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Abstract

Feature extraction is an important task in machine learn-
ing. In this paper, we present a simple and efficient
method, named max-margin data shifting (MMDS), to
process the data before feature extraction. By relying on
a large-margin classifier, MMDS is helpful to enhance
the discriminative ability of subsequent feature extrac-
tors. The kernel trick can be applied to extract nonlinear
features from input data. We further analyze in detail the
example of principal component analysis (PCA). The
empirical results on multiple linear and nonlinear mod-
els demonstrate that MMDS can efficiently improve the
performance of unsupervised extractors.

Introduction

Feature extractors are important in machine learning and
can heavily affect final performance. They transform low-
level input data, like raw pixels in images and bag-of-words
in documents, to high-level features like typical visual pat-
terns (Bengio, Courville, and Vincent 2013) and topics (Blei,
Ng, and Jordan 2003). Supervised feature extraction meth-
ods have attracted much attention because they are able to
learn suitable features for specific tasks. For example, su-
pervised LDA (Mcauliffe and Blei 2008; Zhu, Ahmed, and
Xing 2012) jointly models words in documents and their re-
sponses (e.g., movie ratings); supervised dictionary learning
(Mairal et al. 2009) seeks the overcomplete basis for signals
that belong to different classes.

In general, the training data are valuable and limited,
therefore cannot cover the rich variations. For example, each
node of a sensor network may have a probability to mechan-
ically fail, and visual objects have various types of transla-
tions and rotations. Therefore, training a good extractor re-
quires a large scale of observations; and how to accomplish
such a task by using only a relatively small dataset is an
important and challenging goal to pursue. One useful tech-
nique to improve the robustness of extractors is corruption,
which artificially generates more data by adding noise (e.g.,
Guassian noise or blankout noise) to the original data. This
noising scheme has proven effective on introducing adaptive
regularization (Bishop 1995); helping auto-encoder (Vincent
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et al. 2008) to learn semantic features; and improving the
generalization ability of deep networks (Hinton et al. 2012).

The explicit corruption method transforms each data in-
stance xn ∈ R

D (n = 1, · · · , N ) to S versions x̃ns through
some pre-defined corrupting models p(x̃|xn), and mini-
mizes the average loss 1

NS

∑
n

∑
s L(x̃ns, yn) over the cor-

rupted dataset. Though being simple, the disadvantage of the
explicit corruption is also obvious—corrupting every obser-
vation to multiple copies will dramatically increase the train-
ing size and thereby training time. Recent work on marginal-
ized corrupted features (MCF) (Maaten et al. 2013) provides
an implicit corruption scheme, which avoids enumerating
multiple copies and instead minimizes the expected loss
1
NEp[L(x̃n, yn)] under the corrupting model. MCF showed
promise in learning autoencoders (Chen et al. 2014) and link
predictors (Chen et al. 2015).

In this paper, we present max-margin data shifting
(MMDS), a simple and efficient method that processes the
input data before extracting features. MMDS relies on a
large-margin classifier on the original data. By building a
subsequent feature extractor (e.g., PCA), we are able to learn
features that are suitable for classification tasks. MMDS can
be approximately derived as the mean of a supervised cor-
rupting model, which considers both the standard noising
model (e.g., Gaussian noise) on input data and the discrim-
inative ability of a potential corruption according to a pre-
learned large-margin classifier. The latter factor encodes our
intuition that some corrupted data points may cross the de-
cision boundary (if given) and lead to a difficult case for
classification; and such corrupted data points should be dis-
couraged.

Our empirical results on various datasets demonstrate the
effectiveness of MMDS in the context of various feature ex-
tractors.

