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Abstract

Buoyed by the success of deep multilayer neural networks,
there is renewed interest in scalable learning of Bayesian neu-
ral networks. Here, we study algorithms that utilize recent ad-
vances in Bayesian inference to efficiently learn distributions
over network weights. In particular, we focus on recently
proposed assumed density filtering based methods for learn-
ing Bayesian neural networks – Expectation and Probabilistic
backpropagation. Apart from scaling to large datasets, these
techniques seamlessly deal with non-differentiable activation
functions and provide parameter (learning rate, momentum)
free learning. In this paper, we first rigorously compare the
two algorithms and in the process develop several extensions,
including a version of EBP for continuous regression prob-
lems and a PBP variant for binary classification. Next, we ex-
tend both algorithms to deal with multiclass classification and
count regression problems. On a variety of diverse real world
benchmarks, we find our extensions to be effective, achieving
results competitive with the state-of-the-art.

1 Introduction

Neural networks employing multilayer architectures are ex-
pressive models capable of capturing complex relationships
between input-output pairs. Deep architectures employing
rectified linear units (ReLU) (Nair and Hinton 2010), when
trained on massive datasets using backpropagation (Rumel-
hart et al. 1986) based stochastic gradient techniques and
improved regularization schemes like dropout (Srivastava et
al. 2014) and drop-connect (Wan et al. 2013), demonstrate
state-of-the-art performance on a variety of learning tasks
spanning computer vision (Wan et al. 2013; Krizhevsky et al.
2012), natural language processing (Sutskever et al. 2014)
and reinforcement learning (Mnih et al. 2015).

Fostered by these successes, there is renewed interest in
Bayesian neural network models (MacKay 1992) that ac-
count for uncertainty in network parameters. These models
are attractive for several reasons. They naturally provide cal-
ibrated estimates of prediction uncertainty by propagating
parameter uncertainties into predictions. By retaining dis-
tributions over parameters and averaging over them rather
than relying on a single point estimate, they also tend to be
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more robust to overfitting. Furthermore, standard stochas-
tic gradient descent training using backpropagation requires
a large number of possibly layer-specific hyperparameters,
such as learning rate and momentum, to be tuned on a per
dataset basis through computationally expensive procedures.
In contrast, a Bayesian view of neural networks makes the
rich literature on probabilistic inference available, allowing
for the design of “parameter free” algorithms.

A variety of probabilistic inference algorithms including
Hamiltonian Monte Carlo, variational inference, Laplace ap-
proximation, and expectation propagation, have been stud-
ied for learning weight distributions in Bayesian neural net-
works (Neal 1995; Hinton and Van Camp 1993; Graves
2011; MacKay 1992; Jylänki, Nummenmaa, and Vehtari
2014). However, these methods either fail to scale to large
datasets and architectures and/or provide poor posterior es-
timates. Promising recent work has focused on improving
both scalability and accuracy (Soudry, Hubara, and Meir
2014; Hernández-Lobato and Adams 2015; Balan et al.
2015; Blundell et al. 2015). The algorithms developed by
(Balan et al. 2015) and (Blundell et al. 2015) rely on stochas-
tic gradients, either for approximating the posterior through
stochastic gradient Langevin dynamics (SGLD) (Welling
and Teh 2011) or for optimizing the variational free en-
ergy. Although these algorithms maintain parameter uncer-
tainty they are plagued by the same hyperparameter se-
lection problems exhibited by classical stochastic gradi-
ent descent learning. An orthogonal direction is provided
by (Soudry, Hubara, and Meir 2014; Hernández-Lobato and
Adams 2015), where the authors build upon the online
Bayesian inference algorithm known as assumed density fil-
tering (ADF) (Opper 1998) to develop methods for learning
Bayesian neural networks — expectation backpropagation
(EBP) and probabilistic backpropagation (PBP). These algo-
rithms are scalable, accurate, and parameter-free, and have
been shown to be extremely competitive with standard back-
propagation both in terms of generalization error and speed
of training, for regression and classification tasks.

Despite these advantages, several factors hamper the use
of PBP and EBP. First, they assume certain tractabilities
which make developing extensions for handling important
practical problems of multiclass classification and count
regression problems difficult. Further, PBP as presented
by (Hernández-Lobato and Adams 2015) only handles con-
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tinuous regression problems, while EBP (Soudry, Hubara,
and Meir 2014), works only for binary classification prob-
lems and for architectures employing units with signed ac-
tivations. This makes a direct comparison of the two algo-
rithms difficult.

