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Abstract

We present a model-based approach to solving Markov de-
cision processes (MDPs) in which the system dynamics are
learned using conditional mean embeddings (CMEs). This
class of methods comes with strong performance guaran-
tees, and enables planning to be performed in an induced fi-
nite (pseudo-)MDP, which approximates the MDP, but can be
solved exactly using dynamic programming. Two drawbacks
of existing methods exist: firstly, the size of the induced fi-
nite (pseudo-)MDP scales quadratically with the amount of
data used to learn the model, costing much memory and time
when planning with the learned model; secondly, learning
the CME itself using powerful kernel least-squares is costly
– a second computational bottleneck. We present an algo-
rithm which maintains a rich kernelized CME model class,
but solves both problems: firstly we demonstrate that the loss
function for the CME model suggests a principled approach
to compressing the induced (pseudo-)MDP, leading to faster
planning, while maintaining guarantees; secondly we propose
to learn the CME model itself using fast sparse-greedy kernel
regression well-suited to the RL context. We demonstrate su-
perior performance to existing methods in this class of model-
based approaches on a range of MDPs.

1 Introduction

Several methods have been proposed for model-based re-
inforcement learning (RL) which, due to the form of the
model, induce a finite (pseudo-)MDP1 which approximates
the MDP, such that solving the induced (pseudo-)MDP de-
livers a good policy for the true MDP (Ormoneit and Sen
2002; Grünewälder et al. 2012b; Yao et al. 2014). In these
methods the learned ‘model’ can be viewed as a “conditional
mean embedding” (CME) of the MDP transition dynamics.
We review this family of methods in Section 3.

In general the approach has the following potentially use-
ful properties: a) The induced finite approximate Bellman
optimality equation can be solved exactly in finite time,
avoiding instability associated with approximate dynamic
programming (e.g. Bertsekas (2011)). As a result, planning
is guaranteed to succeed. b) Guarantees on the value of the
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1Pseudo-MDPs relax the potential transition functions from the
set of probability measures to signed measures. See Section 3.1.

learned policy exist: e.g. consistency in the large data limit
for the algorithm of Ormoneit and Sen (2002) under mild
smoothness assumptions or bounds on the value of the pol-
icy learned in terms of the error of the CME (Grünewälder et
al. 2012b; Yao et al. 2014). c) By reducing model learning to
a supervised learning problem, to some extent the problem
of a-priori defining a good low-dimensional representation
architecture for value functions is avoided. d) The approach
can be data-efficient since state-of-the-art non-parametric
approaches can be used to approximate the CME from few
data points.

One drawback is the fact that the size of the induced fi-
nite (pseudo-)MDP scales quadratically with the amount of
data used to learn the model, significantly slowing down the
planning step and straining the algorithm’s memory require-
ments as more data is collected. Further, Grünewälder et al.
(2012b) employ non-parametric methods to learn the CME
which are data efficient but computationally expensive. It
is therefore of interest to investigate methods for learning
CMEs in RL which retain these benefits but enable effi-
cient planning and which can be learned efficiently even
for problems that require huge amounts of data to learn a
good model. We present a method of learning a compressed
CME which induces a compressed finite pseudo-MDP for
efficient planning, decoupling the amount of data collected
and the size of the induced pseudo-MDP. The compression
guarantees the existence of compressed CMEs maintain-
ing good performance bounds. We optimize the CME non-
parametrically but efficiently, using kernel matching pursuit.

2 Preliminaries

2.1 Reinforcement Learning Background

We recall basic concepts associated with reinforcement
learning (RL). In RL an agent acts in an environment by
sequentially choosing actions over a sequence of time steps,
in order to maximize a cumulative reward. We model this
as a Markov decision process (MDP) which is defined us-
ing a state space S, an action space A, an initial state dis-
tribution P1 over S, an (immediate) reward function r :
S × A → [0, 1], and a stationary Markov transition ker-
nel (P (s′|s, a))(s,a,s′)∈S×A×S These, together with a (sta-
tionary, stochastic, Markov) policy π : S → P(A), a
map from the state space to the set of distributions over
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the action space, gives rise to a controlled Markov chain
ξ = (S1, A1, S2, A2, . . . ) where S1 ∼ P1, At ∼ π(St)
and St+1 ∼ P (·|St, At), i.e., P determines the stochastic
dynamics of the controlled process. An agent that interacts
with an MDP observes (some function of) the states and se-
lects actions sequentially with the goal to accumulate reward
comparable to what could be obtained by a policy π∗ which
maximizes the expected return (expected total cumulative
discounted reward), J(π) := E[