Supervised Data Corruption

Considering a fully labeled dataset that includes N data
points xn ∈ R

D and labels yn ∈ Y = {1, . . . , H}, where
H is the number of categories, we aim to extract the high-
level representation, or latent features, zn ∈ R

K from data
xn. Instead of dealing with the original data, we consider
the augmented data x̃ns, which are sampled from a su-
pervised corrupting distribution pn(x̃|xn, yn,η), parameter-
ized by η. Assuming each data is corrupted for S times,
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the fitness of each zn can be measured by a loss function
L(xn, zn,Θ) = 1

S

∑
s L(x̃ns, zn,Θ) of a feature extractor,

whose parameters are denoted by Θ. For various extractor
models, we use different loss functions. For example, the
loss function L(x̃ns, zn,Θ) for Non-negative Matrix Fac-
torization (NMF) (Lee and Seung 2001), Kmeans (KM) and
Principal Component Analysis (PCA) (Collins, Dasgupta,
and Schapire 2001) are defined as

NMF : ‖x̃ns −Wᵀzn‖2, zn ∈ R
K
+ ,W ∈ R

K×D
+ ,

KM : ‖x̃ns −Wᵀzn‖2, zn ∈ {ek}Kk=1,W ∈ R
K×D

PCA :
x̃ᵀ
nsx̃ns

2σ2
− zᵀnWx̃ns

σ2
+A(zᵀnW),W ∈ W

(1)

where W = {W ∈ RK×D : WWᵀ = I}, ek
is a vector that places 1 in the k-th dimension and 0
in all other dimensions, σ is a noise parameter, and
A(zᵀnW) =

∫
exp(zᵀnWx/σ2 − xᵀx/2σ2)dx is log-

partition function. Our optimization objective function is
F(Θ) = 1

S

∑
n

∑
s L(x̃ns, zn,Θ). Let S → ∞, we have

F(Θ) =
∑

n

Ep(x̃|xn,yn,η)[L(x̃, zn,Θ)]. (2)

A standard corrupting model treats all the corrupted versions
equally, as indicated by the uniform weight 1

S in the average
loss. Here, we suggest to distinguish two types of corrupted
data points. As illustrated in Figure 1, each of the two data
points in different classes (marked as red circles) are cor-
rupted many times, as indicated by the squares and triangles
around each data point. Suppose there is a linear decision
boundary that well separates the two red points. Then, some
of the corrupted data points may cross the decision bound-
ary or be near the boundary and get mixed with the data in
a different class. Such points may not be good for extracting
features that are suitable for classification, as they make it
harder to find a good separating line in the original space.
Therefore, we propose a dropping step to remove such cor-
rupted points.

The above corrupting and dropping design can be for-
mally described by the supervised corrupting distribution
p(x̃|xn, yn,η), which considers both the standard noise
(e.g., Gaussian noise) on input data xn and the discrimina-
tive ability of each data. Here, we measure the discriminative
ability via data margin. Let ηy be the classifier weights asso-
ciated with class y. Following (Crammer and Singer 2002),
we can learn a large-margin classifier by solving the follow-
ing problem:

min
η

1

2

∑

y

‖ηy‖2+C
∑

n

max
y

(Δ�n(y)+η
ᵀ
yxn)−ηᵀ

yn
xn (3)

where Δ�n(y) = �I(y �= yn) measures the cost of making
a wrong prediction, and for simplicity we have omitted the
offset parameters. As we need to improve the separability
of the training set, besides dropping the samples that cross
the decision boundary, we also drop the ones that are within
a certain distance from the boundary (marked as crosses in
Figure 1). To improve the robustness, we further relax the

Figure 1: The original data and corrupted data. (Best viewed
in color)

deterministic dropping as a soft assignment. That is, we put
a weight that decreases exponentially w.r.t. to the hinge-loss
(i.e., the gap between their margins and the threshold):

φ(yn|x̃,η) = exp{−Cmax
y

(Δ�n(y)+ηᵀ
y x̃−ηᵀ

yn
x̃)}, (4)

whose minus logarithm is the multiclass hinge loss by con-
sidering the margin favored by the true label over an alterna-
tive label. C is a constant. For real-valued data, we further
consider the Gaussian noising model, and define our super-
vised corrupting distribution p as

p(x̃|xn, yn,η) ∝ N (x̃|xn, σ
2I)φ(yn|x̃,η), (5)

which is a combination of standard data noising and the
discriminative ability. In the sequel, we denote pn(x̃) =
p(x̃|xn, yn,η).