In this paper, we address these issues. We first develop an
EBP variant capable of handling networks with rectified lin-
ear units. Next, we demonstrate how PBP can be used for bi-
nary classification problems and EBP for continuous regres-
sion. Together, these extensions allow us to perform thor-
ough empirical evaluations of the two algorithms. Our main
contribution, however, lies in extending both algorithms to
the problems of multiclass classification and count regres-
sion. To model these problems, we use softmax transformed
and exponentiated neural network outputs to parametrize
categorical and Poisson distributions. These distributions in-
duce additional intractabilities in the model. To cope, we
develop efficient approximations that lead to both accurate
posteriors and competitive results on standard benchmarks.

2 Neural Networks as Statistical Models
Given a dataset D = {x,y} = {xn, yn}Nn=1 of feature xn ∈
R

D and response yn ∈ Y pairs, we assume that there exists a
noisy functional mapping between xn and yn. We model this
mapping via a conditional distribution p(y | x,W) and are
interested in the related problems of estimating the posterior
distribution over parameters W ,

p(W | y,x) = p(y,W | x)∫
p(y | x,W)p(W)dW , (1)

and predicting responses y∗ for new features x∗, using the
posterior predictive distribution,

p(y∗ | x∗,D) =

∫
p(y∗ | x∗,W)p(W | y,x)dW . (2)

We further assume that the conditional distribution factor-
izes over data instances p(y | x,W) =

∏
n p(yn | xn,W),

and that each factor belongs to a parametric distribution fam-
ily (e.g., Gaussian). We use a fully connected multilayer
feedforward neural network (MLN) g, to parameterize these
factors.

We use a MLN with L layers, each containing Dl hidden
units. All layers, with the exception of the output layer, also
contain an additional bias unit. The network is parameter-
ized by W = {Wl}Ll=1 a collection of Dl × (Dl−1 + 1)
weight matrices, where the +1 accounts for the bias node.
The layer outputs are denoted {zl}Ll=0, with z0 represent-
ing the input xn and zL = g(xn,W) corresponding to
the network output. The output of an intermediate layer
zl, l ∈ {1, . . . , L − 1} is computed via a non linear ac-
tivation, a, of its inputs ul = Wl [zl−1, 1]

T . Following
recent successes (Nair and Hinton 2010), we restrict our at-
tention to rectified linear activations, zil = max(0, uil) for a
neuron i in layer l and we constrain the output layer to have
linear activations. The parametric form of the distribution
p(yn | g(xn,W)) is task dependent and is further described
in subsequent sections. Finally, we endow the weights W
with a zero mean Gaussian prior,

W | λ ∼
L∏

l=1

Vl∏
i=1

VL+1∏
j=1

N (wijl | 0, λ−1), λ ∼ Gamma(αλ, βλ) (3)

where wijl = Wl[i, j] and λ is a Gamma distributed preci-
sion parameter.

3 Learning Network Weight Distributions

The posterior and posterior predictive distributions de-
scribed in Equations 1 and 2 can not be computed exactly
and we need to resort to approximate Bayesian inference
techniques. We study the ADF-based algorithms — PBP and
EBP. To cope with the intractable posterior, both algorithms
make a fully factorized approximation. PBP uses the follow-
ing approximation,

q(W, λ) = q(λ | aλ, bλ)
L∏

l=1

Vl∏
i=1

Vl−1+1∏
j=1

q(wijl | ϑijl)

= Gamma(λ | aλ, bλ)
L∏

l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (wijl | mijl, vijl),

(4)

approximating the marginal posterior distribution of
network weights with a set of univariate Gaussians
parametrized by ϑijl = {mijl, vijl}. The continuous weight
EBP variant1 makes a similar but more restrictive assump-
tion, artificially constraining the variances (vijl) to one.
While the unconstrained approximations of PBP are ex-
pected to be more accurate, it comes at the cost of additional
memory requirements. PBP requires storage of an additional
variance parameter per synaptic weight. On the other hand,
the cruder EBP approximation requires no more memory
than traditional backpropagation-based learning. It is thus
important to quantify the benefits of the more sophisticated
approximation employed by PBP, both in terms of poste-
rior estimation and generalization performance. We address
these tradeoffs through careful experiments.

