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Abstract

Gaussian Conditional Random Fields (GCRF) are a
type of structured regression model that incorpo-
rates multiple predictors and multiple graphs. This is
achieved by defining quadratic term feature functions in
Gaussian canonical form which makes the conditional
log-likelihood function convex and hence allows find-
ing the optimal parameters by learning from data. In this
work, the parameter space for the GCRF model is ex-
tended to facilitate joint modelling of positive and nega-
tive influences. This is achieved by restricting the model
to a single graph and formulating linear bounds on con-
vexity with respect to the models parameters. In addi-
tion, our formulation for the model using one network
allows calculating gradients much faster than alterna-
tive implementations. Lastly, we extend the model one
step farther and incorporate a bias term into our link
weight. This bias is solved as part of the convex opti-
mization. Benefits of the proposed model in terms of
improved accuracy and speed are characterized on sev-
eral synthetic graphs with 2 million links as well as on a
hospital admissions prediction task represented as a hu-
man disease-symptom similarity network correspond-
ing to more than 35 million hospitalization records in
California over 9 years.

Modelling complex phenomena through instances that are
highly structured and interdependent is a challenging task
which traditional predictive modelling techniques cannot ad-
dress efficiently. Many high impact applications have such
properties and they are usually modelled by applying graph-
ical structure learning theory. Still, state-of-the-art proba-
bilistic graphical models often do not define convex parame-
ter search space and thus, cannot guarantee global optimum
and efficient search. Structured models for regression have
been researched less than classification problems. But, sev-
eral research teams within the past 5 years have indepen-
dently proposed methods for prediction using Gaussian Con-
ditional Random Fields.

It has been shown that if the relationship among the out-
put is represented as a quadratic form, then the traditional
Continuous Conditional Random Field model has the form
of multivariate Gaussian distribution (hence the name Gaus-
sian Conditional Random Fields - GCRF). This results in a
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convex parameter search space that guarantees global opti-
mum and efficient learning and inference.

There exist two major approaches to GCRF algorithms:
network link weight optimization algorithms and hidden net-
work learning algorithms. Network link weight optimization
algorithms incorporate link weights as a feature. For exam-
ple, one could have a network weight indicating the num-
ber of times someone posts on their friend’s Facebook page.
These network weights are used to build a lens that shifts
predictions in order to improve accuracy. The algorithm ac-
tually learns a new space in which it is able to make more
accurate predictions. Optimizing the input predictions in the
new space is similar to using Generalized Least Squares, but
here we are also learning the space. This can be seen in (Ra-
dosavljevic, Vucetic, and Obradovic 2010).

The other group of algorithms, hidden network learning,
focus on directly updating the precision matrix. Instead of
incorporating link weights it learns pairwise connections
that affect the final prediction. This group of algorithms has
shown success on data where networks are known to exist
yet no network data is available. This is by its nature more
restrictive on input data and the resulting learned relation-
ships are less interpretable than relationships optimized in
link weight feature GCRF. An example of this algorithm
can be found in (Wytock and Kolter 2012). A more general
framework for hidden network learning that goes beyond the
scope of this paper is documented in (Lee and Hastie 2013).

These two different groups of algorithms are for differ-
ent purposes. For example, an growing area of biomedi-
cal research is to use biomedical literature database to con-
struct a symptom-based human disease network (Zhou et al.
2014), therefore, incorporating such disease similarity net-
work, which cannot be represented in traditional formats for
many machine learning methods, is very valuable. Hence,
the focus of this paper will be on link weight feature GCRF

The network operator in GCRF acts as a smoothing func-
tion. But sometimes over-smoothing can occur. With the ex-
tensions to the parameter space shown in this paper one can
include de-smoothing weights between targets so as to push
their values away from one another.

In this research we propose a new algorithm that intro-
duces a mathematical formulation that extends the GCRF
parameter space to include negative values Unimodal GCRF
(UmGCRF). The requirement is that we maintain positive
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definiteness of the precision matrix. We change the algo-
rithm from that proposed in (Radosavljevic, Vucetic, and
Obradovic 2010) by restricting the model to one network,
thus the name. In the presented formulation, we can write
our boundary conditions for positive definiteness as a set of
linear equations of our parameters. This is the ideal for con-
strained gradient descent and allows negative parameter val-
ues into the convex optimization space for this problem. Our
mathematical formulation also yields a dramatic speed up.
Last, we introduce a network link weight bias term as part
of the convex optimization.