We derive an approximate objective to the intractable ex-
pectation in Eq. (2):

F(Θ) ≈
∑

n

L(Epn [x̃], zn,Θ), (6)

where the approximation is due to the movement of the ex-
pectation over pn from outside to inside of the loss function.
The objective only depends on data expectation and thereby
is efficient without explicitly considering a large amount of
corrupted samples. Figure 1 gives a geometrical view: As a
proportion of the corrupted data are deleted according to the
cutting planes (i.e., the two dotted lines), their mean Epn

[x̃]
(blue circles) are shifted from original data xn (red circles).
Besides, the shifting direction is perpendicular to the cutting
planes due to the geometric symmetry.

In order to make the above procedure practical, we still
need to approximate the expectation Epn [x̃]. Below, we
present a simple procedure, which works well in practice.
First, we can show that the corrupting distribution pn(x̃) can
be obtained by minimizing the following objective

KL
(
qn(x̃)||q0n(x̃)

)
+CEqn [max

y
(Δ�n(y)+ηᵀ

y x̃−ηᵀ
yn
x̃)],
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where q0n(x̃) = N (x̃|xn, σ
2I) and the KL function is

Kullback−Leibler divergence. Then, we move the expec-
tation inside the max function and deal with the following
objective (denoted by L(qn(x̃))):
KL

(
qn(x̃)||q0n(x̃)

)
+Cmax

y
(Δ�n(y)−Eqn [η

ᵀ
yn
x̃−ηᵀ

y x̃]),

which is in fact a lower bound due to the Jensen’s inequality
and the convexity of max function. Considering the follow-
ing optimization problem

min
q(x̃),η

∑

n

L(qn(x̃)) +
1

2
‖η‖2. (7)

which can be written in a constrained form:

min
{qn(x̃)},η,ξ

∑

n

KL
(
qn(x̃)||q0n(x̃)

)
+

1

2
‖η‖2+C

∑

n,y

ξyn

s.t. : ∀n, y∈Y, Eqn[η
ᵀ
yn

x̃−ηᵀ
y x̃]≥Δ�n(y)−ξyn,

with the normalization constraint that
∫
qn(x̃)dx̃ = 1.

The Lagrangian function is L({qn(x̃)},η, ξ,α, λ) =∑
n KL

(
qn(x̃)||q0n(x̃)

)
+λ

∫
qn(x̃)dx̃−λ+ C

∑
n,y ξ

y
n −∑

n,y α
y
n(Eqn [η

ᵀ
yn
x̃−ηᵀ

y x̃−Δ�n(y)] + ξyn). Though find-
ing a rigorous solution needs to iterate over q(x̃) and η, we
consider a simple procedure without iteration and derive a
simple and efficient operator. Specifically, we start with set-
ting qn(x̃) at the prior q0n(x̃), and solve for the classifier
weights η. For this step, we get the solution ηy =

∑
n α

y
nxn

and the dual parameters {α} are obtained by optimizing the
dual form of a multiclass SVM (Crammer and Singer 2002).
This step can be efficiently done by an existing solver. Then
by setting the derivative of the objective w.r.t {qn(x)}Nn=1 to
zero while fixing α and η, we get

qn(x̃) ∼ N (xn + σ2Σyα
y
n[ηyn

− ηy], σ
2I). (8)

Since we use qn(x̃) to approximate pn(x̃), we have a rule of
calculating Epn

[xn], as Epn
[xn] ≈ Eqn [xn].

Max-Margin Data Shifting

With the above approximation, we get a simple and efficient
rule to shift the input data:

(MMDS) : T [xn] = xn + σ2
∑

y

αy
n[ηyn

− ηy], (9)

where α and η are the dual and primal solutions of SVM in
Eq. (3). We will refer to the operation T as max-margin data
shifting (MMDS). This operation satisfies our intuition—the
simple multiplication with SVM coefficients suggests that
the MMDS data are more likely to be predicted as true la-
bels, in contrast with all other labels. Then we train an unsu-
pervised extractor with the MMDS data, by optimizing

F (Θ) =
∑

n

L(T [xn], zn,Θ).