∑∞
t=1 γ

t−1r(St, At);π]
where, E[·;π] denotes the expectation with respect to
P1, P and π. We recall the value function V π(s) :=
E[
∑∞

t=1 γ
t−1r(St, At)|S1 = s;π] and action-value func-

tion Qπ(s, a) := r(s, a) + γES′∼P (·|s,a)[V π(S′)] (gener-
ally, we will denote the successor state of s by s′). The op-
timal value function is defined by V ∗(s) = supπ∈Π V π(s).
For a given action-value function Q : S × A → R we de-
fine the (deterministic) greedy policy w.r.t. Q by π(s) :=
argmaxa∈A Q(s, a) and denote π = greedy(Q) (ties bro-
ken arbitrarily). Obtaining V π for a given π is known as
value estimation. Any V π satisfies the Bellman equation,

V π(s) = EA∼π(s)[r(s,A) + γES′∼P (·|s,A)[V
π(S′)]], (1)

and the map Tπ : V → V , over the set V of real-valued
functions on S, defined by (TπV )(s) := EA∼π(s)[r(s,A)+
γES′∼P (·|s,A)[V (S′)]] is known as the Bellman operator for
π. For finite state spaces an optimal policy can be obtained
using dynamic programming methods such as value itera-
tion (Bellman 1957) and policy iteration (Howard 1960). In
policy iteration V π is obtained by solving (1) for a given de-
terministic policy π : S → A followed by taking the greedy
policy with respect to V π and iterating. In MDPs with large
or continuous state spaces, value functions are typically rep-
resented in some approximation architecture, e.g., as a linear
function in some feature space, V π(s) ≈ 〈vπ, φ(s)〉F =:

V̂ π(s) where φ : S → F is a feature map, and F a Hilbert
space. Choosing a low-dimensional feature map φ(·) a-priori
can be a problem since it is difficult to balance powerful rep-
resentation ability and parsimoniousness. Further, in the ap-
proximate case value estimation entails solving

〈wπ, φ(s)〉F ≈ r(s, π(s))+γES′∼P (·|s,π(s))[〈vπ, φ(S′)〉F ],
which must be solved approximately (using, for example,
LSTD (Bradtke and Barto 1996) or minimizing the Bellman
residual (Baird 1995)) since in general no solution in vπ can
be found with equality for a given feature map φ(·), which
can lead to instabilities (Bertsekas 2012).

Model-based reinforcement learning is an approach to RL
in which data is used to estimate the dynamics and/or reward
function followed by solving the resulting estimated MDP.
This approach can be data efficient since the planning stage
can be performed offline, and does not require interaction
with the system. In this work we will present a model-based
policy iteration algorithm with a particular form of the tran-
sition model. We suppose that the mean reward function r is
known. Trivially, any estimate for the mean reward function
can be substituted into our algorithm.

Related Work The approaches most similar to ours are
by Ormoneit and Sen (2002), Grünewälder et al. (2012b)

and Yao et al. (2014) and we defer a detailed discussion to
Section 3.2. Related dynamics models which estimate ex-
pected successor feature maps using regression are com-
mon in approximate dynamic programming (Parr et al. 2008;
Sutton et al. 2008). The key difference is that we will use
the model to solve an MDP by deriving an induced finite
pseudo-MDP and solving it exactly. Further, we separate the
dynamics learning from any particular policy. A similar idea
was explored recently by van Hoof, Peters, and Neumann
(2015) in the context of a direct policy search algorithm.