Related Work

This research expands on the model of (Radosavljevic,
Vucetic, and Obradovic 2010) by allowing a broader range
of both linear combinations of unstructured predictors and
network structures. The previous method could only take a
weighted average of both unstructured predictors and link
weights. It also required that all link weights be positive.
As a result of restricting the number of graphs that we
use, we can establish exact boundaries as linear function of
the parameters. The hidden network learning algorithm that
we compare with is Sparse GCRF (SpGCRF) developed in
(Wytock and Kolter 2012). In that paper, they ensure that the
precision matrix, Q, is positive definite by a common tech-
nique of simply defining log|Q| to be infinite if Q � 0. This
seems to be a limited approach. A benefit to using input link
weights – beyond the opportunity to incorporate otherwise
overlooked information – is that the the method is faster and
has greater scalability than network learning algorithms. For
a comparison, we look at four implementations. SpGCRF
was chosen to represent network learning algorithms be-
cause they made code available for testing. Then we also
compare the time for the original proposed method, GCRF,
and a fast learning approximation method, FF-GCRF (Ris-
tovski et al. 2013). The following speed tests were done in
Matlab with a single feature per target variable.

Target Size UmGCRF FF-GCRF GCRF SpGCRF
1,000 4.7 secs 3.3 secs 41 secs 13.5 mins
5,000 43 secs 34 secs 9.2 mins 28.1 hours
10,000 3.9 mins 2.9 mins 1.76 hours 9.7 days
20,000 30.2 mins 22.4 mins 17 hours N/A
40,000 5 hours 3 hours 7.5 days N/A

100,000 21 hours 16 hours N/A N/A

Table 1: speed of different algorithms

We can see that GCRF far exceeds the speed and scal-
ability of SpGCRF. The approach presented in this paper
is nearly as fast as FF-GCRF, which is an approximation
technique developed by (Ristovski et al. 2013). The ap-
proach used to method from (Adams, Baek, and Davis 2010)
to approximate inference and differentiation. But since this
method provides approximations of optimal GCRF parame-
ters and approximate inference, it is out of the scope of the
paper.

In terms of the current research using GCRF or FF-

GCRF all the results from research on Climate (Radosavl-
jevic, Vucetic, and Obradovic 2010; 2014; Djuric et al.
2015), Energy forecasting (Guo 2013), Healthcare (Gligori-
jevic, Stojanovic, and Obradovic 2015; Polychronopoulou
and Obradovic 2014) are based on using a single network.
Since this is the only restriction on our new implementation,
it is safe to assert that our restriction to one network is not a
substantial loss.

For the application presented at the end of this paper, we
incorporate a disease similarity network developed in (Zhou
et al. 2014). The authors used biomedical literature database
to construct a symptom-based human disease network. This
is a feature space that cannot be represented in traditional
formats for machine learning. And, this type of information
is a growing area of biomedical research.

Methods

In regression on graphs, a vector of attributes x and a real-
valued response variable y are observed at previous time
steps at nodes of a graph while the objective is to predict
future value of y at all nodes given features x. The GCRF is
a discriminative model for regression on an attributed evolv-
ing graph that models the conditional distribution P (y|x)
over N nodes for outputs y given the corresponding inputs
x:

P (y|x) = 1

Z(x, α, β)
exp

( N∑
i=1

A(α, yi,x)+
∑
j∼i

I(β, yi, yj)
)

where α and β are parameters of the association A and the
interaction I potentials, respectively, and the normalization
term Z(x, α, β) is an integral over y of the term in the ex-
ponent. The association potential function is defined as (Ra-
dosavljevic, Vucetic, and Obradovic 2010):

A(α, yi,x) = −
N∑
i=1

K∑
k=1

αk(yi −Rk(x))
2

where Rk(x) represents any function that maps x → yi for
each node in the graph. We refer to this function as unstruc-
tured predictor (any regression model) that gives indepen-
dent predictions. The influence of each unstructured predic-
tor Rk on the final predicted value is modelled by GCRF
by optimizing parameters αk, where K is the number of un-
structured predictors. The interaction potential function is
defined as:

I(β, yi, yj) = −
L∑

l=1

∑
i∼j

βlS
l
ij(yi − yj)

2

The similarity between two nodes i and j is defined as Sl
ij .

