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Abstract

Continuous Time Bayesian Networks (CTBNs) provide a
powerful means to model complex network dynamics. How-
ever, their inference is computationally demanding — espe-
cially if one considers incomplete and noisy time-series data.
The latter gives rise to a joint state- and parameter estimation
problem, which can only be solved numerically. Yet, find-
ing the exact parameterization of the CTBN has often only
secondary importance in practical scenarios. We therefore
focus on the structure learning problem and present a way
to analytically marginalize the Markov chain underlying the
CTBN model with respect its parameters. Since the result-
ing stochastic process is parameter-free, its inference reduces
to an optimal filtering problem. We solve the latter using an
efficient parallel implementation of a sequential Monte Carlo
scheme. Our framework enables CTBN inference to be ap-
plied to incomplete noisy time-series data frequently found
in molecular biology and other disciplines.

Keywords: sequential Monte Carlo; graph reconstruction;
continuous time Bayesian network

1 Introduction
Influence network reconstruction from noisy, incomplete
time series data is a challenging problem that has received
a lot of attention, especially in biological sciences (Penfold
and Wild 2011; Acerbi et al. 2014). Biological networks typ-
ically represent interactions between molecular components
within the cell such as regulatory interactions among genes
and transcription factors, or protein-protein interactions in
signalling networks. Recent single-cell techniques allow to
follow the activity of multiple molecular entities over cells
and over time. The resulting ensemble of time-series can
be modeled as noisy observations of a stochastic process,
where each dimension of the state vector corresponds to a
biological entity. Temporal changes in the molecular enti-
ties are reflected by transitions between different states of
this process.
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Continuous-Time Bayesian Networks (CTBNs) as pro-
posed in (Nodelman, Shelton, and Koller 2002) model struc-
tured Markovian processes evolving in continuous time on a
multivariate discrete state space. CTBNs are specified using
a directed graph – not necessarily acyclic – over the sys-
tem’s variables and a set of rates for the state transitions of
each variable that depends on the state of its parents. CTBNs
are well suited as a hidden generative model for the biologi-
cal processes mentioned above, because they can capture the
stochastic effects that arise due to lowly abundant molecular
species or other effects.

Prior applications of CTBNs to biological data (Acerbi
et al. 2014) have assumed that the state of the system is
known at all times through interpolating between data points
in a pre-processing step. Assuming complete path obser-
vations is unrealistic for biological dataset but dramatically
simplifies the inference problem: If additionally, the graph
prior satisfies structural modularity, it can be shown that
each node’s incoming edges can be found independent of
all other nodes’ incoming edges (Nodelman, Shelton, and
Koller 2003).

In absence of such simplifying assumptions, inferring a
CTBN model from time-series data requires inferring the la-
tent states of the system, which is a computationally chal-
lenging task as discussed in (Celikkaya and Shelton 2014;
Fan, Xu, and Shelton 2010; Nodelman, Shelton, and Koller
2005). We extend these approaches by additionally consid-
ering measurements that are corrupted by noise, which is
crucial for the biology domain. Several CTBN inference
methods jointly infer both graph structure and rates, yet for
biomedical applications knowledge about the presence of
an (dysregulated) edge is often sufficient (Sonabend et al.
2014). To address this, we marginalize the CTBN’s stochas-
tic process description with respect to rates by extending the
framework presented in (Zechner et al. 2014). This in turn
gives rise to a substantial reduction in computational effort
compared to standard techniques of joint inference and sub-
sequent marginalization of the posterior.
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2 Background
We start out by defining CTBNs, introduce the applied mea-
surement model and define the structure learning problem as
a Bayesian model selection task.