Note that we only use the MMDS data in learning the fea-
ture extractor. The procedure of training an extractor on the
MMDS data is summarized as

Training Data{x} Shift−−→ T [x]
Train−−−→ Extractor.

After learning the feature extractor, we use it to extract fea-
tures from the original data and learn a classifier. The proce-
dure for training a classifier is summarized as

Training Data{x, y} Extractor−−−−−→ {z, y} Train−−−→ Classifier.

Finally, for testing data, we extract the latent features z and
apply the classifier to make the prediction.

The above shifting process can be naturally extended
to consider nonlinear mapping on the input data, e.g., via
a kernel mapping in a Reproducing Kernel Hilbert Space
(RKHS). Random Fourier Features (RFF) (Rahimi and
Recht 2009) provide a simple and scalable method to em-
bed the original data to RKHS defined by shift-invariant
kernels like radical basis function (RBF). (Lopez-Paz et
al. 2014) proposed Randomized Kernel PCA, which uses
PCA to fit the RFF embedding. Suppose a kernel satisfy-
ing K(x,x′) = K(x−x′,0), and pf (ω) is a distribution
that normalizes the Fourier transformation of this kernel
pf (ω) ∝

∫
exp(iωᵀx)K(x,0)dx, where

∫
pf (ω)dω = 1.

The T -dimensional RFF embeddings are generated as

F [x]� [cos(ωᵀ
1x+b1),· · · ,cos(ωᵀ

Tx+bT )]
ᵀ, (10)

where ωt ∼ pf (ω) and bt∼ Uniform(−π, π). We can apply
any extractors to fit the MMDS-processed versions of the
RFF embeddings, to learn discriminative nonlinear features.
The training procedure of kernelized extractors is

{x} RFF−−→ F [x]
MMDS−−−−→ T [F [x]]

Train−−−→ Extractor. (11)

Notice that our framework can be easily generalized to semi-
supervised learning. All we need to do is to shift the labeled
data while keeping the unlabeled ones not changed.

Application in Principal Component Analysis

Now, we use principal component analysis (PCA) to explain
the effect of MMDS in detail. The vanilla PCA seeks the
dominant components underlying data. To consider labels,
which provide side information with the potential to select
components suitable for specific tasks, various extensions
have been developed. For example, Supervised PCA (Yu et
al. 2006; Rish et al. 2008; Du et al. 2015) combines proba-
bilistic PCA with a regression task under the assumption that
both data and side information are generated from a common
latent space through linear mapping. The SVDM (Pereira
and Gordon 2006) seeks a low dimensional linear embed-
ding of training data using singular vector decomposition
(SVD). (Rish et al. 2008) tackled the above problem using a
closed-form update rule with provable convergence. Though
these methods were proven to be effective, they deal with
label information in a regression manner. Furthermore, most
of them are based on EM solvers, which can get trapped at
local minimum, and suffer from time complexity issues. In
this section, we first define a max-margin PCA (MMPCA).
Then we show that MMPCA can be approximately solved
by learning an unsupervised PCA on the MMDS data, and
we will refer to this method as MMDS-PCA.

A PCA model assumes that zero-centered data are gener-
ated from features through linear mapping that x = Wᵀz+
ε, where zn ∼ N (0, I), and ε is Gaussian noise. Following
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the notation of (Guo 2009), we use the formulation of Ex-
ponential Family PCA (EFPCA) for further description due
to simplicity. We also use capital letters to represent matri-
ces stacking variables. For instance, Z ∈ R

K×N is a matrix
whose n-th column is zn.

