we do 50 active iterations, which totally queries
20000 ×D ratings from P . All the experimental results re-
ported in this paper are averaged over 10 random runs. For
the MultiAL, both μ and ω in Equation 5 are set to 1 for
the assumption that the specific knowledge and independent
knowledge are equally important.

The root mean squared error (RMSE) is adopted as the
accuracy metric. It is defined as follows:

RMSE =

√ ∑
(u,v)∈T

(ruv − r̂uv)2/|T | (14)

where T represents the test set, ruv is the correct rating and
r̂uv is the predicted rating.

In active learning problem, how much rating efforts can
be saved is a unique and important metric which can directly
reflect the performance of the active learning strategy. In this
paper, we measure this metric by comparing the required
ratings to achieve the same RMSE reduction between the
proposed strategy and baselines.

Results and Discussion

Performances on Different Tasks Figure 1 shows the
whole 50 active iterations of MultiAL with five baselines
on the five tasks. From Figure 1, the following conclusions
can be easily observed. Firstly, MultiAL performs better
than all the baselines on all tasks. Secondly, multi-domain
strategies except Multi-RandomAL are better than single-
domain strategies, which demonstrates the necessity to con-
sider the independent knowledge in multi-domain active
learning strategy. Thirdly, all the strategies tend to converge
to the same point in the last few iterations, which means that
the model is learned well enough on that density of training
set. Finally, all curves in figures seem to be close. The reason
is that we show the whole active procedure and the RMSE
reduction is quite a lot, which makes all curves look close.
Therefore, in the sub-window of Figure 1, we zoom in on
the area around the 10-th iteration (acquiring 4000×D rat-
ings). It can be seen that MultiAL is significantly better than
all the baselines. Moreover, we use how much rating efforts
can be saved and significant tests to measure the superiority
of MultiAL over baselines.

Table 2 summarizes the RMSE on each domain of the
task ML+EM+NF after obtaining 4000×D ratings (10-th it-
eration). It can be observed that the best overall performance
is achieved by MultiAL. More specifically, some baselines
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Table 2: The RMSE of each domain in task ML+EM+NF after 12000 new ratings being queried����������Domain
Method

MultiAL
Multi

-IndependentAL
Multi

-SpecificAL
Multi

-RandomAL
Single

-SpecificAL
Single

-RandomAL

ML 1.0125 1.0343 1.0126 1.0174 1.0199 1.0279
EM 1.2003 1.1857 1.2193 1.2426 1.2314 1.2234
NF 1.0207 1.0425 1.0202 1.0230 1.0337 1.0229

Overall 1.0665 1.0779 1.0719 1.0815 1.0826 1.0798

Table 3: The Required Number of New Labeled User-Item Pairs to achieve 0.1 reduction on RMSE����������Task
Comparison

MultiAL
Multi

-IndependentAL
Multi

-SpecificAL
Multi

-RandomAL
Single

-SpecificAL
Single

-RandomAL

DB+EM+NF 7200 (16.7%) 9600 8400 8400 9600 9600
ML+DB+NF 8400 (14.3%) 10800 9600 10800 12000 10800
ML+EM+DB 7200 (16.7%) 8400 8400 8400 8400 8400
ML+EM+NF 9600 (12.5%) 12000 10800 12000 12000 10800

ML+EM+NF+DB 11200 (14.3%) 14400 12800 14400 14400 14400

Table 4: The Required Number of New Labeled User-Item Pairs to achieve 0.15 reduction on RMSE����������Task
Comparison

MultiAL
Multi

-IndependentAL
Multi

-SpecificAL
Multi

-RandomAL
Single

-SpecificAL
Single

-RandomAL

DB+EM+NF 13200 (15.4%) 15600 15600 15600 16800 16800
ML+DB+NF 18000 (11.8%) 20400 20400 21600 21600 21600
ML+EM+DB 13200 (8.3%) 15600 14400 15600 15600 15600
ML+EM+NF 20400 (5.6%) 22800 21600 25200 25200 25200

ML+EM+NF+DB 22400 (12.5%) 25600 25600 28800 28800 27200

Table 5: The p-values after 20 active iterations (Querying
8000×D ratings)

���������Task
Metric

P-value

DB+EM+NF 1.51E-03
ML+DB+NF 5.22E-03
ML+EM+DB 3.70E-04
ML+EM+NF 1.01E-03

ML+EM+NF+DB 4.42E-04

are better than MultiAL on some specific domains, but they
cannot perform equally well on other domains. Table 3 and
4 show the required number of ratings to achieve 0.1 and
0.15 reduction on RMSE over the five tasks, respectively. It
can be seen that MultiAL uses much less ratings than each
baseline and numbers in parentheses are the percentage of
saved rating efforts over the best baseline on each task.

Significance Tests The significance metric p-value is
adopted to evaluate the improvements gained by MultiAL
against baselines after 20 active iterations (querying 8000×
D ratings). In statistics, a p-value less than 0.01 means ex-
tremely strong evidence against the null hypothesis. Table 5
shows p-values of our strategy against the best baseline on
the five tasks. All the p-values are far smaller than 0.01,
which means that MultiAL is significantly better than the
best baseline on the five tasks.
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Figure 2: Influence of (a) Parameter μ and (b)S(×D) per
iteration

Parameter Sensitivity In our strategy, μ is an important
parameter which controls the balance between the specific
knowledge and independent knowledge. Besides, the num-
ber of queried ratings per iteration (S × D for our prob-
lem, controlled by parameter S) is a unique parameter in
active learning problem. The sensitivities result of two pa-
rameters are shown in Figure 2. Figure 2(a) visualizes the
performances by varying μ from 0.001 to 1000 and setting
ω to 1 after querying 4000 × D ratings (10-th iteration) on
the five tasks. The results under setting μ to 1 are better than
other parameter settings, which proves the rationality of our
parameter settings. Figure 2(b) shows the results after query-
ing totally 10000×D ratings by varying the number of new
labeled user-item pairs S ×D per iteration from 50 ×D to
2000 ×D. The results shows that our strategy works stably
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when S varies from 50 to 2000.

Conclusion and Future Work

In this paper, we address a novel active learning method
for multi-domain recommendation. Different from previous
active learning works that focused on querying ratings in
a single domain, the proposed multi-domain active learn-
ing strategy tries to query ratings by simultaneously con-
sidering both the domain-specific knowledge and domain-
independent knowledge across multiple domains. In this
way, more rating efforts can be saved. The experimental re-
sults on five tasks show that our proposed strategy signif-
icantly and stably outperforms the five baseline strategies.
In future, we intend to promote our work in the follow-
ing directions: (1) design a method to automatically adjust
the balance between the domain-specific knowledge and the
domain-independent knowledge, and (2) design a more ef-
ficient method that updates the model only when necessary
instead of updating once per iteration.
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