2.1 Continuous Time Bayesian Networks

The CTBN model for discrete state, continuous time
stochastic processes {X(t)}t≥0 introduced in (Nodelman,
Shelton, and Koller 2002) assumes that the discrete state
space X is separable into a multivariate state space X =
[X1, . . . ,XN ]. The state dynamics are then modeled by
means of a directed dependence graph G = (V,E), where
V ≡ {1, . . . , N} is the set of nodes (or variables) of the
CTBN, and E ⊆ V × V is the set of edges. We denote
by Xn the local state of the variable n ∈ V , with Xn ∈ Xn.
The transition probabilities of variable Xn depend only upon
a subset of the other variables, referred to as the variable’s
parent set dep(n) ≡ {m | (m,n) ∈ E}. The dynamics for
the local state Xn are modeled as a conditional Markov pro-
cess: Given the full state Un(t) = u of its parent set dep(n),
Xn is a Markov process with transition intensities given by
a conditional intensity matrix (CIM) Qu

n : Xn × Xn → R,
that is

Pr[Xn(t+ dt) = x′ | Xn(t) = x, Un(t) = u,Qu
n] =

δ(x, x′) +Qu
n(x, x

′)dt+ o(dt), (1)
with x, x′ ∈ Xn and δ the Kronecker delta. We refer to the
set of all conditional intensity matrices by Q.

2.2 Measurement Model

We assume that several realizations of the stochastic pro-
cess X(t) are observed through noisy measurements which
we assume to be drawn from a known distribution p(y |
X(t) = x) conditioned on the state x ∈ X at the time of
measurement. A time-series data set (Y, t) is a finite se-
quence of such measurements Y = {Y1, . . . , YL} at time
points t = {t1, . . . , tL} with 0 < t1 < · · · < tL. That is,
for all 1 ≤ l ≤ L it holds,

Yl ∼ p(y | X(tl) = x), (2)
with x ∈ X the realized state of the CTBN at time tl. The
measurement setup can be extended to more general incom-
plete data situations without affecting the proposed infer-
ence method.

2.3 Problem Statement and Model Selection

Measuring an ensemble of K time series data Y =
{(Y 1, t), . . . , (Y K , t)} of an unknown CTBN defined by
(G′, Q′), we seek to infer the distribution over graphs G
given Y. Denote by p(Xt | Q,G) the path measure induced
by the CIMs, with Xt a random path up to time t assuming
values in the space of cadlag functions D([0, t],X ). Further-
more, denote by xk

t ∈ D([0, t],X ) the corresponding k-th
sample path and xk(tl) its evaluation at time tl. With that,
the problem statement reads

Find p(G | Y)

Assuming xk
τ ∼ p(Xτ | G′, Q′)

Y k
l ∼ p

(
y
∣∣ xk(tl)

)

for all 1 ≤ k ≤ K, 1 ≤ l ≤ L and τ ≥ tL. As in ear-
lier approaches to CTBN inference (Nodelman, Shelton, and
Koller 2003) we seek MAP estimates of p(G | Y), by ex-
ploring the graph structure space, comparing graphs using
their Bayesian score,

Score(G) = ln p(Y | G) + ln p(G) ∝ ln p(G | Y),

where p(G) is a prior on the graph structure. In the CTBN
model, for a given node, there is one CIM for each com-
binatorial possible state of the node’s parent set. Hence
to regulate model complexity, the graph prior should pe-
nalize the number of incoming edges to each node in the
model (Nodelman, Shelton, and Koller 2003).

3 Marginalized CTBN
We next introduce the marginalized process dynamics which
we use to estimate the likelihood of time-series data with
respect to a given CTBN graph structure using sequential
Monte carlo methods.

3.1 Conditional Intensity Marginalization

In order to score a given graph configuration one tradition-
ally computes the joint posterior over G and Q and sub-
sequently marginalizes over Q. We present an alternative
approach and marginalize the CTBN model directly. For
the complete data scenario, it has been shown in (Nodel-
man, Shelton, and Koller 2003) that the path likelihood’s
Q-dependence can be marginalized out analytically, which
allows to efficiently compute the marginal likelihood. In or-
der to bypass the explicit inference of Q in case of incom-
plete measurements, we have to pursue a different strategy.
In particular, we first construct a marginalized, parameter-
free CTBN and subsequently evaluate the marginal likeli-
hood p(Y | G) by solving the optimal filtering problem as-
sociated with this process and measurement model.