Our objective function on the original data matrix X with-
out corruption is described as in Eq. (1):

L(X,Z,W) � A(ZᵀW)− tr(ZᵀWX) +
1

2
tr(ZᵀZ),

where W ∈ W , A(ZᵀW) =
∑

n A(zᵀnW), and we
omit the term that only depends on X. This model is dif-
ficult to optimize because the orthogonal constraint W is
non-convex, and the objective is not jointly convex on Z
and W, but it is convex on Z for fixed W in a good
way. Denoting A∗ as the Fenchel conjugate of A, we have
A(zᵀnW) = maxUn

tr(zᵀnWUn) − A∗(Un). Notice that
A∗(Un) is convex. Denoting A∗(U) =

∑
n A∗(Un) and

setting ∂L/∂zn = 0, we get zn = W(xn −Un). Substitut-
ing it back, the dual form of PCA is:

L(X,M,U) � −A∗(U)− 1

2
tr((U−X)(U−X)ᵀM),

where M ∈ M � {WᵀW : W ∈ W}. (Guo 2009) sug-
gested that the domain M can be relaxed to M′ = {M :
I 
 M 
 0, tr(M) = K}. After this step the objec-
tive satisfies strong minmax property (Borwein and Lewis
2010), which implies that the min and max operators are ex-
changeable in coordinate descent optimization. Then we get
a closed-form solution as W = QK((X − U)(X − U)ᵀ),
where the operator QK(A) represents the matrix stacking
the top-K eigenvectors of matrix A. It is ensured that the
solution W is orthogonal and satisfies our premise. This in-
dicates that the relaxation of domain from M to M′ is tight.

A supervised version of PCA is max-margin PCA (MM-
PCA), which uses SVM to fit the latent variables z while
extracting components:

min
W∈W

min
Z

min
ν

1

2
‖ν‖2 + L(X,Z,W) + C

∑

n

ξn

s.t. : ∀n, yn(ν
ᵀzn − b) ≥ 1− ξn, (ξn ≥ 0)

(12)

where we have restricted us to consider the binary classi-
fication (i.e., yn ∈ {+1,−1}) for simplicity. Extension to
the multi-class case can be done similarly as in the MMDS
formulation. We define the Lagrangian function of the soft-
margin SVM F (α,ν,Z) as

1

2
‖ν‖2−

∑

n

αn[yn(ν
ᵀzn− b)−1+ ξn]+C

∑

n

ξn, (13)

where ∀n, αn ∈ [0, C] and C is a positive constant. MM-
PCA is reformulated as

min
W∈W

min
Z

max
α

min
ν

F (α,ν,Z) + L(X,Z,W). (14)

Notice that the min and max operators in F (α,ν,Z) are ex-
changeable due to linearity. Setting the derivative w.r.t Z and
we get zn = W(xn −Un) + αnynν.

Now we consider a strongly related SVM model
whose Lagrangian function is F (α,η,X) = 1

2‖η‖2 −∑
n αn[yn(η

ᵀxn−b)−1+ξn]+C
∑

n ξn, where (∀n, αn ∈
[0, C]). This objective function is independent of features.
For further derivation, we will make an assumption that
the equality zn = Wxn holds, which means that the
learned features approximate the projection of data by W,
and this approximation becomes tighter when Rank(X) ap-
proaches K. Recalling that WWᵀ = I, the dual forms
of the two different SVMs share an equal term

∑
n αn −

1
2‖

∑
n αnynxn‖2 =

∑
n αn − 1

2‖
∑

n αnynzn‖2, so that
the two dual solutions are actually the same. The pri-
mal solutions of two SVMs Wη =

∑
n αnynWxn =∑

n αnynzn = ν are related through W. Recall that zn =
W(xn − Un) + αnynν, we get zn = W(T [xn] − Un),
where T [xn] = xn+αnynη is a binary-labeled and σ2 = 1
case of MMDS. According to our previous proof, we have
maxα minν F (α,ν,Z) = maxα minη F (α,η,X) under
the premise of zn = Wxn. Substituting it back, we get the
dual form of the objective

D[1] : min
M∈M

max
U,α

min
η

F (α,η,X) + L(T [X],M,U).

Since the SVM part F (α,η, X) does not affect the opti-
mum of other parameters, M and W are obtained in a simi-
lar manner as before.

For MMDS-PCA, we have the following learning prob-
lem:

D[2] : min
M∈M

max
U

L(T [X],M,U). (15)

By comparing with D[1], the only modification that affects
Z and W is changing xn to T [xn], which implies that the
MMPCA is approximated to MMDS-PCA, where the ap-
proximation precision depends on the low rank property of
X and the scale of data shifting.

