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Abstract

In this study, we investigate expected CP decomposition—
a special case of CP decomposition in which a tensor to be
decomposed is given as the sum or average of tensor sam-
ples X (t) for t = 1, . . . , T . To determine this decom-
position, we develope stochastic-gradient-descent-type algo-
rithms with four appealing features: efficient memory use,
ability to work in an online setting, robustness of parameter
tuning, and simplicity. Our theoretical analysis show that the
solutions do not diverge to infinity for any initial value or step
size. Experimental results confirm that our algorithms signif-
icantly outperform all existing methods in terms of accuracy.
We also show that they can successfully decompose a large
tensor, containing billion-scale nonzero elements.

1 Introduction
A tensor represents data that have multiple indices or modes,
such as co-occurrence frequencies among subjects,
objects, and verbs in documents (Kang et al. 2012;
Fried, Polajnar, and Clark 2015) or climate data for sepa-
rate latitude, longitude, and measurement types
(e.g., temperature and the velocity of wind) (Bahadori, Yu,
and Liu 2014). CP decomposition (Carroll and Chang 1970;
Harshman 1970), also known as canonical decomposition
(CANDECOMP) or parallel factor (PARAFAC), is a key
tool for analyzing such data tensors. Given a three-mode
tensor1 X ∈ R

I×J×K , rank-R CP decomposition is written
as

Xijk ≈ [[U, V,W ]] :=
R∑

r=1

UirVjrWkr, (1)

where U ∈ R
I×R, V ∈ R

J×R, and W ∈ R
K×R are factor

matrices capturing linear relationships in X . CP decompo-
sition is used for feature extraction, missing-value predic-
tion, data compression, and visualization in many applica-
tion fields (Kolda and Bader 2009).

1.1 Motivation

In some application fields, X is given as the sum or average
of multiple tensors. For example, co-occurrence frequencies
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1Note that all the ideas of this study written for three-mode ten-
sors also works for higher-order tensors.

X is the total number of all triplets (subject, object,
verb) appearing in document 1, . . . , T . X is thus written
as X =

∑T
t=1 X (t) where X (t) is the co-occurrence ten-

sor of document t. Another example appears in time series
analysis. Suppose X (t) represents the climate data at time
t. Because the data often contain random fluctuations, av-
eraging past T observations X = 1

T

∑t
s=t−T X (s) before

decomposition is more reliable than decomposing X (t) di-
rectly.

When X (t) is independently and identically distributed,
target tensors in such examples are generally written as ex-
pectation E[X ].2 We term the CP decomposition of E[X ]
expected CP decomposition. A straightforward approach to
expected CP decomposition is to first construct E[X ] and
then decompose it. However, this naive approach has sev-
eral limitations. The first is scalability. In some applica-
tions (typically in natural language processing), X (t) is very
high-dimensional but sparse and is manageable with moder-
ate memory space. However, E[X ] may be dense and may
not fit in memory. Moreover, whenever X(t+1) is addition-
ally observed, the naive approach needs to compute from
scratch: by reconstructing E[X ], initializing the algorithm,
and updating U, V,W , which is time consuming.

Arora et al. (Arora et al. 2012), in their seminal work,
addressed the case of matrix decomposition and proposed a
stochastic optimization algorithm to overcome these limita-
tions. However, the stochastic optimization of expected CP
decomposition is non-trivial because of its unstable conver-
gence property. Arora et al. focused on a convex optimiza-
tion problem to which the standard theory for stochastic gra-
dient descent can be applied directly. However, CP decom-
position is non-convex and ill-conditioned. This means that
the initial solution and step size must be carefully selected to
ensure that existing standard algorithms including stochastic
gradient descent do not diverge3. Another issue is the slow
convergence rate. In the case of non-stochastic CP decom-
position, the gradient descent method has poor convergence
properties (Comon, Luciani, and De Almeida 2009).

2In the subject×object×verb case, rescaling by T is
necessary.