Assumed density filtering is an online inference algorithm
that incrementally updates the posterior over W after ob-
serving new evidence. Consider the Bayes update to the ap-
proximate marginal posterior of weight wijl after observing
a new data pair (yn, xn),

q̃(wijl) =
1

Z
p(yn | xn, wijl)q(wijl | ϑn−1

ijl ), (5)

where Z is the appropriate normalization constant and ϑn−1
ijl

denotes posterior parameters after having observed Dn−1 =
{(yn−1, xn−1), . . . , (y1, x1)}. In general, the updated pos-
terior (q̃) no longer has a simple parametric form and needs
to be projected back to the parametric family of the approxi-
mate posterior by minimizing KL [q̃(wijl) || q(wijl | ϑijl)]
with respect to ϑijl. For Gaussian approximating fami-
lies, the minimization yields the following update equa-

1In this paper, we restrict ourselves to the continuous weight
version of EBP which appears to both perform better than the bi-
nary version at tasks considered in this paper and is conceptually
closer to PBP and backpropagation.

1590



tions (Minka 2001b),

mn
ijl = mn−1

ijl + vn−1
ijl

∂ ln Z
∂mn−1

ijl

,

vnijl = vn−1
ijl − (vn−1

ijl )2

⎡
⎣
(

∂ ln Z
∂mn−1

ijl

)2

− 2
∂ ln Z
∂vn−1

ijl

⎤
⎦ .

(6)

For EBP only the mean updates are required since vijl
is constrained to 1. The posterior updates in Equation (6)
require the log marginal likelihood, ln Z = ln

∫
p(yn |

xn,W))q(W, λ)dWdλ. This quantity can be computed ef-
ficiently in a forward pass, wherein distributions are propa-
gated forward through the network.

Forward propagation of distributions. Recall that the
output of a neuron i in layer l is some transformation of its
inputs zil = a(uil). For propagating distributions through
the neuron, we observe that the mean (μil) and variance (τil)
of its scaled inputs uil = wT

ilzl−1/
√
Dl−1 is given by,

μil =
1√
Dl−1

Dl−1∑
j=1

mijlE [zjl−1]

τil =
1

Dl−1

Dl−1∑
j=1

E
[
w2

ijl

]
E
[
z2jl−1

]−m2
ijlE [zjl−1]

2
,

(7)

where wil contains the Dl−1 elements of the ith row of
Wl. Appealing to the central limit theorem, we have uil ∼
N (μil, τil), an approximation that is increasingly accurate
with increasing Dl−1. With the Gaussian approximation in
hand, we can compute the moments of the neuron output zil
with respect to N (μil, τil). For ReLU activations2,

E [zil] = μilΦ

(
μil√
τil

)
+ τilN (μil | 0, τil)

E
[
z2il
]
= (μ2

il + τil)Φ

(
μil√
τil

)
+ μilτilN (μil | 0, τil),

(8)

where Φ(a) =
∫ a

−∞N (0, 1) is a probit function. Assum-
ing that the correlations between outputs of a layer can be
ignored (Soudry, Hubara, and Meir 2014), we have, zl ∼
N (νl,Ψl), where νl = [E [zil] , . . . ,E [zDll] , 1]

T and Ψl is
a diagonal matrix containing [(E

[
z2il
] − E [zil]

2
), . . . , 0]T

along the diagonal and we have appended the mean (1) and
variance (0) of the bias unit. Starting with E [z0] = [xn; 1]
we can recursively compute the distribution of the activa-
tions zl of intermediate layers, culminating in the means
(νL) and variances (ΨL) of the linear output layer zL =
g(xn,W) ∼ N (νL,ΨL). We can thus approximate,

ln Z ≈ ln
∫

p(yn | zL)N (zL | νL,ΨL)dzL. (9)

2See appendix for derivations:
http://www.disneyresearch.com/publication/assumed-density-
filtering/

The only requirement for the forward propagation is that
the moments E [zil] and E

[
z2il
]

be computable. These com-
putations involve convolving the (squared) neuron activa-
tions with a Gaussian distribution, E [zil] =

∫
a(uil)N (uil |

μil, τil)duil and are easily computable for a wide variety of
commonly used activations including rectified linear, sig-
moidal and linear activations. Interestingly, discontinuous

activations such as sign(uil) =

{
+1 if uil > 0

−1 if uil < 0.
, pose no

additional complications as long as the Gaussian convolu-
tion of the discontinuous pieces is computable. Discontinu-
ities are smoothed away by the Gaussian convolution, allow-
ing the algorithms to seamlessly deal with complex non lin-
earities. Figure (1) displays the expected activations for the
signed and the rectified linear activation functions. Other ac-
tivation functions could be utilized, but fully exploring this
space is left as future work.