For illustration consider for now a single trajectory. We
integrate Pr[Xn(t+ dt) = x′, Qu

n | Xn(t) = x, Un(t) = u,
Xt− = xt− ] with respect to Qu

n, where we provisionally
conditioned on the complete history of the process in the
interval [0, t). That yields
Pr[Xn(t+ dt) = x′ | Xn(t) = x, Un(t) = u,Xt− = xt− ]

= δ(x, x′) + E[Qu
n(x, x

′) | Xt = xt,G]dt+ o(dt) (3)
where we subsumed the conditioning at time t into the his-
tory Xt for the sake of conciseness and made explicit the
dependency on the given graph G. We emphasize that the
resulting process Xn(t) is parameter-free because the CIM
in (1) is replaced by its estimate given the process history.
Hence, the parameter uncertainty determined by the prior
over the unknown CIMs is integrated into the process itself.
The process accordingly becomes self-exciting. The result is
analogous to the innovation theorem for counting processes
(Aalen, Borgan, and Gjessing 2008). In order to be useful in
practice, we need to find an explicit expression of this condi-
tional expectation in terms of some path statistics of xt. To
this end, note that by Bayes rule we have

p(Q | xt,G) = p(xt | Q,G)p(Q | G)
p(xt | G) , (4)
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where p(Q | G) denotes the prior over the entries of all
CIMs given the underlying graph. The path likelihood
p(xt | Q,G) can be computed analytically by factorizing
over the variables (Nodelman, Shelton, and Koller 2003).
Accordingly, we introduce the summary statistics of the k-th
path xk

t for every node n and state u of the parent set dep(n):
Tu
n,k(x), x ∈ Xn the accumulated time spent in state x and

run,k(x, x
′) the count of state changes from state x to state

x′ within the interval [0, t]. The extension to K trajectories
ξt = {x1

t , . . . ,x
K
t } drawn from the same CTBN (G, Q) is

achieved by noting that the trajectories are conditionally in-
dependent given Q. The factorization can then be collapsed
over their joint summary statistics Tu

n (x) =
∑K

k=1 T
u
n,k(x)

and run(x, x
′) =

∑K
k=1 r

u
n,k(x, x

′) as follows,

p(ξt | Q,G) =
N∏

n=1

∏
u∈Un

∏
x∈Xn

∏
x′∈Xn\x

exp[Qu
n(x, x

′)Tu
n (x)]Q

u
n(x, x

′)r
u
n(x,x

′).

Choices of prior distributions over Q that lead to tractable
solutions of (4) are discussed in (Zechner, Deb, and Koeppl
2013). In this work we only consider independent univariate
Gamma-type priors on the transition rates. We are free to
choose its shape and rate parameters αu

n(x, x
′) and βu

n(x, x
′)

that are associated with a particular state transition and graph
structure. This allows us to encode prior belief about the
effect of edges in our model, e.g., activation or inhibition. A
possible choice is discussed in section 3.4.

Given our choice of independent conjugate priors on the
non-diagonal entries, it follows that the posterior (4) must
also factorize over CIM entries x, x′ 
= x and each non-
diagonal CIM entry is again Gamma distributed with param-
eters αu

n(x, x
′) + run(x, x

′) and βu
n(x, x

′) + Tu
n (x). Conse-

quently the expectation in (3) can be evaluated analytically,

E[Qu
n(x, x

′) | ξt] = αu
n(x, x

′) + run(x, x
′)

βu
n(x, x

′) + Tu
n (x)

. (5)

With (5) we have an explicit form of the parameter-
free marginal generator (3) and, conditionally on the
path statistics, can draw samples of this process based
on techniques for time-inhomogeneous Markov chains
(Anderson 2007). The marginalized process X(t) is no
longer Markovian as it now depends on its history as
well as the history of the other trajectories. However,
by augmenting the state space by all summary statistics
T = {Tu

n (x) | n ∈ {1, . . . , N}, u ∈ Un, x ∈ Xn} and R =
{run(x, x′) | n ∈ {1, . . . , N}, u ∈ Un, x ∈ X , x′ ∈ X \ x},
the Markov property is recovered.