3 Conditional Mean Embeddings for RL

The representation of the model that we study in this
work is motivated by dynamic programming algorithms.
In policy iteration the model is required to solve the
Bellman expectation equation (1), and so it is suffi-
cient to compute the conditional expectation of value
functions, ES′∼P (·|s,a)[V (S′)]. Recalling the discussion in
Section 2.1, when V (s) = 〈v, φ(s)〉F , we have that
ES′∼P (·|s,a)[V (S′)] = 〈ES′∼P (·|s,a)[φ(S′)], v〉F and hence
it suffices to learn the function μ : S ×A → F such that

μ(s, a) = ES′∼P (·|s,a)[φ(S′)]. (2)

In this work our “transition model” is an estimate of μ(·),
and for any estimate μ̂(·) we write,

Êμ̂(V, (s, a)) = 〈μ̂(s, a), v〉F ≈ ES′∼P (·|s,a)[V (S′)] , (3)

where we used the (so-far implicit) convention that V (s) =

〈v, φ(s)〉F . Note that Êμ̂ may not correspond to any condi-
tional probability measure on S. The loss

loss(μ̂) := E(s,a)∼D,s′∼P (·|s,a)[||μ̂(s, a)− φ(s′)||2F ],
where D is some data distribution over S × A, serves
as a natural objective for the problem of learning
μ(·) (Grünewälder et al. 2012a). Given data2 D =
{(si, ai, s′i)}ni=1, where s′i ∼ P (·|si, ai) the empirical loss
is therefore,

l̂oss(μ̂) :=
1

n

n∑
i=1

||μ̂(si, ai)− φ(s′i)||2F . (4)

The function μ(·) defined in (2) is known as the conditional
mean embedding (CME) of P in F ; methods to learn CMEs
have been provided by Song, Fukumizu, and Gretton (2013)
and Grünewälder et al. (2012a).

3.1 Key Properties of the CME Approach

The Induced Finite (Pseudo-)MDP As we will see in
Section 3.2, several approaches to learn the CME (2)
from data result in a solution of the form μ̂(s, a) =∑n

i=1 αi(s, a)φ(s
′
i). This means that, from (3),

Êμ̂(V, (s, a)) = 〈μ̂(s, a), v〉F =

n∑
i=1

αi(s, a)V (s′i), (5)

2We will use the (sloppy) notation s′i ∈ D to indicate the suc-
cessor states in D in the sense that s′i ∈ D ⇔ ∃(si, ai, s

′
i) ∈ D,

and similarly for the actions ai, and predecessor states si.
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i.e., our estimates of conditional expectation can be com-
puted by measuring V only on the sample points {s′i}ni=1. In
fact αi(s, a) can be viewed as the “probability”3 of transi-
tioning to state s′i from state-action (s, a) under the learned
model (and the probability of transitioning to states beyond
the sample is zero). Collect (αi(s, a))

n
i=1 into the vector

α(s, a) ∈ R
n. If, further,

||α(s′i, a)||1 ≤ 1 (6)
for all successor states s′i ∈ D and a ∈ A then the approxi-
mation T̂π

μ̂ :V→V of the Bellman operator Tπ defined by

(T̂π
μ̂ V )(s) := EA∼π(s)[r(s,A) + γÊμ̂(V, (s,A))]

= EA∼π(s)[r(s,A) + γ

n∑
i=1

αi(s,A)V (s′i)] (7)

is a contraction on the sample and so iterated “backups”
V ← T̂π

μ̂ V will converge to a fixed point V̂ π
μ̂ such that

V̂ π
μ̂ = T̂π

μ̂ V̂
π
μ̂ . The solution to the fixed point equation

V = T̂π
μ̂ V (8)

can be determined exactly by solving a linear system in n
variables by matrix inversion (or approximately by iterat-
ing backups): i.e. to perform this version of policy itera-
tion the value function only needs to be maintained at the
successor sample points s′i ∈ D, even if S is continuous.
This should be contrasted to the typical situation in approxi-
mate dynamic programming, in which the Bellman equation
cannot be solved exactly in general, and backups followed
by projection can diverge. For the same reason the greedy
policy can be executed anywhere on S using knowledge of
V̂ π
μ̂ (·) only at the sample points s′i ∈ D since we can con-

struct the corresponding action-value function at any state-
action, via

Q̂π
μ̂(s, a) = r(s, a) + γ

n∑
i=1

αi(s, a)V̂
π
μ̂ (s′i). (9)

We refer to a CME such that
∑

j |αj(s, a)| ≤ 1 for all
(s, a) ∈ S × A a proper CME. When αj(s

′
i, a) ≥ 0 and∑

k αk(s
′
i, a) = 1 for all i, j, T̂π

μ̂ is the Bellman opera-
tor for an MDP defined on the sample {s′i}ni=1, whose dy-
namics are defined by P (s′j |s′i, a) = αj(s