−4 −2 0 2 4

E[uil]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
[z
il
]

Sign

tau =0.01

tau =1.0

tau =9.0

−4 −2 0 2 4

E[uil]

−1

0

1

2

3

4

5

6

ReLU

tau =0.01

tau =1.0

tau =9.0

Figure 1: Expected activations of a neuron with sign (left)
and rectified linear (right) non linearities. As the variance of
the input decreases the expected responses tend towards the
activations they approximate.

Backward propagation of gradients. The gradients of
ln Z required in Equation (6) can be computed by re-
verse mode differentiation analogously to standard back-
propagation. Powerful automatic differentiation tools like
Theano (Bergstra et al. 2010) can be used to automate this
process.

Following (Hernández-Lobato and Adams 2015), we in-
corporate the prior terms N (wijl | 0, λ−1) into the approxi-
mate posterior using expectation propagation (EP) (Minka
2001a). In our experimental evaluations, we replicate the
settings of the original algorithms by learning the hyper-
parameters governing λ via moment matching for PBP and
fixing them such that E [λ] = αλ/βλ is small, for EBP.

These algorithms share several resemblances with back-
propagation. Similar to backpropagation, each iteration re-
quires a forward pass followed by a backward pass. How-
ever, in the forward pass, distributions rather than point esti-
mates are propagated through the network and the marginal
probability of the target variable instead of the loss associ-
ated with the network prediction is computed. In the back-
ward pass gradients of the log marginal probability are prop-
agated backwards and used to update weight distributions.
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4 Multiclass and Count Regression Problems

Multiclass classification involves categorizing features xn

into one of C classes. We model the labels as C dimensional
categorical random variables, yn ∈ {0, 1}C , with the kth

element of yn set to one, if yn = k. This categorical distri-
bution is parametrized by a softmax transformed output of a
MLN with C output units, zL = g(xn,W) ∈ R

C

p(y | W ,x) =

N∏
n=1

σ(yT
nzL), (10)

where σ(aj) = eaj/
∑C

k=1 e
ak is the softmax function.

As explained in the previous section, learning the poste-
rior distribution over network weights requires the computa-
tion of Equation (9), which for softmax likelihoods (Equa-
tion (10)) is,

ln Z ≈ ln
∫

ey
T
n zL−lse(zL)N (zL|νL,ΨL)dzL, (11)

where lse(a) is shorthand for the log-sum-exp function
ln (

∑
j e

aj ). Unfortunately, this integral is analytically in-
tractable. Furthermore, since Equation (6) needs to be com-
puted for every (xn, yn) pair and every epoch, any approx-
imation we use needs to be efficient. Based on these obser-
vations, we first develop a bound using Jensen’s inequality,

ln Z ≥
∫

N (zL|νL,ΨL) ln(ey
T zL−lse(zL))dzL

= Eqφ

[
yT zL − lse(zL)

]
= yT νL − Eqφ [lse(zL)] ,

(12)

where for notational convenience we denote the approximate
posterior N (zL|νL,ΨL) as qφ. This lower bound is itself
intractable, owing to the intractability of Eqφ [lse(zL)]. We
cope by upper bounding the offending expectation (Blei and
Lafferty 2006),

Eqφ

⎡
⎣ln

∑
j

ezLj

⎤
⎦ ≤ ln

∑
j

Eqφ [ezLj ] = ln
∑
j

eνLj+ψLj/2,

(13)
which leads to a tractable lower bound,

ln Z ≥ yT νL − lse(νL + ψL/2), (14)

where ψL is a vector contains the diagonal elements of ΨL.
Approximating the normalization constant with the lower
bound leads to the following gradients,