3We say diverge for “diverge to infinity”.
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1.2 Contributions

As the first attempt to solve the expected CP decomposition
problem, we analyzed its stochastic formulation and opti-
mization. The key idea is that the CP decomposition of E[X ]
can be equivalently formulated as a stochastic optimization
problem (Section 3). From this notion, we derive three
stochastic gradient algorithms (Section 4). First, we de-
rive stochastic gradient descent (SGD) as a baseline. Next,
we extend SGD to second order stochastic gradient descent
(2SGD) and stochastic alternating least squares (SALS). Our
theoretical analysis shows that 2SGD and SALS have conver-
gence rates faster than that of SGD while the computational
complexity remains roughly the same. Our algorithms have
the following attractive features:
(1) A good space-time tradeoff. Only the memory space
for storing X (t), U ,V , and W is required at time t. This en-
ables us to decompose E[X ] with sparse X (t) even if E[X ]
exceeds the memory space. Therefore, our approach is ad-
vantageous over parallel/distributed methods such as (Kang
et al. 2012; Jeon et al. 2015) since our algorithms can work
in a single machine and hence there is no additional over-
head such as communication cost.
(2) Online learning. Decomposition for a new sample
X(t+1) is updated in a single step. This is particularly useful
in an online setting, i.e., when X (t) is observed and decom-
poses E[X ] for every time t.
(3) Robustness against parameter tuning (for 2SGD and
SALS). The use of second-order information ensures that the
solution does not diverge for any initial solution or step size.
Moreover, the performance is robust to the step size param-
eter and careful parameter tuning is not necessary.
(4) Simplicity. The update equations are quite simple and
easy to implement. This may be beneficial for further ex-
tensions such as generalizing the loss function (e.g., to the
absolute error or Kullback–Leibler divergence) and comput-
ing in a distributed way.
The experimental results demonstrate that 2SGD and SALS
significantly outperform existing SGD algorithms. Also, our
algorithms successfully decomposed the real tensor having
1.09 billion nonzero entries, whereas the standard algorithm
failed because it exceeded the available memory.

Our contributions are highlighted as follows:

• Proposing expected tensor decomposition, a new tensor
decomposition problem.

• Developing three stochastic algorithms.

• Analyzing convergence properties of our algorithms.

The second contribution is a reasonable extension of
Hayashi et al. who addressed the case of matrix decom-
position with nonnegative constraints for U and V (Hayashi
et al. 2015). In contrast, the first and third contributions are
new concepts. In particular, the idea of expected tensor de-
composition substantially improves the space complexity of
CP decomposition.

2 Preliminaries and Related work

2.1 CP decomposition

As mentioned above, the CP decomposition of the three-
mode tensor X ∈ R

I×J×K is given by (1). For any tensor,
we can determine the exact decomposition of (1) for a suf-
ficiently large R (e.g., R = IJK), but we are interested in
a decomposition where R is small (typically R ≈ 10). The
notion of rank-R CP decomposition is then considered. Let

L(X ;U, V,W ) =
1

2

∑
ijk

(
Xijk −

R∑
r=1

UirVjrWkr

)2

be the squared loss function. The CP decomposition of rank
R is obtained by solving the non-convex optimization prob-
lem:

min
U,V,W

L(X ;U, V,W ).

However, this problem is “ill-conditioned” in the sense as
follows:

1. The loss function L has continuously many local minima
because of the indeterminacy of scaling. For example,
L(X ;U, V,W ) = L(X ; aU, bV,W/ab).

2. The loss function L may not have a global minimum be-
cause the domain is non-compact (de Silva and Lim 2008;
Chen and Saad 2009).

To solve these issues, Paatero (Paatero 2000) suggested the
use of Tikhonov regularized loss function:

Lρ(X ;U, V,W ) = L(X ;U, V,W )

+ (ρ/2)
(‖U‖2 + ‖V ‖2 + ‖W‖2) , (2)

where ρ > 0 is a regularization parameter, and ‖ · ‖ denotes
the Frobenius norm. The corresponding optimization prob-
lem is given by

min
U,V,W

Lρ(X ;U, V,W ). (3)

This regularization resolves the abovementioned two issues
as follows:

1. The regularized loss function Lρ has isolated local opti-
mal solutions, because each local optimal solution must
satisfy ‖U‖ = ‖V ‖ = ‖W‖.

2. The regularized loss function Lρ has a global optimal
solution, because we can assume ρ(‖U‖2 + ‖V ‖2 +
‖W‖2) ≤ ‖X‖2, which is a compact region.

Therefore, in the remainder of this paper, we address only
regularized problem (3).