′
i, a). Otherwise

αj(s
′
i, a) does not define an MDP, hence we refer to the in-

duced pseudo-MDP in general. A theory of pseudo-MDPs,
as a method of MDP abstractions, has been developed in Yao
et al. (2014). A few important results include the following:
The condition that makes CMEs proper allows one to define
value functions for policies the usual fashion (with expecta-
tion w.r.t. signed measures). The value functions satisfy the
analog Bellman equations. If one defines the optimal value
function as the fixed-point of the analogue Bellman optimal-
ity equation then this optimal value function can be found by
value-iteration. One can also show that value-iteration can
be replaced by either linear programming or policy iteration
under, e.g., the additional condition that αj is nonnegative
valued.

3The αi(s, a) are not necessarily positive or normalized.

Policy Iteration using CMEs These observations moti-
vate a generic model-based policy iteration algorithm for
solving MDPs using CMEs: Collect data to learn an approx-
imate proper CME (2) of the transition dynamics; solve the
approximate Bellman equation (7) on the samples exactly;
Construct the approximation (9) and take the greedy policy
greedy(Q̂π

μ̂); iterate if necessary. For clarity this is outlined
in pseudocode in Algorithm 1.

Algorithm 1 Generic model-based policy iteration with
CMEs

Input: MDP M = (S,A, P1, P,R) to interact with;
known mean reward function r, known start-state distri-
bution P1.
Initialize: Q0 = r, D0 = ∅, P̂ 0, π1 = greedy(Q0)
Parameters: nnew, J
for k = 1, 2, ... do

Data acquisition: Collect nnew data points Dnew (e.g.
from the policy πk or an exploratory policy). Aggregate
data: Dk = Dk−1 ∪ Dnew.
Update dynamics model: Learn the CME μ̂(·) using
the data Dk.
for j = 1, 2, ..., J do

Policy evaluation: Form estimate V̂j of V πk

by solving the approximate Bellman Equation
V = T̂π

μ̂ V (8). Define Q̂j(s, a) = r(s, a) +

γ
∑n

j=1 αj(s, a)V̂j(s
′
j).

Policy improvement: πk ← greedy(Q̂j).
end for
πk+1 ← πk.

end for

Modeling Value Functions Although we assume value
functions can be well-approximated in F , we never need
to model them in F , i.e. find a weight vector v such that
〈v, φ(s)〉F ≈ V (s). We will see that it is not even necessary
to construct φ(s) for any s, knowledge of the kernel function
L(s, s′) = 〈φ(s), φ(s′)〉 is sufficient. Thus the approxima-
tion space F for V can be a rich function class.

Performance Guarantees It is possible to derive bounds
on the value of the learned policy in value iteration in terms
of the quality of the learned model and how well V ∗ can be
modeled in F . For example we have the following theorem:

Theorem 3.1. (Grünewälder et al. (2012b), Theorem 3.2)
Let V̂k be the kth function obtained after k iterations of
value iteration using a proper CME μ̂, ε = sups,a ||μ(s, a)−
μ̂(s, a)||F , α = ‖V̂1 − V̂0‖∞, and let πk = greedy(V̂k) be
the resulting greedy policy. Then, for any Ṽ ∗ ∈ F ,

||V πk−V ∗||∞≤ 2γ

1−γ2

(
γkα+2||V ∗−Ṽ ∗||∞+ε||Ṽ ∗||F

)
.

Theorem 3.1 applies to any proper estimate of the CME,
independently of how it is learned.
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3.2 Review of Current Approaches

We now review the current approaches to learning the CME
in model-based reinforcement learning algorithms which re-
sult in solving finite MDPs.

Kernel-Based Reinforcement Learning The idea of us-
ing an induced finite MDP from a model estimate was, to
our knowledge, introduced in the Kernel-Based Reinforce-
ment Learning algorithm (KBRL) of Ormoneit and Sen
(2002) who derive an approximate finite Bellman equation
induced by a model and solve it.4 If we approximate the
CME (2) with μ̂KS(s, a) =

∑n
i=1 α

KS
i (s, a)φ(s′i) using

kernel smoothing, the induced finite transition dynamics are

αKS
i (s, a) :=

K((s, a), (si, ai))∑n
j=1 K((s, a), (sj , aj))

(10)

where K is a smoothing kernel, and condition (6) holds.
The KBRL method uses a similar model, though there no
smoothing is performed over actions (in fact the method al-
lows for a different kernel per action). The KBRL method
is shown to be consistent: under smoothness conditions, the
learned value function will converge to the optimal value
function with infinite i.i.d. data.