∂ ln Z
∂ νL

= (y − t),
∂ ln Z
∂ ΨL

= −1

2
T,

ln t = (νL + ψL/2)− lse(νL + ψL/2),

(15)

where T is a diagonal matrix whose diagonal is populated
by t. These are backpropagated through the network to ob-
tain the gradients necessary for posterior updates (Equa-
tion (6)). The bound in Equation (14) is sometimes referred
to as the “log bound”, and is attractive for our purposes be-
cause of its efficiency — there are no additional free pa-
rameters to estimate via expensive numerical methods and

being a zeroth order Taylor series approximation no hes-
sians need to be computed. Although more accurate alter-
nate bounds have been proposed (Khan 2012), approximat-
ing the lse expectation remains a challenging open problem.
As an alternative, we observe that updating the posterior ap-
proximation over network weights only requires the avail-
ability of �φln Z. This allows us to sidestep the difficult
problem of accurately bounding the lse function. We utilize
recently proposed stochastic approximation techniques that
directly provide unbiased estimates of �φln Z through a
Monte Carlo approximation (Paisley, Blei, and Jordan 2012;
Kingma and Welling 2013; Rezende, Mohamed, and Wier-
stra 2014; Titsias and Lázaro-Gredilla 2014). Assuming
mild regularity conditions we have,

�φln Z =
1

Z
�φ Eqφ [p(yn | zL)]

=
1

Z
Eqφ [p(yn | zL)�φ ln q(zL | φ)]

≈ 1

Z

[
1

S

S∑
s=1

p(yn | z(s)L )�φ ln q(z
(s)
L | φ)

]
,

(16)

where {z(s)L }Ss=1 ∼ q(z
(s)
L | φ). Unfortunately, this esti-

mator is known to have high variance and further variance
reduction techniques are required (Paisley, Blei, and Jordan
2012). However, since zL are continuous random variables,
an alternate lower variance estimator of the gradient pro-
posed by (Kingma and Welling 2013) becomes available to
us. The basic idea is to transform the random variable to be
sampled (zL) such that the randomness is independent of the
parameters (φ) with respect to which gradients are desired.
The following deterministic transformation can be used in
our case of Gaussian distributed zL,

ε(s) ∼ N (0, I), z
(s)
L = t(φ, εs) = νL + Lεs (17)

where LLT = ΨL. Following this re-parameterization,
computing the gradient

�φln Z ≈ 1

Z

[
1

S

S∑
s=1

�φ p(yn | t(φ, ε(s)))
]
, (18)

is just a matter of applying the chain rule. Backpropagating
this estimator through the network provides us with the de-
sired gradients necessary for posterior updates.

We predict class labels for unseen features using another
Monte Carlo approximation to the posterior predictive dis-
tribution.

Count Regression involves learning a mapping between
data instances xn and counts yn ∈ Z+ = {0, 1, 2 . . . , }. We
model the count observations as Poisson distributed random
variables,

p(yn | ρ) = ρyn

yn!
e−ρ, (19)

and parametrize the non-negative rate parameter as ρ = ezL ,
with zL = g(xn,W) ∈ R

1 being the output of a MLN
g with a single output unit. As with softmax classification
Equation (9) for Poisson regression,

ln Z ≈ ln
∫

ezLyn−ezL−ln yn!N (zL|νL, ψL)dzL, (20)
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is intractable. Here, we use an accurate approximation which
induces an exponential family posterior predictive distribu-
tion (Chan and Vasconcelos 2009; El-Sayyad 1973). The ap-
proximation is attractive because it provides straightforward
procedures for predicting responses on unseen data by, for
example, using the distributions mode.

Since we use an exponential link function (ezL ),
our model implies that the log of the Poisson rate
parameter ln ρ = zL follows a Gaussian distribu-
tion. A Gaussian N (μ, σ2) is well approximated by a
log-Gamma(σ−2, σ2eμ) distribution for large σ−2. This al-
lows us to approximate the distribution of the rate parameter
as,

ρ ∼ Gamma(ψ−1
L , ψLe

νL). (21)
The Gamma-Poisson conjugacy then provides us a conve-
nient approximation to Equation (20):

ln Z ≈ ln
∫ ∞

0

Poi(yn | ρ)Gamma(ρ | ψ−1
L , ψLe

νL )dρ

= ln
Γ(yn + 1/ψL)

Γ(yn + 1)Γ(1/ψL)

(
ψLe

νL

1 + νLeψL

)yn
(

1

1 + ψLeνL

)1/ψL

,

(22)

where the expression inside the logarithm is just the prob-
ability mass function of a negative binomial distribution
NB(mean = eνL , scale = ψL) and follows from standard
Gamma-Poisson conjugacy. Predictions for held out data x∗
involves computing,

∫
Poi(y∗ | eg(x∗,W))qφ(W, λ)dWdλ.