Several algorithms have been proposed to obtain CP de-
composition. Among these algorithms, alternating least
squares (ALS) is a widely used algorithm, which solves the
least-square problem cyclically for components U , V , and
W while keeping other components constant (Carroll and
Chang 1970; Harshman 1970). Another approach is based
on nonlinear optimization, which directly solves (3) using
a standard optimization approach such as nonlinear conju-
gate gradient method (Acar, Dunlavy, and Kolda 2011) or
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Gauss–Newton method (Hayashi and Hayashi 1982; Phan,
Tichavský, and Cichocki 2013). For symmetric tensors, the
power method (Kolda and Mayo 2011; Anandkumar et al.
2014) has also been used.

2.2 Stochastic gradient descent

Here, we describe the stochastic gradient method (see (Bot-
tou 2004; Bottou and Bousquet 2007) for more details).

Let L(x;u) be a function to be minimized, where u is
a variable and x is data. Suppose that we can sample data
x(1), x(2), . . . from a distribution. We consider the stochastic
optimization problem:

minE[L(x;u)]. (4)

The stochastic gradient descent method, described below,
solves this problem:

u(t+1) = u(t) − η(t)
∂L

∂u
(u(t);x(t)), (5)

where η(t) is a step size, usually set to η(t) = O(1/t). If
L is convex in u and ‖∂L/∂u‖ is bounded, the stochastic
gradient descent method converges at rate O(1/t) (Bottou
2004).

Second-order stochastic gradient descent (Bordes, Bot-
tou, and Gallinari 2009; Bordes et al. 2010) is an extension
of the stochastic gradient descent and is defined as

u(t+1) = u(t) − η(t)H(t) ∂L

∂u
(u(t);x(t)), (6)

where H(t) is a positive definite matrix (e.g., an approxi-
mate inverse Hessian). This method also converges under
same conditions as those of the standard stochastic gradient
descent while reducing the number of iterations by a con-
stant factor.

Previous studies have combined CP decomposition and
stochastic optimization. Rendle and Thieme (Rendle and
Thieme 2010) proposed the following randomized algorithm
for (non-stochastic) tensor decomposition, which was orig-
inally used by Koren, Bell, and Volinsky (Koren, Bell, and
Volinsky 2009) for matrix decomposition. The algorithm it-
eratively samples an index (i, j, k) and updates U , V , and
W by the gradient depending on Xijk, which corresponds to
the case that each element is the random sample of stochas-
tic optimization. While this algorithm works well in prac-
tice, its theoretical properties have not yet been completely
understood.

Ge et al. (Ge et al. 2015) applied the stochastic optimiza-
tion to the orthogonal tensor decomposition. By introducing
new loss function, they produced several good theoretical
results such as global convergence guarantees when a tensor
is exactly decomposable; however, the results are not appli-
cable to our case.

To the best of our knowledge, this is the first study ad-
dressing the stochastic formulation and optimization of CP
decomposition where random samples are given as tensors.

3 Expected CP Decomposition

Now we extend CP decomposition to a stochastic set-
ting analogous to the formulation of the stochastic gra-
dient descent. Suppose that we observe random tensors
X (1), . . . ,X (T ) for which the expectation is E[X ]. To de-
termine a decomposition of the form

E[X ] ≈ [[U, V,W ]], (7)

we introduce expected CP decomposition as a solution to the
stochastic optimization problem as follows:

min
U,V,W

E[Lρ(X ;U, V,W )], (8)

where Lρ is the regularized squared loss function, defined
by (2). This indicates clearly that the expected loss and the
loss of the expected tensor only differ by a constant, i.e.,

E[Lρ(X ;U, V,W )] = Lρ(E[X ];U, V,W ) +
∑
ijk

Var[Xijk].

The CP decomposition of the expected tensor E[X ] is then
obtained by computing expected CP decomposition (8).
Note that Hayashi et al. show the similar relationship in the
matrix case (Hayashi et al. 2015).

Non-stochastic approaches such as ALS also provide the
solution of (7) when we have the expectation E[X ] or its
estimation (e.g., sample mean (1/T )

∑
t X (t)). However,

memory usage is a crucial issue in this approach. Con-
sider the case in which we confront a large-scale problem
(i.e., I, J,K are large) where E[X ] is dense but each X (t) is
sparse. This situation typically arises in text mining applica-
tions where X (t) represents word cooccurrences of the t-th
document and E[X ] is the joint probability.