3.2 Marginal Likelihood Decomposition

The marginal likelihood required for scoring graphs as dis-
cussed in Section 2.3 is computed efficiently by exploiting
its recursive structure. In particular, measurements can be
taken into account one after another – either over time points
and then trajectories or vice versa. In fact, one is free to
choose the particular order of measurements as long as the
resulting sequences are temporally causal. For instance, the

third measurement of the ith trajectory cannot be processed
before the second one and so forth.

Let I denote an ordered set of integer pairs {k, l} ∈ N
2

observing this constraint. To simplify notation let Yk,l
− de-

note the set of previously processed measurements exclud-
ing Y k

l . Then it holds that

p(Y | G) =
∏

(k,l)∈I
p
(
Y k
l

∣∣∣ G,Yk,l
−

)
. (6)

For any single factor in (6), the law of total probability over
the state X yields

p
(
Y k
l

∣∣∣ G,Yk,l
−

)
=

∑
x∈X

p
(
Y k
l

∣∣ x) Pr
[
X(tl) = x

∣∣∣ G,Yk,l
−

]
. (7)

The factors in the summands of (7) are the previously in-
troduced measurement likelihood (2) and a prediction of
the state distribution given earlier measurements. This re-
cursive structure can be naturally exploited by employing
Bayesian filtering techniques. Since this is analytically chal-
lenging for the marginal process model considered here, we
resort to a sequential Monte Carlo (SMC) approach (Gor-
don, Salmond, and Smith 1993), in which the posterior dis-
tribution is computed by propagating a set of weighted par-
ticles.

Algorithm 1: Marginal Particle filter / Sequential Monte
Carlo

Input: Measurement data (Y, t), graph G, initial set of
M particles p0

Result: Estimate of log marginal likelihood
Z ≈ ln p(Y | G)

1 for measurement (yl, tl) ∈ (Y, t) do

2 for Particle pm ∈ pl−1 do
/* Prior prediction */

3 pm = {xm,Tm,Rm} ← Propagate pm
through the marginal process model from tl−1

to tl by sampling
/* Measurement likelihood */

4 wm ← p(yl | X(tl) = xm)
5 end

6 Zl ← 1
M

∑M
m=1 wm

7 w ← w/Zl

/* Resample particles */
8 for Particle pm ∈ pl+1 do

9 pm ← Sample from pl with probabilities w
10 end

11 end

12 Z =
∑L

l=0 lnZl

3.3 Particle Filter

As indicated in the previous section, there are multiple ways
of choosing the order in which measurements are incorpo-
rated during inference. For simplicity we consider the case
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where whole trajectories are processed one after each other.
The processing of a single trajectory (Y, t) is illustrated in
Algorithm 1. The algorithm requires to be initialized with a
set of particles p0 := {p0m} = {{Xm(0),Tm,Rm} | m =
1, . . . ,M}, where Xm(0) denotes the randomly drawn ini-
tial state of X(t) and Tm, Rm refer to the sufficient statis-
tics stemming from the particle distributions associated with
any preceding time-series and inference runs.

Note that the marginalized process dynamics as derived
in the previous section is employed within SMC in the sim-
ulation step in Line 3 for the prior prediction.

3.4 Rate Prior

The marginalized prediction requires an assumption on the
prior of the rate parameters given the graph structure, parent
set state and transition, which we have fixed in Section 3.1
to independent Gamma distributions. In the reference im-
plementation, all αu

n(x, x
′) are set to 1, yielding exponential

type priors, and βu
n(x, x

′) is set to favor activation type net-
works, that is, as the parent nodes state grows, the child node
is also likely to transition into a higher state or remain in the
highest state. Algorithm 2 gives the procedure in detail.