The approximations listed in Equations 21 and 22 lead to
a negative binomial approximation to the posterior predic-
tive distribution: y∗ ∼ NB(eμ∗ , ψ∗). We use the mode of the
negative binomial distribution, �(1−ψ∗)eν∗	 if ψ∗ < 1 and
zero otherwise, for making predictions.

5 Regression and Binary Classification

Binary Classification We are interested in categorizing xn

into one of two classes. The class labels are binary random
variables yn = {+1,−1}, modeled using probit likelihoods,

p(y | W,x) =

N∏
n=1

Φ(ynzL) (23)

where, zL = g(xn,W) ∈ R
1 is the output of a MLN g.

Probit likelihoods allow the analytical computation of ln Z,

≈ ln
∫

Φ(ynzL)N (zL|νL, ψL)dzL = ln Φ

(
ynνL√
1 + ψL

)
.

(24)

Our model is similar to those considered by (Soudry,
Hubara, and Meir 2014) for binary classification problems.
However, our algorithms also work with ReLU activations
and we develop the analogous PBP extension.

Continuous Regression Here the responses yn ∈ R
1 are

real random variables, and we model them as Gaussian dis-
tributed random variables,

p(y | W ,x, γ) =

N∏
n=1

N (yn | g(xn,W), γ−1) (25)

The mean of the Gaussian is parametrized by zL =
g(xn,W) ∈ R

1 and γ ∼ Gamma(αγ , βγ) controls the vari-
ance. This regression model was used in conjunction with
PBP in (Hernández-Lobato and Adams 2015). We addition-
ally learn it using EBP.

6 Experiments

In this section, we empirically evaluate the proposed exten-
sions. We begin by comparing EBP — extended to incor-
porate rectified linear units — and PBP on continuous re-
gression and binary classification problems replicating the
datasets and architectures described in the original works.
Next, we present experiments for vetting the multiclass and
count regression extensions.

For regression, we use the UCI3 datasets used
by (Hernández-Lobato and Adams 2015). To replicate
the experimental settings, we use networks with one 50 unit
hidden layer for all but the two largest datasets, (Protein
and Year Prediction, datasets 7 and 10 in Figure (2)) using
100 hidden units instead. All datasets are standardized to
have features with zero mean and unit standard deviation.
The datasets are split such that the train and test sets follow
a 90/10 ratio. We repeat the random splitting process
10 times for each dataset (except Year Prediction, where
computational concerns limit us to a single experiment)
and report the average performance across the splits after
training for 100 epochs. We measure error using root mean
squared error (RMSE). Figure (2) presents the mean test
errors achieved by the two algorithms along with associated
standard deviations. We find that PBP significantly outper-
forms EBP on most regression datasets. The RMSE score
achieved by PBP averaged over all datasets and splits is
2.65 ± 2.81, compared to EBP’s 3.87 ± 4.03. We also find
a similar trend holds for predictive log likelihoods, PBP’s
−1.34± 2.15 compared to EBP’s −2.11± 2.20, indicating
a better fit to data. Experiments with deeper architectures
are available in the appendix and are consistent with these
observations.

Next, for binary classification we use the datasets made
available by (Soudry, Hubara, and Meir 2014), summarized
in the appendix. Again, following the authors’ settings, we
use an architecture with a single hidden layer containing 120
rectified linear units. We then follow the experimental proto-
col used for regression. The training and test error percent-
age is available in Figure 2. Consistent with regression, we
find that PBP achieves both a lower error rate of 0.07± 0.06
and a higher test log likelihood −0.33 ± 0.45, when com-
pared to EBP’s 0.27± 0.12 and −0.50± 0.15.