One drawback is that the size of the state space of the
induced MDP equals |D| = n and planning via a solving
the approximate Bellman equation (7) scales poorly with the
data. Versions of KBRL with efficient planning have been
proposed using stochastic factorization of the transition ma-
trix of the induced finite MDP (da Motta Salles Barreto, Pre-
cup, and Pineau 2011) or a cover tree quantization of the
state space (Kveton and Theocharous 2012).

Modeling Transition Dynamics with Kernel Least
Squares CMEs Grünewälder et al. (2012b) suggest a reg-
ularized least squares approach to learning the CME (2) ap-
plying methods from the literature on learning CMEs (Song,
Fukumizu, and Gretton 2013; Grünewälder et al. 2012a). In
general, a normed hypothesis class H ⊂ FS×A is chosen
and the empirical loss (4) plus a regularization term is mini-
mized,

μ̂RLS :=argmin
μ∈H

1

n

n∑
i=1

||μ(si, ai)−φ(s′i)||2F+λ||μ||2H. (11)

When H = HK is a RKHS (of F-valued functions) with a
kernel K on S × A the solution to (11) is μ̂KRLS(s, a) =∑n

j=1 α
KRLS
j (s, a)φ(s′j) where

αKRLS
j (s, a) =

n∑
i=1

K((s, a), (si, ai))Wij (12)

where W = (K + λI)−1, and Kij = K((si, ai), (sj , aj))
is the kernel matrix on the data. The approach to guarantee
the constraint (6) is simply to threshold and normalize the
α(s′i, a) for all s′i ∈ D and a ∈ A, in practice, however, we
find it is better to project the weights using fast Euclidean
projection to the L1-ball (Duchi et al. 2008), followed by
normalization. Unlike KBRL (Ormoneit and Sen 2002) this
approach minimizes a loss over a rich hypothesis class.

4The same idea was used by Rust (1996) and Szepesvári (2001),
though in the context of planning, not for estimating a model.

Factored Linear Action Models The approach of Yao et
al. (2014) is to replace F by a Banach space of real-valued
functions over S so that F’s topological dual F∗ contains
the point evaluation functionals δs(·) for any s ∈ S, redefin-
ing 〈·, ·〉 to be the dual-pairing bracket [·, ·] : F × F∗ → R

with [v, λ] = λ(v), and then defining φ(s) = δs(·). In addi-
tion, the constraint (6) is imposed in the optimization, rather
than projection after learning. In our preliminary experi-
ments, this performed worse than the projection approach,
despite that Yao et al. (2014) presented experimental results
to the contrary (on different problems).

4 Compressed CMEs for RL

As discussed in Section 3.2, one drawback of the CME ap-
proach is that the size of the induced finite (pseudo-)MDP
scales with the amount of data observed so that planning
scales poorly. In this section we will present a version of the
algorithm of Grünewälder et al. (2012b) which is more effi-
cient to learn, and which induces a small compressed MDP
on a subset of the data points to ensure efficient planning.
We will learn a compression set C = {c1, ..., cm} ⊆ S with
m � n = |D|, and a compressed CME μ̂CMP (·) of the
form

μ̂CMP (s, a) =

m∑
j=1

αCMP
j (s, a)φ(cj), (13)

so that the induced finite pseudo-MDP is defined on C. De-
tails of learning such a CME are presented in Section 4.2.
First we detail the choice of the compression set C.

4.1 Learning the Compression Set

We now show that learning CME transition models suggest
a principled means of learning a compression set: our com-
pression set will guarantee the existence of a compressed
CME maintaining good guarantees via Theorem 3.1. We first
introduce a useful property of compression sets:

Definition Given any set P = {s′j}nj=1, and any small er-
ror δ, a compression set C = {cj}mj=1 is a δ-lossy com-
pression of P , if given any proper CME μ̂(·) of the form
μ̂(s, a) =

∑n
j=1 αj(s, a)φ(s

′
j), there exists a proper CME

μ̂CMP (s, a) =
∑m

j=1 α
CMP
j (s, a)φ(cj), which approxi-

mates μ̂(s, a) in F in the sense that sup(s,a)∈S×A ||μ̂(s, a)−
μ̂CMP (s, a)||F ≤ δ.