Algorithm 2: Activation-type network to β mapping
Input: Graph G, prior hyper parameters β̂ > 0, τ > 0

and ε  1, state pair x, x′ where node n
performs a transition, state of parent set u

Result: βu
n(x, x

′) rate parameter of rate prior
distribution

/* Denote by ui the i-th entry of u */
1 cmax ≡ sum of the parent set’s states at their maximum
2 if |dep(n)| > 0 then

3 c ← τ
∑| dep(n)|

i=1 ui

4 if x′ > x then

5 β̂ ← β̂ ln(1 + τc+ ε)
−1

6 else

7 β̂ ← β̂ ln(1 + τ(cmax − c) + ε)
−1

8 end

9 end

10 return β̂

4 Implementation

We briefly discuss key design choices for an efficient imple-
mentation targeting a high performance computing system
with many compute nodes, each capable of executing sev-
eral threads simultaneously.

4.1 Score Maximization

In order to maximize the score, similar to previous CTBN in-
ference methods (Nodelman, Shelton, and Koller 2003), we
use a greedy steepest ascent algorithm to explore the space
of 2N(N−1) graphs. In each step, all graphs in a Hamming
distance 1 neighbourhood around the current best guess are
scored, the next best guess being the graph with the best

score. To deal with the significant increase in computational
complexity owing to the incomplete, noisy data set, we em-
ploy distributed greedy search: Each evaluations of the scor-
ing function is distributed amongst several processes. We
opted to implement this step using MPI.

To deal with local minima and finite sample effects of the
particle filter, we repeat the above algorithm several times,
restarting from random initial configurations. This can also
be trivially parallelized. Finally, we pool the best W = 10
graph configurations found by summing them weighted by
their score, and then treat the resulting [0, 1]N×N matrix
as the marginal edge posterior. That is, having samples
Gi ∼ Pr(G | Y) with Gi = (V i, Ei) we approximate the
probability of an edge e, Pr(1E(e) | Y) = E[1E(e) | Y] as
the Monte-Carlo estimate

∑
{G=(V,E)}

1E(e)Pr(G | Y) ≈ 1

W

W∑
i=1

1Ei(e).

4.2 Parallelized Particle Filtering

Although the estimation of the marginal likelihood for the
individual trajectories is coupled, at the cost of accuracy we
may still opt to filter multiple trajectories simultaneously,
sharing summary statistics whenever convenient, i.e., after
finishing a batch of trajectories. We further approximate the
sharing of summary statistics by computing their expected
value after each trajectory for simplicity, which we found to
work well in practice.

The above parallelization strategy requires us to keep full
set of particles in memory for each compute process, which
leads to memory bottlenecks for large graphs on multi core
systems. Not only does the amount of required particles in-
crease with the number of nodes, the same also holds for the
number of summary statistics that need to be stored for each
particle, that is, |T|+|R| = ∑N

n=1 |Un||Xn|2, where |Un| =∏
i∈dep(n) |Xi|. Usually we will upper bound | dep(n)| via

graph structure prior to i.e. 4, which for binary state spaces
gives the upper bound of maxG |T| + |R| = 64N . To
circumvent this memory bottleneck, we may opt to paral-
lelize the particle filter’s resampling (Murray, Lee, and Ja-
cob 2014), forward simulation and measurement likelihood
computation for which we only require a memory overhead
of a single particle per thread. The particle filter lends itself
more readily to shared memory type parallelizations with
threads, using e.g. OpenMP or Pthreads.

5 Results and Discussion

The performance, validity and robustness of the proposed
method is verified using synthetic data generated from
CTBN models. Additional details concerning the synthetic
data generation can be found in the supplementary materi-
als1.

We perform three series of experiments. A benchmark
comparing the marginalized process filtering to alternative
methods to score graphs, graph inference verification, and a
robustness assessment.