Clearly, the non-stochastic approach must store the com-
plete information of E[X ] while the algorithm is execut-
ing, which demands massive memory space. In contrast,
the stochastic approach only needs to store the non-zero el-
ements of X (t) in each iteration, and in each iteration the
previous information can be discarded.

4 Proposed algorithms

In this section, we propose three algorithms. First, we give
SGD as a direct adaptation of the general stochastic gradient
descent method (5). Second, we propose 2SGD as an exten-
sion of SGD to the general second order stochastic gradient
descent method (6) with block-diagonal approximation of
the Hessian. Finally, by combining the alternating optimiza-
tion with 2SGD, we obtain SALS.

4.1 SGD

To apply a stochastic gradient descent (5) to our problem (8),
we must compute the gradient of a loss function (2). The
gradient of a (non-regularized) loss function is sometimes
called CP gradient (Acar, Dunlavy, and Kolda 2011; Phan,
Tichavský, and Cichocki 2012), and the explicit formula is
obtained as follows. Let X (·, V,W ) be a matrix obtained
from X by contracting V and W :

X (·, V,W )ir :=
∑
jk

XijkVjrWkr.
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Note that the size of X (·, V,W ) is I × R, which is same as
that of U . X (U, ·,W ) and X (U, V, ·) are defined similarly.
The gradient of the (non-regularized) loss function is given
as follows.
Theorem 1 (CP gradient (Acar, Dunlavy, and Kolda 2011;
Phan, Tichavský, and Cichocki 2012)).

∂L

∂U
(X ;U, V,W ) = −X (·, V,W ) + UΓ(V,W ), (9)

where Γ(A,B) is the Hadamard product of A�A and B�B,
i.e., Γ(A,B)ij = (A�A)ij(B

�B)ij . Similar formulas hold
for ∂L/∂V and ∂L/∂W .

This theorem immediately yields the gradient for the reg-
ularized loss function as follows.
Corollary 2 ((Acar, Dunlavy, and Kolda 2011)).

∂Lρ

∂U
(X ;U, V,W ) = −X (·, V,W ) + UΓρ(V,W ), (10)

where Γρ(A,B) := Γ(A,B) + ρI . Similar formulas hold
for ∂Lρ/∂V and ∂Lρ/∂W .

By substituting (10) into (5), we obtain the stochastic gra-
dient descent method for expected CP decomposition. We
refer to this basic algorithm as SGD:

U (t+1) = U (t) − η(t)
∂Lρ

∂U

= U (t)
(
I − η(t)Γρ(V

(t),W (t))
)

+ η(t)X (t)(·, V (t),W (t)). (11)

The updates for V (t) and W (t) are similar to the abovemen-
tioned ones.

By denoting |X | as the number of nonzero elements in
X , the time complexity of SGD is O((I + J + K)R2 +
|X (t)|R) for each update, where O((I + J + K)R2 is for
computing UΓρ(V,W ) (matrix-matrix multiplication) and
O(|X (t)|R) is for computing X (t)(·, V,W ) (tensor-matrix
multiplication). The space complexity is O((I+J+K)R+
R2 + |X (t)|), where O((I + J + K)R) is for storing U ,
V , and W , O(R2) is for storing Γ(V,W ), Γ(U,W ), and
Γ(U, V ), and O(|X (t)|) is for storing each sample. Note
that in some applications, such as the bag-of-words topic
model (Anandkumar et al. 2014), each X (t) is expressed as
a rank-one tensor, i.e.,

X (t)
ijk = u

(t)
i v

(t)
j w

(t)
k .

In this case, even when X (t) is dense, we can compute the
tensor-matrix multiplication efficiently (O((I + J +K)R))
as

X (t)(·, V,W )ir = ui(v
(t)�V )r(w

(t)�W )r.

Note that the algorithm of (Rendle and Thieme 2010) is a
special case of SGD. More specifically, their algorithm ap-
plies to the case in which each sampled tensor X (t) is given
by

X (t) :=

{
IJKXijk, i = i(t), j = j(t), k = k(t),

0, otherwise,
for some fixed tensor X and randomly sampled indices
(i(t), j(t), k(t)).