The GCRF model ensures that the prediction of two similar
nodes are similar. This influence of the similarity (and hence
of the structure of the graph) is modelled through the inter-
action potential and weighted by the parameter βl, where L
is the number of similarity functions (multi-modal graph).
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The conditional probability model can be rewritten as:

P (y|x) = 1

Z(x, α, β)
exp

(
−

N∑
i=1

K∑
k=1

αk(yi −Rk(x))
2

−
L∑

l=1

∑
i∼j

βlS
l
ij(yi − yj)

2
)

GCRF canonical form. Modelling association and interac-
tion potentials as quadratic functions of y enables GCRF to
represent CRFs as multivariate Gaussian distribution (Ra-
dosavljevic, Vucetic, and Obradovic 2010):

P (y|x) = 1

(2π)
N
2 |Σ| 12 exp

(
−1

2
(y − μ)TQ(y − μ)

)

where Σ−1(:= 2Q) is the inverse covariance matrix:

Q =

⎧⎪⎪⎨
⎪⎪⎩

∑
k

αk +
∑
h

∑
l

βlS
l
ih if i = j

−
∑
l

βlS
l
ij if i �= j

Inference. The inference task argmaxyP (y|x) is straight-
forward. Since GCRF is represented as multivariate Gaus-
sian distribution, the maximum posterior estimate of y is ob-
tained by computing the expected value μ = Q−1b, where
bi = 2

∑
k αkRk(x).

Learning. The learning objective is to optimize the parame-
ters α and β by maximizing the conditional log–likelihood

argmax
α,β

∑
y

logP (y|x)

To ensure the feasibility of the GCRF model, the Q matrix
must be positive definite. All previous implementations set
constraints on the parameters so that α > 0 and β > 0. But,
this unnecessarily limits the search space and makes GCRF
unable to incorporate negative links, nor to identify negative
influence of unstructured predictors. In the next section, we
will expand the search space of the parameters to relax these
assumptions.
Contribution. The first observation is that the Q can be
written more concisely as Q =

∑
k αkI +

∑
j βjLj . Here

Lj is the Laplacian of the matrix Sj . For our model we fo-
cus on the case where there is only one similarity network,
so Q =

∑
k αkI + βL. Next, we examine the effect of di-

agonalizing Q. We know L = UDUT where UUT = I and
D is a diagonal matrix because L is a symmetric real valued
matrix.

Q =
∑

k αkI + βL =
∑

k αkI + βUDUT

= U( (
∑

k αk) · UT IU + βD)UT

= U(
∑

k αkI + βD)UT

Then, Q = UΛUT where Λ is diagonal matrix, with diago-
nal elements:

λi =
∑
k

αk + βdi ∀i (1)

We will provide exact bounds for convexity for the uni-
modal case. We establish that our parameter search space is
convex by showing that covariance matrix is Positive Defi-
nite subject to our boundary conditions.

Lemma [uni-modal]:

Q � 0 ⇔
{∑

k αk + βd0 > 0∑
k αk + βdn−1 > 0

Start with a theorem established in (Ayres 1967): Given a
real symmetric matrix, Q, ∃ U such that Q = UΛUT and
Q � 0 ⇔ λi > 0 ∀i where λi are the diagonal entries in Λ.
Next, substitute λi with a function in terms of our parame-
ters: λi =

∑
k αk + βdi (1).

Since D is a diagonalized matrix we know that di are in as-
cending order, d0 being lowest and dn−1 being highest. As
a result,

βdn−1 ≥ ... ≥ βd0if β ≥ 0
βdn−1 ≤ ... ≤ βd0if β ≤ 0

Since
∑

k αk effects each diagonal equally, ∀β, each diag-
onal entry in Λ is in between λn−1 and λ0. Thus, only the
outermost constraints are required to ensure positive defi-
niteness. �

With linear boundary conditions, the optimization can be
done with an interior point bounded gradient descent. Below
are graphical representations of the new parameter search
space. Previously, all searches were restricted to the first
quadrant. In our case, if d0 = 0 then we search the entire
first quadrant and additional space.

0

Figure 1: Parameter Space for β (left) and α (right).

In order to demonstrate the additional modelling capacity
of the new parameter search space, we walk through a sim-
ple example case. In this case there are only two targets. The
right figure in Figure 2 shows the smoothing behavior of tra-
ditional GCRF pulling updated predictions away from their
true value. The left figure shows the behavior possible as a
result of negative links or negative betas. We can now push
values away from each other.