1See http://www.bcs.tu-darmstadt.de/biocomm/hk/
ctbn aaai16 suppl.pdf
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Experiment Variation AUROC AUPR

Measurement σ = 0.2 0.88 0.84
noise σ = 0.3 0.86 0.80

σ = 0.4 0.81 0.72

Inhibitory K = 10 0.44 0.25
dynamics K = 20 0.48 0.29

K = 40 0.56 0.38

Boolean 1 Attractor 0.62 0.50
dynamics > 1 Attractor 0.65 0.53

Table 1: Experimental results for robustness assessment
with datasets generated from random CTBNs (N = 5), see
supplementary materials1 for details.

5.1 Particle Filter Benchmark

In order to score graphs, traditionally joint inference of both
Q and G is performed, marginalizing first over the CTBN
states, and then over Q. This is equivalent to state augmen-
tation with the unknown CIM entries Q as static parame-
ters, drawn from the Gamma distributed prior in the initial
state. We refer to this approach as the baseline method.
The baseline method suffers from sample impoverishment in
the static parameters. This can be solved by resampling the
static parameters Q after the measurement update, for each
particle conditioned on its summary statistics, p(Q | T,R),
as detailed in (Storvik 2002). Finally, one may marginalize
out the Q as proposed in this paper.

To compare the three methods, numerical simulation was
performed with single-threaded C++ implementations of all
methods on an Intel i5-3450. The empirical standard error
distribution of the estimated marginal likelihood is shown in
Figure 1a), strongly suggesting that the standard error is the
same for the resampling method and our method. However,
when considering the compute time, our method outper-
forms the resampling method as shown in Figure 1b), hence
justifying the increase in complexity due to the marginaliza-
tion of the process.

5.2 Graph Inference Verification

The results discussed in this section and the next were ob-
tained by considering the performance of the proposed algo-
rithm over several graphs and conditional intensity matrices,
except for a large graph exploration where only a single sys-
tem is considered. For evaluation, we treat the graph recov-
ery task as binary classification. We use the abbreviations
ROC for Receiver Operator Characteristic, PR for Precision-
Recall and the prefix AU to denote the area under either of
the two.

The following two experiments verify that additional in-
formation improves the ability of our algorithm to recover
the network structure in terms of accuracy.

Number of trajectories The exploration framework is
given access to an increasing number of trajectories. From
the results shown in Figure 2a), it is apparent that adding
more data improves the ability of the proposed algorithm to

recover the true graph as expected. Some of the spikes ob-
served, i.e., the spike at 12 can be attributed to better parallel
efficiency for those numbers of trajectories.

Additionally, we observe that in general, that for datasets
that agree well with the prior assumption, the top ten graphs
can be reached from many different original graphs as visu-
alized in Figure 1c).

Gaussian noise sweep In this experiment, we vary the
variance of the measurement noisy for the same underlying
sets of trajectories. The exploration algorithm is given ac-
cess to measurement noise standard deviation used to gener-
ate the respective data sets, i.e., the noise model parameters
were not estimated. The results shown in Table 1 agree with
intuition by favoring better quality data.

Large graph reconstruction We generated 40 time-series
from a 11 node graph. We then ran the exploration algorithm
on a single rack of Blue Gene/Q, consisting of 1024 compute
nodes, each equipped with a PowerPC A2 CPU (16 compute
cores, each 4-way multi-threaded). The results are shown in
Figure 2b). On average, a local maxima is found every 2
minutes, we converge to a stable hypothesis after approxi-
mately 2 hours. This experiment confirms that the proposed
method can recover networks of relevant size.

5.3 Graph Inference Robustness

In order to show that the proposed method is robust with re-
spect to the assumptions encoded in the prior belief of the
rates discussed in Section 3.4, we generate problem data
from CTBNs with rates that do not reflect an activation type
network.

Boolean networks The entries in the conditional inten-
sity matrices may be chosen such that they emulate asyn-
chronous Boolean networks see e.g. (Paulevé and Richard
2011). That is, for every configuration of the parent set of
each node, a local attractor state is chosen. To generate a
CIM from this set of local attractors, we fix the rate of all
transitions to this attractor state to 0.9, while all other tran-
sition rates are set to 0.1. For nodes with no parents, a con-
stant attractor is chosen. Such a procedure can easily lead to
edges that do not influence the dynamics of their children,
hence we developed the false negative edge penalty test to
exclude such CIMs from the evaluation, as discussed in the
supplementary materials.