For multiclass problems we have two available approxi-
mations — log bound and stochastic. In preliminary experi-
ments, we found the stochastic approximation to be more ef-
fective and only consider it in this section. Following (Balan
et al. 2015), we first compare the posterior predictive densi-
ties learned by EBP and PBP on synthetic data. We generate
ten 2D data points from two well separated classes and train

3https://archive.ics.uci.edu/ml/datasets.html, see appendix for
dataset details.
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Figure 2: Top: Posterior distributions inferred by different approaches on toy data. The numbers in parenthesis represent average
point wise KL divergence from the ground truth. Bottom: Test errors for different tasks. From left to right, we have RMSE
errors on regression datasets, 0-1 error for binary classification datasets, classification performance on MNIST and test mean
absolute deviation for count regression.

a network with a single ten ReLU hidden layer and a two di-
mensional softmax output layer. We place a vague Gaussian
prior on the weights N (w | 0, 100). We also compute the
posterior predictive density using standard backpropagation
and the gold standard “ground-truth” density by averaging
over 20, 000 samples from the No-U-Turn sampler (Hoff-
man and Gelman 2014) after a burn-in of 5000. The resulting
distributions are visualized in Figure (2), with darker hues
indicating higher probability of belonging to the appropriate
class. For quantitative evaluations, Figure (2) also includes
point wise KL divergence over an evenly spaced discrete
grid spanning [−6, 6]×[−6, 6] between the ground-truth and
the competing methods. Both ADF algorithms incorporate
uncertainty in parameter estimates and perform significantly
better than backpropagation which tends to be overconfident
in its predictions even far from the observed data. The more
flexible approximation employed by PBP produces marginal
improvements over EBP. In general, both EBP and PBP tend
to underestimate the uncertainty, a byproduct of performing
multiple ADF passes over the data wherein the same data
points are repeatedly incorporated into the approximate pos-
terior without discounting for having previously observed
them (Minka 2001a).

Next, we focus on the MNIST hand written digit dataset
which contains 60, 000 training and 10, 000 test images.
Without using accuracy enhancing methods like generative
pre-training, data augmentation or convolutions we focus on
measuring the performance of a vanilla feedforward neu-
ral networks on this dataset. We employ a two hidden layer
architecture, each containing 400 rectified linear units and

train for a hundred epochs. In addition to internal com-
parisons, we also compare against the Bayes by backprop
method of (Blundell et al. 2015)4 and the method reported
in (Cheng et al. 2015), which does not provide well cali-
brated probabilities, who use identical architectures. The re-
sults are displayed in Figure (2). Interestingly, on MNIST
both EBP and PBP perform quite well and are better than
(Cheng et al. 2015) while being comparable to (Blundell et
al. 2015). Furthermore, unlike (Blundell et al. 2015), our al-
gorithms are parameter free, and do not require a separate
validation set to tune hyperparameters. Finally, we note that
in recent, as yet unpublished work (Balan et al. 2015) re-
port improved results using their SGLD based algorithm. A
thorough comparison with their work is left for the future.

Finally, we test our count regression model on a real
world bike rental demand forecasting problem (Fanaee-T
and Gama 2013). Given a combination of historical usage
patterns and weather data from the Capital Bikeshare pro-
gram in Washington, D.C., logged on an hourly basis be-
tween 2011 and 2012, the goal is to forecast hourly bike
rental demand. A sensible alternative to count regression is
to use Gaussian regression (Equation (25)) and to round the
continuous predictions to the nearest integer. Moreover, the
continuous regression model in Equation (25) has access to
a precision γ parameter that the Poisson model does not,
allowing it to capture over-dispersion effects that the Pois-
son model can not. This extra flexibility makes the Gaus-
sian regression with rounding a strong benchmark to com-

4The numbers are reproduced from their paper
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pare against. On a network with a single hidden layer con-
taining 100 units, we train both models using PBP for a
100 epochs on ten 90/10 splits. Average test error, mea-
sured via mean absolute deviation, as a function of epochs
is displayed in Figure (2). We find that our Poisson model
achieves lower errors, requires fewer training epochs and
achieves higher predictive log likelihoods −3.2108 ± 0.03
compared to −5.12± 0.04 achieved by the Gaussian model.

7 Conclusion

In this paper, we developed extensions to PBP and EBP,
two scalable online algorithms for training Bayesian neu-
ral networks, to multiclass and count regression problems
and found the proposed extensions to be effective, produc-
ing competitive results. We also developed an EBP variant
for ReLU and continuous regression problems and a PBP
variant for binary classification allowing us to compare the
two algorithms. We found that on most datasets the more so-
phisticated posterior approximation employed by PBP leads
to better generalization performance and posterior estimates.
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