Analysis on Principal Components

Based on the above analysis on the relation between MM-
PCA and MMDS-PCA, it is obvious that data shifting can
enlarge the feature margin. Now we analyze how the prin-
cipal components are affected. Suppose that input data are
zero-centered after preprocessing, their covariance matrix is
decomposed as S(X) = 1

N

∑
n xnx

ᵀ
n = VΩVᵀ, where

VᵀV = I , and Ω = diag[l1, · · · , lD] arranges the eigen-
values in a descending order. Recall that in binary case
we have η =

∑
n αnynxn. The covariance matrix of

MMDS data is S(T [X]) = VΩVᵀ +α0ηη
ᵀ/N , where

α0 =
∑

n α
2
n + 2. The equation proves that MMDS-PCA

equals to using SVM coefficient as one training data. De-
noting γ = Vᵀη ∈ R

D, we have η = VV ηT = Vγ, so
ηηᵀ = (ΣdγdVd)(ΣdγdV

ᵀ
d) = Σj,kγjγkVjV

ᵀ
k . Accord-

ing to the property of normal distribution, we have η ∼
N (0,

∑
n α

2
nΦ), where Φ is the covariance matrix of data

distribution. S(X) can be viewed as a sampling approxima-
tion of Φ, and (Zhang et al. 2012) proved the tail bounds on
sum of N random matrices, ∀ε ≥ 0,

Pr{‖S(X)−Φ‖2 ≥ Q(N, ζ, ε)‖Φ‖2} ≤ 2De−ε, (16)

where Q(N, ζ, ε) =
√
2εζ + 1/N + 2εζ/N and ζ =

tr(Φ)/‖Φ‖2. We denote ᾱ0 = E[
∑

n α
2
n] to represent
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taking expectation w.r.t data distribution. Suppose there is
enough amount of data, γjγk(j �= k) will approach zero,

E[γjγk] ≈ ᾱ0E[V
ᵀ
j S(X)Vk] = α0E[V

ᵀ
jVk]lk = 0,

where the last step comes from the definition of V. Now
we can approximate an eigen-decomposition by ηηᵀ =
VγγᵀVᵀ ≈

∑
d γ

2
dVdV

ᵀ
d = V diag[γ2

1 , · · · , γ2
D]Vᵀ.

Now we have

S(T [X]) ≈ VΩVᵀ + α0ηη
ᵀ � VΩ̄Vᵀ, (17)

where Ω̄ = diag[l1 + α0γ
2
1 , · · · , lD + α0γ

2
D]. Since

∀d, ‖Vd‖2 = 1, so γd = ηᵀVd = ρ(η,Vd)‖η‖, where
ρ(·, ·) is the correlation coefficient. This means that γd mea-
sures the linear correlation between the eigenvector Vd and
SVM coefficients η.

Recall that PCA chooses principal components according
to eigen-values. As data shifting affects the descending or-
der of eigenvalues of data covariance, the components which
are more correlated with η will have a higher possibility
of being selected as principal ones. Then the projection is
influenced, especially when we reduce dimension heavily.
This result concords with our intuition, because the multi-
class SVM can be viewed as a discriminative projection to
a |Y| dimensional subspace. To conclude, SVM supervises
PCA to obtain a balance between data reconstruction and
linear separability.

The calculation of covariance matrix needs O(ND2)
computation, and the eigen-decomposition step consumes
O(D3) computation, with stochastic SVM solver taking
O(N). When the data size becomes relatively large, the to-
tal complexity is approximately O(ND2). In contrast, all of
the previous methods are iterative algorithms, and the per-
iteration complexity is O(NDK4) for BMMPCA (Du et al.
2015), O(NDK) (primal form) or O(N2) (dual form) time
for SPPCA (Yu et al. 2006) and O(N2) for SEPCA (Guo
2009), which are generally slower than our method.