Algorithm 2 gives a method to maintain a δ-lossy
compression set. The required minimization problem
minb∈Rm,||b||1≤1 ||

∑m
i=1 biφ(ci) − φ(s′j)||F can be solved

using Lasso (see Appendix B for details). We remark that the
feature vectors φ(s) never need to be explicitly computed.

Theorem 4.1. Algorithm 2 with C initialized to ∅ returns a
δ-lossy compression set of P .

Proof. See Appendix A. The result follows im-
mediately from Lemma A.1, which states that if
max1≤j≤n minb∈Rm,||b||1≤1 ||

∑m
i=1 biφ(ci)−φ(s′j)||F ≤ δ

then {c1, . . . , cm} is a δ-lossy compression set of P .
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Algorithm 2 augmentCompressionSet(C, δ,P)

Input: Initial compression set C = c1, ..., cm, candidates
P = s′1, ..., s

′
n, tolerance δ

for j = 1, 2, ..., n do
if minb∈Rm,||b||1≤1||

∑m
i=1 biφ(ci)−φ(s′j)||F >δ then

Augment compression set: C ← C∪s′j , m ← m+1
end if

end for

A δ-lossy compression C guarantees the existence of a
good compressed CME defined over C. We now further show
that δ-lossy compressions imply compressed CMEs which
are good for learning MDPs. We begin with a trivial corol-
lary of Theorem 3.1:
Corollary 4.2. Suppose proper CMEs μ̄(·) and μ̂(·) are
such that

sup
(s,a)∈S×A

||μ̂(s, a)− μ̄(s, a)||F ≤ δ. (14)

Let V̂k be the kth value function obtained after k iterations
of value iteration using a μ̄(·), πk = greedyμ̄(V̄k), Ṽ ∗ ∈ F .
Let Bk(Ṽ

∗) be the formal bound in Theorem 3.1 on ‖V πk −
V ∗‖∞ (i.e., Bk depends on μ̂). Then,

||V πk −V ∗||∞ ≤ Bk(Ṽ
∗) +

2γ

(1− γ2)
δ||Ṽ ∗||F (15)

Thus, suppose that μ̂(·) is known to be good, then com-
paring Corollary 4.2 with Theorem 3.1, we only pay an addi-
tional term of 2γδ||Ṽ ∗||F

(1−γ2) for solving an MDP with the CME
μ̄(·) instead of the CME μ̂(·). In particular if we take μ̄(·)
to be a compressed CME μ̂CMP (·) whose existence is guar-
anteed by a δ-lossy compression then guarantee (15) holds
for μ̂CMP (·). This is an existence proof: in the following
section we detail how to learn a compressed CME.

4.2 Learning Compressed CMEs

We now learn a proper compressed CME, denoted
μ̂PCMP (·) = ∑m

j=1 α
PCMP (·)φ(cj), given a compression

set C. We first seek a CME μCMP (·) of the form (13) in
which the αCMP

j (s, a) are of the form (12),

αCMP
j (s, a) =

n∑
i=1

K((s, a), (si, ai))W
CMP
ij , (16)

i.e. similar to Grünewälder et al. (2012b), but with a com-
pressed representation. WCMP ∈ R

n×m is to be opti-
mized to minimize (4). The exact RKHS regularized least
squares solution, with one dimension of WCMP scaling
with n, the number of samples, is prohibitively expensive to
compute, and so we optimize WCMP using kernel match-
ing pursuit (Vincent and Bengio 2002; Mallat and Zhang
1993) which is an incremental sparse-greedy method of op-
timizing kernel least squares. In our application matching
pursuit maintains a sparse basis of kernel functions B =
{K(·, (ŝ�, â�))}d�=1 and d × m weight matrix WMP =

(w1, ...,wd)
�, where for each 
, (ŝ�, â�) ∈ D, and where

d � n, such that (16) is represented only using the basis
B: αMP

j (s, a) =
∑d

�=1 K((s, a), (ŝ�, â�))W
MP
�j . Matching

pursuit incrementally adds bases K(·, (ŝ�, â�)) and weights
w� ∈ R

m “greedily” – i.e. to maximally reduce the loss (4),

1

n

n∑
i=1

||
d∑

�=1

m∑
j=1

K((si, ai), (ŝ�, â�))W
MP
�j φ(cj)−φ(s′i)||2F .