4.2 2SGD

Analogous to (6), we next derive 2SGD, which is an exten-
sion of SGD with second-order information. By taking a
derivative with respect to U on both sides of (10), we obtain

∂2Lρ

∂Uir∂Ui′r′
= δii′Γρ(V,W )rr′ ,

where δii′ denotes the Kronecker delta, i.e., δii′ = 1 if i =
i′, and 0 otherwise. This shows that Γρ(V,W ) is a block-
diagonal component of the Hessian of Lρ. More precisely, if
we consider U as vector [U11, . . . , U1R, . . . , UI1, . . . , UIR],
the submatrix of the Hessian corresponding to U is
diag(Γρ(V,W ), . . . ,Γρ(V,W )). Similarly, Γρ(U,W ) and
Γρ(U, V ) are also block-diagonal components of the Hes-
sian. We use these matrices as an approximate Hes-
sian (Hayashi et al. 2015) and obtain

U (t+1) =U (t) − η(t)
∂L

∂U
Γρ(V

(t),W (t))−1

=U (t)
(
1− η(t)

)
+η(t)X (t)(·, V (t),W (t)) Γρ(V

(t),W (t))−1. (12)

The updates for V (t) and W (t) are similar to the abovemen-
tioned ones.

2SGD (12) has the following intuitive interpretation. By
letting ∂Lρ/∂U = 0 in (10), the matrix

U∗(X ;V,W ) := X (·, V,W )Γρ(V,W )−1, (13)

which appears in the second term of (12), is the least-square
solution of Lρ(X ;U, V,W ) = 0 by fixing V and W . Let V ∗
and W ∗ be defined similarly. Then (12) is expressed as

U (t+1) = (1− η(t))U (t) + η(t)U∗(X (t);V (t),W (t)),

V (t+1) = (1− η(t))V (t) + η(t)V ∗(X (t);U (t),W (t)),

W (t+1) = (1− η(t))W (t) + η(t)W ∗(X (t);U (t), V (t)).
(14)

An intuitive meaning of these update equations is: “the next
solution is a weighted average of the current solution and the
least-square solution.”

Note that the complexity of one update of 2SGD is al-
most the same as that of SGD (11) — it only requires addi-
tional O(R3) time to compute the inverse of R×R matrices
Γρ(V,W ), Γρ(U,W ) and Γρ(V,W ). This additional cost
is usually negligible because R is much smaller than I , J ,
and K. Moreover, note that the inverses of these matrices
always exist, because the Hadamard product of two positive
semidefinite matrices is a positive semidefinite matrix (Ba-
pat and Raghavan 1997) thus Γρ(V,W ) := Γ(V,W )+ρI is
positive definite (i.e., invertible).

4.3 SALS

Our third algorithm is a cyclic variant of 2SGD. By modify-
ing (14) to be cyclically updated, we obtain

U(t+1) = (1− η(t))U(t) + η(t)U∗(X (t);V (t),W (t)),

V (t+1) = (1− η(t))V (t) + η(t)V ∗(X (t);U(t+1),W (t)),

W (t+1) = (1− η(t))W (t) + η(t)W ∗(X (t);U(t+1), V (t+1)), (15)
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which can be interpreted as: “update each component as a
weighted average of the current solution and the least-square
solution, alternatingly.” We refer to this algorithm as SALS.
Because SALS is a rearranged version of 2SGD, the time and
space complexity of SALS and 2SGD are the same.

As shown in our experiments, the performance of 2SGD
and SALS is basically the same, but we expect SALS to be
more stable. This will be explained in the next section.

5 Analysis

First, we show that SALS has significant advantage over
SGD in terms of performance stability.

Proposition 3. Suppose that supt ‖X (t)‖2 ≤ C. For any
initial solution and any step size, SALS and 2SGD do not
diverge.

Proof. We prove this only for SALS; notably, a similar proof
works for 2SGD. Consider the t-th update for U (t). Recall
that U (t+1) is a convex combination of U (t) and U∗, where
U∗ is a solution of the least-square problem. Then, we have

Lρ(X (t);U∗, V (t),W (t)) ≤ Lρ(X (t);U, V (t),W (t)),

for all U . By substituting U = 0, we obtain

2ρ‖U∗‖ ≤ ‖X (t)‖2 ≤ C.