Experiments

We implement our data shifting phase multiclass SVM using
the stochastic minibatch Frank-Wolfe algorithm (Lacoste-
Julien et al. 2014) with a fixed maximum number of itera-
tions. For the final classification phase, we use the LibLinear
package (Fan et al. 2008) to learn multiclass SVMs. To show
the effect of data shifting operation, Figure 1 visualizes a 2
dimensional embedding of the Digits-HOG data in 4 classes,
which will be introduced later. The two figures show projec-
tions by 2-dimensional PCA and MMDS-PCA respectively.
We can see that the features extracted from MMDS data are
more separable.

Real World Datasets with PCA

We tested MMDS-PCA with eigen-decomposition solvers
on multiple real world datasets on various tasks, including
face recognition, tumor diagnosis and video retrieval. The
Yale dataset contains 165 images of 15 individuals. The
YaleB (the extended Yale Face Database B) dataset includes
38 individuals and about 64 near frontal face images. The
ORL dataset contains 10 different varying lighting and fa-
cial detail images for each of 40 distinct subjects. All the

Figure 2: 2D-embedding of the digit images processed by
(left) PCA and (right) MMDS-PCA.

Table 1: Classification Accuracy (%) on various datasets.

Yale Yale B ORL 11 tumor
PCA 55.8 12.9 51.6 67.6
LDA 37.1 15.7 28.6 28.6

SPPCA 51.6 9.8 61.7 63.0
SDR-GLM 58.8 19.0 - 63.5

SEPCA 64.4 20.5 - 88.9
MMDS-PCA 70.1 33.3 73.5 73.3

faces are manually aligned, cropped and resized to 32*32
pixels. The 11 Tumor dataset contains 174 gene samples
of 11 different class, documented as 12,522 dimensional
vectors. The TRECVID2003 dataset contains 1078 video
shots of 5 categories, documented as 165-dim HSV color
histogram, and we evenly split them to training and testing
set. The number of training samples per class is 2 for ORL,
3 for Yale, 11 for tumor, and 5 for YaleB.

We compare with a wide range of state-of-the-art super-
vised feature extractors, including SPPCA (Yu et al. 2006),
SEPCA (Guo 2009), supervised dimensionality reduction
with generalized linear models (SDR-GLM) (Rish et al.
2008), large-margin Harmonium (MMH) (Chen et al. 2012),
and infinite latent SVM (iLSVM) (Zhu, Chen, and Xing
2014); and two baseline methods—PCA and linear discrim-
inant analysis (LDA). For all models, the data are projected
into 10-dimensional space (K=10). We use 5 (or the number
of minimal category) folds cross-validation to find proper
parameters.

Table 1 and Table 2 present the accuracy of different
models on various datasets. We can see that our easily-
implemented MMDS-PCA outperforms most state-of-art
supervised models on many datasets, except for one case in
11 tumor, which is very suitable for exponential family PCA
(Guo 2009) to fit.

Generalization Ability and Parameter Sensitivity

We randomly choose 500 samples from the MNIST dataset,
and use 10,000 samples for testing. The Digits dataset is
within OpenCV. We extract 64 dimensional HOG features
(Dalal and Triggs 2005) of 5,000 digits images and evenly
split them to train/test sets. The Letters dataset (Ben, Carlos,
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Table 2: Classification Accuracy (%) on the TRECVID

EFH MMH iLSVM MMDS-PCA
TRECVID 56.5 56.6 56.3 59.74

Table 3: Recognition accuracy (%) of different dimension
reduction methods using the RFF embedding of various
datasets and their MMDS versions.

Data\Model ICA SPCA KM FA NMF
MNIST 57.8 30.3 48.1 64.9 38.3
MNIST-MMDS 63.7 48.8 61.8 74.4 47.6
Digits 62.8 63.5 63.2 70.0 28.4
Digits-MMDS 81.6 75.5 71.2 86.1 72.1
Letter 31.6 26.9 17.9 38.5 31.0
Letter-MMDS 39.7 38.2 46.3 52.8 38.2

and Daphne 2004) contains 26 kinds of Latin characters, and
we use 5,375 samples for training while the other 46,777 for
testing. For these data, we calculate their RFF embeddings
with a RBF kernel K(x,x′) = exp(−‖x − x′‖2/σ2), σ2 is
determined during experiments, and the dimensions of RFF
is set to 500 for Digits and 1,000 for the other datasets.