P
re

di
ct

io
n

Ground Truth

P
re

di
ct

io
n

Ground Truth

Figure 2: Similarity Effect

However, the similarity might have negative influence on
the GCRF prediction. Figure 2 (right panel) represents the
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situation when positive link alienate predictions from the
ground truth (blue lines that are gravitating toward mean of
predictions). While, on the left panel, the negative weights
(βSij ≤ 0) would push predictions from each other and thus
towards true solution.
Speed. Previous approaches required matrix inversion in or-
der to calculate the first order derivatives. This slowed down
gradient descent at each iteration by O(n3). Additionally,
the previous methods inferred μ at every iteration as input to
calculate the first order derivatives, a cost of O(n2).
∂l
∂αi

= −1
2 (yT y + 2RT

i (μ − y) + μTμ) + 1
2Tr(Q

−1)
∂l
∂β = −1

2 (yTLy + μTLμ) + 1
2Tr(Q

−1L)

Only the trace of the inverted matrix is needed, so solv-
ing for the eigenvalues directly makes the same calculation
O(n). We side-stepped the need to infer μ for our first or-
der derivatives. So after we eigendecompose the Laplacian
of the Similarity matrix before gradient descent, each iter-
ation only takes O(n) operations. In order to demonstrate
this, we replace operations that can occur outside gradient
descent with x symbols and use × to indicate element-wise
multiplication. Also note the step, C = UTR that can occur
outside the gradient update procedure.

∂l
∂α = −1

2 (x1+2(Ci×λ−1)Cα+αTCTΛ−2Cα)−1Tλ−1)
∂l
∂β = −1

2 (x2 − αTCT ((d× λ−2)1T × C)α) + 1
2d

Tλ−1

Additional Rank One Matrix. In order to expand the power
and scope of our model we will include an additional rank
one similarity network that will serve as a bias term for net-
work weights. This will help us when we want to incorpo-
rate networks with non-negative weights whether it’s a re-
sult of other people’s research or using similarities such as
Gaussian Kernels or Cosine Similarity. By introducing an
intercept Matrix J = �1�1T , we can shift origin for simi-
larity weights so that they are centered around any chosen
point. This could guide researchers’ understanding of net-
work weights in the future. We note here that the optimiza-
tion for this shift is convex. This new method maintains the
speed established above and includes more modelling ca-
pacity. Here, we note that the Laplacian of 1

nJ is I − 1
nJ .

Consequently, Q =
∑

k αkI + βL+ çI − ç 1
nJ .

Laplacian matrices have been studied in depth. In (Mer-
ris 1998), it was proven that all Laplacian matrices have an
eigenvector of v = �1/|�1| and an associated λ = 0. In (Ding
and Zhou 2007), it was shown that the perturbation of a ma-
trix by a rank one matrix that has a basis in the original ma-
trix only contributes to the the eigenvalue associated with
that basis. Since we know that v = �1/|�1| ∈ U this implies
UT 1

nJU = 1
n (U

T�1)(UT�1)T = Dj , a matrix of zeros with
a one on the diagonal entry associated with col(U) = v.
With this established, we can diagonalize Q.

Q =
∑

k αkI + βL+ çI − ç 1
nJ

=
∑

k αkI + βUDUT + çI − ç 1
nJ

= U((ç +
∑

k αk) · UT IU + βD − ç
nU

TJU)UT

= U(
∑

k αkI + çI + βD − çDJ)U
T .

Since we now have this bias term, ç/β, we can shift all
weights into the non-negative space and still map the origi-
nal values in addition to a broader range of values.

I(β, yi, yj , ç) = −
L∑

l=1

∑
i∼j

(βlS
l
ij + ç)(yi − yj)

2

Having strictly non-negative weights makes notation for
the following notation simpler but it is not necessary that
weights be non-negative. For Laplacian matrices with non-
negative similarity weights, we know that�1/|�1| is associated
with the lowest eigenvalue, λ0. Then, Q = UΛU t where Λ
is diagonal matrix, with diagonal elements:

{
λi =

∑
k αk + ç + βdi if i �= 0

λ0 =
∑

k αk + βd0
(2)

Theorem [uni-modal plus rank one]:

Q � 0 ⇔
⎧⎨
⎩
∑

k αk + βd0 > 0∑
k αk + ç + βd1 > 0∑
k αk + ç + βdn−1 > 0

We use the theorem established in (Ayres 1967) to state Q �
0 ⇔ λi > 0∀i where λi. Substitute lambda for a function
with respect to the models parameters (eq.2). Since D is a
diagonalized matrix we know that di are in ascending order,
d0 being lowest and dn−1 being highest. As a result,