According to the definition of U (t+1), we have

‖U (t+1)‖ ≤ max{‖U (t)‖, C
2ρ

} ≤ max{‖U (0)‖, C
2ρ

}.

This shows that U (t) is contained in a compact set. The same
results hold for ‖V (t)‖ and ‖W (t)‖.

Let us emphasize that this proposition does not guarantee
the convergence of the algorithm (i.e., solutions may oscil-
late forever). Nevertheless, this property is useful in prac-
tice. For a non-convex problem, stochastic gradient descent
requires a careful selection of an initial solution and step size
to obtain a solution. In contrast, based on this proposition,
these settings are not critical for SALS. This is particularly
useful when we have only limited knowledge about the dis-
tribution of X (t).

By comparing SALS with 2SGD, it can be seen that SALS
is more stable, i.e., it monotonically decreases the loss func-
tion in each cycle.

Proposition 4. For SALS, for each n, we have

Lρ(X (t);U (t+1), V (t+1),W (t+1))

≤Lρ(X (t);U (t), V (t),W (t)). (16)

Proof. Since Lρ(X (t);U, V (t),W (t)) is convex in U ,
U (t+1) is a convex combination of U (t) and the least square
solution U∗, giving

Lρ(X (t);U(t+1), V (t),W (t)) ≤ Lρ(X (t);U(t), V (t),W (t)).

By continuing the inequality by the same argument for V
and W , we obtain (16).

We remark that if X (1) = · · · = X (T ), i.e., in the non-
stochastic case, Proposition 4 shows the convergence of the
loss function Lρ. However, for the stochastic case, there
may be no inequality between Lρ(X (t+1);U (t), V (t),W (t))

and Lρ(X (t);U (t), V (t),W (t)). Thus we cannot guarantee
convergence from this proposition.

Finally, we show the convergence of SALS when the regu-
larization parameter ρ is sufficiently large. While such a set-
ting of ρ is generally impractical, we believe that the propo-
sition given below is meaningful as the first step toward the
convergence analysis.

Proposition 5. If ρ is sufficiently large, SALS converges to
the global optimal solution.

Proof. The Hessian of a regularized loss function is

∇2
E[Lρ(X ;U, V,W )] = ∇2L(E[X ];U, V,W ) + ρI.

From Proposition 3, we can assume (U, V,W ) ∈ D(ρ) for
some compact set D(ρ), which is a monotone decreasing set
with respect to ρ. Let

λ(ρ) := min
(U,V,W )∈D(ρ)

λmin(∇2L(E[X ];U, V,W )),

where λmin denotes the minimum eigenvalue. Then we have

∇2
E[Lρ(X ;U, V,W )] � (ρ+ λ(ρ))I

Because λ(ρ) is monotone increasing, for a sufficiently large
ρ, the right hand side is positive definite. Thus we can regard
the regularized loss function as a strongly convex function.

The convergence of SALS now follows by the general the-
ory of stochastic gradient descent method for strongly con-
vex functions (Bottou 2004; Bottou and Le Cun 2005).

6 Experiments

Throughout the experiments, the regularization parameter
was fixed as ρ = 0.0001. All experiments were conducted
using an Intel Xeon E5-2690 2.90GHz CPU with 256GB
memory and Ubuntu 12.04. Our algorithm was implemented
in C++ and compiled using g++v4.6 with -O3 option.

6.1 Comparison on synthetic data

We compared our three algorithms with three existing ones,
which are used for a general stochastic optimization:

1. SGD (Subsection 4.1).

2. 2SGD (Subsection 4.2).

3. SALS (Subsection 4.3).

4. SLM: stochastic diagonal Levenberg Marquardt (LeCun
et al. 1998).

5. SCGD: stochastic conjugate gradient descent (Schrau-
dolph and Graepel 2002).

6. SQN: stochastic quasi-Newton method (Schraudolph, Yu,
and Günter 2007).

All algorithms except SQN had the same complexity, i.e.,
O(IR2 + |X |R) time and O(IR + |X |) space, where I is
the size of tensors, R is the rank to be decomposed, and
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Figure 1: Comparison of algorithms. The step size is η(t) =
1/(1 + t) for (a), and η(t) = λ0/(t0 + t) for (b), where λ0

and t0 are optimized by grid search.

|X | is the number of nonzero elements of sample X . SQN
has complexity O(IR2H + |X |R) time and O(IRH + |X |)
space, where H is the history size.