Given the next basis element, each new weight w� can
be found in closed form, and so each addition of a (ba-
sis,weight) pair requires a sweep over all candidate basis
points. There are some non-standard aspects of the appli-
cation of matching pursuit to optimize WCMP and details
are included in supplementary material (Lever et al. 2016),
where we demonstrate for instance that F can be an infinite-
dimensional feature space of an RKHS and yet we can still
perform matching pursuit efficiently. The greedy incremen-
tal approach is suited to the RL setting since we interact with
the system to gather new data, which is then explored by
matching pursuit to discover new basis functions, but we do
not sweep over the full data set at each iteration (see Algo-
rithm 3 for details).

Once matching pursuit has found the basis B we “backfit”
the weights by performing RKHS-regularized least-squares
in the primal,

WCMP = argmin
W

1

n

n∑
i=1

εi(W ) + λ tr(WLCCW�K�),

(17)
where with slight abuse of notation we redefine
WCMP to have dimension d × m, and εi(W ) :=

‖∑d
�=1

∑m
j=1 K((si, ai), (ŝ�, â�))W�jφ(cj) − φ(s′i)‖2F .

The term tr(WLCCW�K�) in (17) is the RKHS norm
regularizer ||μ̂CMP (·)||2K . The solution to (17) is

WCMP = (Ψ�Ψ+ λnK)−1Ψ�LDC(LCC)−1, (18)
where Kjk = K((ŝj , âj), (ŝk, âk)), Ψij =
K((si, ai), (ŝj , âj)), LDC

jk = 〈φ(s′j), φ(ck)〉F and
LCC
jk = 〈φ(cj), φ(ck)〉F , and λ can be cross validated.

Computing (18) is efficient since the inverse is of a d × d
matrix. We add a small ridge term to the kernel matrix
inverses to prevent numerical instability.

To ensure a contraction we obtain the proper CME
μ̂PCMP (·) by projecting the learned weights to the L1-
ball: denoting proj(f) := argminβ∈Rm,||β||1≤1 ||f −∑m

j=1 βjφ(cj)||F we set

α⊥(s, a) := proj(μ̂CMP (s, a)), (19)
which can be done using a Lasso (see Appendix B), and fi-
nally we normalize,

αPCMP (s, a) := α⊥(s, a)/||α⊥(s, a)||1. (20)

4.3 Policy Iteration with Compressed CMEs

Our algorithm combines the compression set learning of
Section 4.1, CME learning of Section 4.2 and policy it-
eration using CMEs of Section 3.1 (specifically the CME
μ̂PCMP (·)). The algorithm is detailed in Algorithm 3.
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Algorithm 3 Policy iteration with compressed kernel CMEs

Input: MDP M = {S,A, P1, P,R} to interact with;
known reward function R and P1.
Parameters: Kernel K on S ×A; feature map φ(·) on S;
compression tolerance δ; policy improvements J ; nnew;
maximum basis dimension d.
Initialize: action-value function e.g. Q0 = r; D0 = ∅;
π1 = greedy(Q0); ψ0(·); n0 = 0; B0 = ∅.
for k = 1, 2, ... do

Data acquisition: Collect nnew data points Dnew =
{si, ai, s′i}nk

i=nk−1+1 from behavior policy distribution
ρνk ; nk ← nk + nnew; Aggregate data: Dk = Dk−1 ∪
Dnew = {si, ai, s′i}nk

i=1.
Augment compression set with new data: Ck =
augmentCompressionSet(Ck−1, {s′i}nk

i=nk−1+1, δ).
Augment candidate feature dictionary new data:
Gk = Bk−1 ∪ {K(·, (si, ai))}nk

i=nk−1+1

Sparse basis selection: Learn sparse basis Bk =

{K(·, (ŝ�, â�))}dk

�=1, dk ≤ d from candidates Gk using
matching pursuit; Set ψk

� (·) = K((ŝ�, â�), ·), Ψk =(
ψk(s1, a1), ..., ψ

k(snk
, ank

)
)�

.
Backfit CME weights: WCMP

k = (Ψ�
k Ψk +

λnK)−1Ψ�
k L

DC(LCC)−1 as in (18).
for 
 = 1, 2, ..., J do

Policy evaluation: Using finite pseudo-MDP dy-
namics αPCMP (cj , a) (20) for a ∈ A, cj ∈ C solve
approximate Bellman Equation (7) to obtain estimate
V̂� of V πk at the compression points cj ∈ C. Set
Q̂�(s, a) = r(s, a) + γ

∑|Ck|
j=1 α

PCMP
j (s, a)V̂�(cj).