βdn−1 ≥ ... ≥ βd0if β ≥ 0
βdn−1 ≤ ... ≤ βd0if β ≤ 0

Thus λn−1 through λ1 are greater than zero so long as:∑
k αk + ç + βd1 > 0∑

k αk + ç + βdn−1 > 0

This leaves us with a final constraint
∑

k αk + βd0 > 0 and
we have established bounds on positive definiteness for Q.
�

These new bounds remain linear with respect to our pa-
rameters and the first order derivative remain unchanged for
α and β. The derivative with respect to ç is also linear cost
so we did not slow down our gradient calculations. When
experimenting with UmGCRF, we found that a regulariza-
tion component was helpful to reduce testing error. So in the
final version, we included a basic weight decay for ç in the
likelihood function.

Experimental evaluation

We started the evaluation with myriad synthetic datasets.
First, examine a case where we expect UmGCRF and GCRF
to perform similarly (α, β > 0). Next, we look at cases
where α > 0 & β < 0 and α1 > 0 & α2 < 0. The last
synthetic experiment is a series of trials used to compare
GCRF and UmGCRF performance depending on the num-
ber of negative link weights in the network. Last, we per-
formed a comparison of methods on a healthcare task aimed
at predicting the monthly number of admissions by disease
for hospitals in California.
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Evaluation on Synthetic Graphs

In the following three experiments, we generated a vector
of length 2000 which is then used as an unstructured pre-
diction. We generated a positive valued matrix which rep-
resents a uni-model graph with 2000 nodes and 2 million
edges. Then, choosing appropriate values for α and β we
generated our target vector using the GCRF model. Models
were compared in terms of conditional log-likelihood (LL)
and R2.

The synthetic data for this experiment was generated with
parameters α̂ = 0.792 and β̂ = 0.61. The results of regres-
sion on such a graph are shown in Table 2. In this experiment
UmGCRF and GCRF models were nearly identical and al-
most perfect accuracy.

Table 2: Positive influence. LL = conditional log-likelihood.
Model LL α β R2

GCRF -97.346 0.791 0.611 0.999
UmGCRF -97.350 0.793 0.609 0.999

The next synthetic dataset was generated with parameters
α̂ = 1 and β̂ = −1

2 . The results of regression on that graph
by UmGCRF vs. GCRF shown in Table 3 provide evidence
that UmGCRF significantly outperforms GCRF.

Table 3: Negative influence of links.
Model LL α β R2

GCRF -5.83e+05 0.820 0.573 0.31
UmGCRF -1.11e+03 0.894 -0.447 0.56

Here, the synthetic data was generated using two unstruc-
tured predictors with the optimal parameters α̂1 =

√
3
2 and

α̂2 = −1
2 . GCRF could not find the optimal negative pa-

rameter α2 and instead it found a positive value (which is
sub-optimal) that affects its accuracy as indicated by a very
low R2.

Table 4: Influence of unstructured predictor.
Model LL α1 α2 R2

GCRF -54.21e+03 0.721 0.693 0.051
UmGCRF -01.37e+03 0.866 -0.500 0.78

That scenario is illustrated at Figure 3. In the left panel,
the expanded search for α1 and α2 is projected onto the unit
(half) circle. In the right panel, we plot the angle between
the two parameters (x-axis) and the corresponding normal-
ized negative log-likelihood NLL (y-axis). The white region
at the right panel corresponds to the first quadrant at the left
panel where both parameters α1 and α2 are positive and this
is the space where GCRF looks for the optimal parameter.
Clearly GCRF can not find the optimal parameter (red verti-
cal line at the yellow region in the right panel) because they
are out of its parameter space, while UmGCRF searches for

the optimal parameters in all 3 regions (green, yellow, and
white) which can be found.

0

Figure 3: Optimal parameters outside the original search
space

Positive/Negative Influence Links The reason that
UmGCRF significantly outperformed GCRF in Table 3 is
that the links (similarity) have negative influence on the
predicted value which cannot be captured by GCRF, but
were captured by UmGCRF model. In real-life applications,
it is not necessary the case that all links have either positive
(Table 2) or negative (Table 3) influence on the prediction.
In many cases (as depicted in many real datasets including
the one described in the next section) some of the links
might have positive influence and some other links might
have negative influence. To evaluate benefit of UmGCRF
in this scenario we generated 7 synthetic graphs with
0%, 16%, 35%, 50%, 65%, 84%, and 100% of positive inks,
respectively. Here, the graph that corresponds to 0% is
basically the experiment shown in Table 3 while 100%
corresponds to the experiments summarized in Table 2. The
regression results by UmGCRF on these 7 datasets for these
experiments are shown in Figure 5.
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Figure 4: Ratio of MSE of UmGCRF to GCRF for different
datasets with different percentages of positive links.