We first generated random matrices U∗ ∈ R
30×5, V ∗ ∈

R
40×5, and W ∗ ∈ R

50×5 in which entries were drawn from
the standard uniform distribution U(0, 1). Then we con-
structed a 30× 40× 50 tensor X = [[U∗, V ∗,W ∗]] of rank 5

and generate samples X (t) by X (t)
ijk = Xijk +U(−0.5, 0.5),

where U(−0.5, 0.5) denotes the uniform distribution over
interval (−0.5, 0.5). We evaluated the performance by the
number of samples t versus the root mean square error with
respect to X . The results are shown in Figure 1. For Figure 1
(a), we used the fixed step size rule η(t) = 1/(1 + t) and for
Figure 1 (b), we used η(t) = λ0/(t0 + t), where parameters
λ0 and t0 were optimized by a grid search. Note that, we
could not identify suitable parameters for SQN in this man-
ner; thus, instead we used η(t) = λ0/((t0+ t)‖∇L(X (n))‖)
and searched λ0 and t0.

The results clearly show the faster convergence and the
robustness of 2SGD and SALS with respect to the step size.
SGD, SCGD, and SQN diverged (Figure 1 (a)), and thus,
these lines are not shown in the figure. To prevent diver-
gence, the step size needed to be selected carefully (Figure 1
(b)). However, the optimization of the step size would be
time consuming, and in any case, 2SGD and SALS still out-
performed other algorithms.

6.2 Scalability for large tensors

To evaluate the scalability, we employed the Amazon review
dataset4 (McAuley and Leskovec 2013), which contains 34
million user reviews. This dataset was originally used to
construct a recommender system using matrix factorization,
and here we extended the approach to tensor factorization.

We prepared a subset of reviews for T = 10M and 34M
and constructed word-word-word tensors as data samples,
where X (t)

ijk = 1 means that the t-th review title contains
words i, j, and k simultaneously. For the T = 10M case,
the tensor was of size 280K × 280K × 280K, and had 500M
nonzero elements. For the T = 34M case, it was of size
520K × 520K × 520K, and had 1.09G nonzero elements.

We computed a rank 20 expected CP decomposition for
these tensors by SALS. For efficient computation, we used

4http://snap.stanford.edu/data/web-Amazon.html

Figure 2: Convergence on the Amazon reviews dataset. For
the case of 34M reviews, ALS did not work do to memory
error.

Figure 3: Memory usage on the Amazon review dataset; y-
axis denotes the memory used in KB. For the 34M dataset,
ALS cannot allocate the memory in our environment.

the mini-batch method, i.e., each sample was a sum of the
tensors of 1000 reviews. Note that each tensor X (t) was
rank-one, and therefore, it was more efficiently computable.
However, as our purpose was to examine the scalability of
algorithms, we did not exploit this low-rank structure. For
comparison, we also computed CP decomposition for the
sample mean (1/T )

∑
t X (t) using ALS.

The results are shown in Figure 2. SALS quickly con-
verged around a near-optimal solution, and then slowly con-
verged to an optimal solution (and loses the lead against
ALS). This behavior is commonly observed in stochastic gra-
dient methods and theoretically analyzed when a function is
strongly convex (Richtárik and Schmidt 2015). The memory
usages are shown in Figure 3. In all cases, SALS used ap-
proximately ten times lower memory than ALS. In the 34M
case, ALS did not work.5 In contrast, our SALS used only
6GB of memory, which can run in a standard computer.

7 Conclusion

This study investigated CP decomposition in which a given
tensor is expressed by an expectation. We formalized ex-
pected CP decomposition, which is a stochastic optimiza-
tion problem, and propose three algorithms based on the
stochastic gradient descent method. Our SALS and 2SGD al-
gorithms displayed two desirable characteristics: more effi-
cient memory usage and stable behavior of the solution. The

5Note that our program allocated additional space for error eval-
uation. Without this space, ALS used about 118GB of memory.
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proposed algorithms outperformed all existing algorithms in
terms of accuracy. In addition, SALS could decompose the
tensor, which had one billion nonzero elements.
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