For Boolean networks, it is possible to compute the full
transition space and classify networks with respect to some
dynamical features, notably their number of global attracting
regions. Networks can exhibit a single attractor where all
trajectories will eventually end up in; or several attractors,
indicating either divergent trajectories, or disjoint reachable
state spaces. In this paper we compare the performance
of our exploration algorithm on systems that have a single
global attractor region versus systems with multiple disjoint
global attractor regions. The results shown in Table 1 im-
ply that Boolean networks can be inferred, albeit with some
difficulty.

Inhibitory dynamics Data is generated from an all in-
hibitory network, where incoming edges have an inhibitory

2055



Marginal Resample Baseline
0.0

0.5

1.0

1.5

2.0
S

ta
n

d
ar

d
 e

rr
o

r

a)

1 2 4 8 16

Number of CTBN nodes n

1

2

4

8

16

32

N
o

rm
al

iz
ed

 c
o

m
p

u
te

 t
im

e b)

Marginal

Resample

Baseline

Graph

G
ra

p
h

c)

0

5

10

15

20

D
is

ta
n

ce

Figure 1: a) Standard error distribution of marginal likelihood, whiskers denote first and third quartile respectively, ground
truth obtained via simulation with larger number of particles, b) Compute times over 1000 trajectories, averaged over 10
repeats, normalized to the time the baseline method took for the 1 node graph. The graph considered is a chain that is extended,
i.e., 0 → 1 → 2 → . . . → n, and c) Pairwise Hamming distances between the 10 best graphs obtained using greedy exploration
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Figure 2: a) AUROC and AUPR for different number of tra-
jectories, and b) Running AUROC and AUPR as local max-
ima are discovered for the large graph experiment.

effect. This is achieved by inverting the comparison in Al-
gorithm 2, Line 4. Then similar to the first experiment, the
exploration code is given access to varying numbers of tra-
jectories. Given the choice of experimental parameters, the
results are not satisfactory for purely inhibition networks,
even when given access to many trajectories as shown in Ta-
ble 1.

6 Conclusion

Motivated by applications in systems biology, this paper de-
velops a method to recover a CTBN’s graph structure from
noisy, incomplete observations. Due to the secondary im-
portance of the rate parameters, they are marginalized out
analytically. For a given graph configuration, the resulting
marginalized stochastic process represents the belief about
all possible choices of CIMs under our prior assumption.
We then close the loop by linking this prior assumption with
the CTBN’s dependence graph. This setup allows us to score
graph configuration by solving the equivalent optimal filter-
ing problem, which we do efficiently with sequential Monte
Carlo. To deal with large graphs, we employ parallelized
greedy search as well as parallelized variations of the parti-
cle filter. Compared to previous methods for fitting a CTBN
to data, our method offers higher speed and accuracy by re-
ducing the variance for a fixed compute budget, due to only
inferring a specific part of the model. Finally the proposed
method is verified and validated using synthetic data.

6.1 Future Work

For problems where nodes have many states (4 or more),
the memory consumption can become the limiting factor in
compute performance. We propose that the generality of the
CTBN dynamics can be restricted by assuming that they
behave similar to chemical reaction kinetics with linearly
parametrized reaction rates, as the proposed marginalization
still applies for the unknown rate parameter (Zechner et al.
2014). The benefit of such an aggregation is that when con-
sidering several transitions as a single type of reaction the
number of sufficient statistics that have to be kept in mem-
ory is reduced as each reaction has only a single reaction
count associated with it. In practice, such an aggregation
can be achieved by changing the semantics of edges, i.e., if
the type of reaction is assumed to be a birth-death process
with birth rate proportional to the expression levels of the
parents and a death rate proportional to its own state similar
to what is proposed in (Äijö and Lähdesmäki 2009).
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