We test the generalization ability of MMDS using multi-
ple feature extractors, including Independent Components
Analysis (ICA), Sparse Principal Components Analysis
(SPCA) (Zou, Hastie, and Tibshirani 2006), Kmeans (KM),
Factor Analysis (FA), and Non-negative Matrix Factoriza-
tion (NMF) (Lee and Seung 2001). We kernelize them by
using RFF embeddings under the previously mentioned set-
tings. We extract 5-dim features using all of these models.
Table 3 presents the accuracy using either the original data
or the one processed by MMDS. Even these models are not
easy to develop supervised versions, our results demonstrate
that they can consistently benefit from MMDS, and most im-
provements are significant.

We tested handwritten symbols recognition tasks using
PCA, Autoencoder (AE), Kernel PCA (KPCA) (Lopez-Paz
et al. 2014), on the MNIST, Digits, and Letters datasets to
study the parameter sensitivity. We use PCA with a stan-
dard eigen-decomposition solver. We implemented the au-
toencoder, which optimizes

1

N

∑

n

‖xn − ϕ(Wᵀϕ(Wxn + b1) + b2))‖2 (18)

w.r.t. W,b1,b2, where ϕ is the sigmoid function. We use an
L-BFGS solver with a fixed maximum number of iterations,
and normalize the data to (0.1, 0.9) before sending to the au-
toencoder. We implemented KPCA using RFF embeddings
in the previous setting. Then we use the same classifier set-
ting for every model pairs that use either the original data or
the shifted data.

Figure 3 presents the performance of various extractors
under different shifting scales (i.e., σ2 in MMDS), where
the accuracy and reconstruction errors are normalized. The
tendency shows that as the shifting scale gets larger, the re-
construction error stably increases and the accuracy will first

Figure 3: Sensitivity of MM-models: X-axis, shifting scale
σ2; Red, classification accuracy; Blue, reconstruction error.
All the statistics are normalized for visualization.

increase and then decrease. Such results suggest that the dis-
criminative MMDS may reduce the fitness on the observed
data, and a suitable scale of shifting operation is helpful
for extracting discriminative features; but an arbitrarily large
shifting may not well fit the input data.

Finally, Table 4 presents the performance under differ-
ent settings of feature dimensions (K). We can see that
the improvement brought by MMDS over the original data
is substantial. The selection of discriminative components
is very important, especially under low dimensional condi-
tions, whereas the information is more compressed.

Table 4: Accuracy w.r.t changing feature dimensions (%).
In each column, the left number is the accuracy of fitting the
original data, while the right number is the accuracy of using
the MMDS data.

Data (K)\Model PCA AE KPCA
MNIST(5) 64.4 69.7 43.8 49.7 64.4 73.7
MNIST(10) 75.3 79.2 58.1 76.3 74.7 81.7
MNIST(20) 81.5 83.0 77.7 81.6 81.0 83.1

Digits(5) 58.3 79.4 73.5 79.0 70.8 83.8
Digits(10) 79.6 89.1 87.4 93.0 85.8 94.0
Digits(20) 86.8 90.2 92.7 93.6 91.9 94.3
Letters(5) 35.1 51.1 35.4 42.2 38.4 53.3
Letters(10) 53.6 62.9 50.7 58.8 53.4 65.0
Letters(20) 65.5 69.7 61.2 65.8 62.9 71.9

Conclusions

We present a simple max-margin data shifting (MMDS) op-
erator to learn discriminative features using unsupervised
extractors. MMDS can be approximately derived as the
mean of a supervised corrupting model that considers both
the standard data noise and the discriminative ability of a
potential corruption according to a pre-trained large-margin
classifier. Our experiments on various datasets show that
MMDS can help a wide family of models on learning fea-
tures that are suitable for classification tasks.
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