The x-axis in Figure 4 represents the percentage of pos-
itive links the graph while the y-axis represents the ratio
of Mean Square Error (MSE) of UmGCRF to GCRF. So,
if UmGCRF significantly outperforms GCRF then the ratio
tends to zero, while the ratio tends to one when both models
have equally performance.

Prediction of Hospital Admissions

We evaluated UmGCRF on the problem of predicting
monthly hospital admissions for 189 classes of diseases in
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California from HCUP data (HCUP 2011). The target is to
predict the number of admission for each disease for the next
month.

For each of 35,844,800 inpatient discharge records col-
lected over 9 years in the California HCUP database there
are up to 253 diagnosis codes in CSS coding schema. In this
study, we constructed monthly disease graphs such that each
node represents one disease. But 22 diseases had incomplete
information over the time period analysed, resulting in 231
nodes. In this experiment we use the disease-symptom simi-
larity network built in (Zhou et al. 2014). Since this network
was build using MeSH terminology, we built a translation ta-
ble by hand for CSS codes to the specific MeSH terminology
used in (Zhou et al. 2014). That table is publicly available
at http://astro.temple.edu/∼tud25892. The matching is not
one-to-one. Sometimes we would map several MeSH terms
to a single CSS code. In these cases, we would take the av-
erage of similarities. There were also 52 CSS codes with no
MeSH term in the network used. This reduced the number
diseases in our analysis to 189.

Assume that xt,i is the number of patients diagnosed with
disease i during the month t. For each node i we computed
the rate of admission change yt,i = (xt,i − xt−1,i)/xt−1,i.
We used 108 monthly graphs (representing years 2003-
2011). After converting this to a rate of change, we have
107 time points. We train on the first 80 months and test on
the remaining 27. We slide a window of length w = 12. We
trained two unstructured predictors: Linear regression (LR)
and a Neural Network (NN). They were used as input for
both GCRF and UmGCRF. NN had 26 hidden nodes.

The algorithm was tested 100 times because the NN is
non-convex and yields different results each time. That has
an effect of altering the output of GCRF and UmGCRF. Av-
erages are taken to report results.

Algorithm Testing RMSE
LR 0.1714
NN 0.1661

GCRF 0.1559
UmGCRF 0.1558

Although the improvement in accuracy is marginal,
UmGCRF outperforms GCRF, achieving a lower testing er-
ror for greater than 80% of trials in an experiment of a thou-
sand trials. This increase in accuracy is due to an improved
network model. The network input was disease similarity on
a zero to one scale. Upon inspection of parameters, we see
that our learned intercept term tended to be around -.05. That
shifts the similarity scale from [0, 1] to [−0.05, 0.95].

Of the 100 trials used for the table above, UmGCRF out-
performed GCRF 89 times on training data and 71 times on
testing Data. UmGCRF also outperformed NN on training
Data and on testing Data 95 times as we can see in Figure 5.
UmGCRF had 17% and 12% improvement in test accuracy
over input baselines.

This small improvement in accuracy over GCRF repre-
sents improving predictions by 57 patients per month. Closer
inspection of the results showed that UmGCRF had better

Figure 5: Scatter Plot of MSE for NN and UmGCRF, line
represents equal

performance on predicting 180 of 189 diseases. In Table
we show the error reduction and true patient count for three
diseases on which we identified the largest difference in ac-
curacy measured in patients.

Disease Accuracy Improvement
Measured in # of

Patients per Month
Spinal Cord Diseases 11
Heart Failure 8
Cerebrovascular Disorders 6

Table 5: Top 3 performance differences between UmGCRF
and GCRF.

Conclusion

GCRF is a powerful tool that captures the graph structure
in order to improve regression accuracy. However, GCRF is
restricted to positive weights in order to preserve the posi-
tive semi-definiteness of the precision matrix. This imposes
constraints in the parameter space to ensure the feasibility of
the model. In this paper, we expanded the parameter search
space to allow for negative links and negative influence of
the unstructured predictors while maintaining the positive
semi-definiteness of the precision matrix and improve com-
putational efficiency. Our results provide evidence that the
new model outperforms the original GCRF and unstructured
predictors on both synthetic and real world data.
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