Policy improvement: πk ← greedy(Q̂�).
end for
πk+1 ← πk.

end for

5 Experiments

We performed 3 online model-based policy iteration experi-
ments. Experiments in the batch setting, with i.i.d. data can
be found in Lever et al. (2016). For reproducibility more de-
tail is given in Appendix C. We compared the compressed
CME to the kernel smoothing model (10) – as in the KBRL
algorithm (Ormoneit and Sen 2002), but we additionally
smooth over actions (which performed slightly better here),
and use non i.i.d. data generated by interactions – and the
kernel least-squares model of Grünewälder et al. (2012b).
We outperformed the full kernel smoothing method, in terms
of policy quality, so did not compare to the more efficient
versions of KBRL which do not report better performance.
We report mean results over 10 experiments, and standard
error. Experiments are run on a cluster of single core pro-
cessors. For all MDPs, at each iteration the learners were
given 2 trajectories of data: one from the current greedy pol-
icy and a second from an ε-greedy (ε = 0.3) “exploratory”
version (defining ρνk in the algorithm as a mixture of those
two policies).

Benchmarks Our first experiments are the well-known
cart-pole and mountain-car benchmark MDPs. These are
continuous 2 dimensional state MDPs with 3 actions. The
compressed CME approach consistently optimizes the pol-
icy in the mountain-car with fewer than 5 iterations (10 data
trajectories), and fewer than 10 iterations (20 trajectories) in
the cart-pole and performs better than both competitors in
terms of policy optimization. We hypothesize that the two
least-squares methods out-perform the kernel smoothing ap-
proach since they directly optimize a loss over a rich hy-
pothesis class. Our compressed CME method outperforms
the full kernel least squares approach because a more princi-
pled projection of the weights (19) can be performed. The
compressed CME approach obtained finite MDPs of size
less than 100 in the mountain-car and about 400 in the cart-
pole (from a total of 3000 data points over 15 iterations),
decoupling the amount of data gathered and the size of the
induced pseudo-MDP so that planning scales essentially in-
dependently of data size, compared to the competitors where
planning becomes a bottleneck. In terms of model and fea-
ture learning time, the full kernel least-squares approach is
surprisingly fast to learn, this is because “full relearns” in
which all parameters were cross-validated were performed
at iterations 1,2 and 5 (hence the spikes on the graphs) but
at other iterations we performed fast online updates to the
matrix inverses, using previous optimal parameters. Since
model learning is not a bottleneck for kernel smoothing we
allowed it to cross-validate all parameters at every iteration;
kernel smoothing could be similarly speeded-up by avoiding
model selection, with a small degradation in policy quality.
Results are shown in Figure 1 and Figure 2.

Simulated Quadrocopter Navigation The third experi-
ment is a simulated Quadrocopter navigation task which
uses a simulator (De Nardi 2013) calibrated to model the
dynamics of a PelicanTM platform. This is a higher di-
mensional problem, S ⊂ R

13 (but effectively reduced
to 6-dimensions by the choice of state kernel), s =
(x, y, z, θ φ, ψ, ẋ, ẏ, ż, θ̇, φ̇, ψ̇, F ) which consists of plat-
form position (x, y, z) ∈ R

3, roll, pitch and yaw (θ, φ, ψ) ∈
R

3, associated time derivatives, and thrust F applied to the
rotors. The action set is a discretization of a 2-dimensional
rectangle into 81 actions which represent desired velocity
vectors in the (x, y) plane (desired z velocity is fixed at
zero). An internal PID controller translates these desired ve-
locities into low level commands issued to the rotors in at-
tempt to attain those velocities. This creates complex dy-
namics for the system. The platform is initialized at posi-
tion (0, 0,−50), a target location is defined at coordinates
xtarg = (5, 5) and we define r(s, a) = e−

1
25 ||xtarg−sxy||2 .

On this task the compressed CME method is able to learn
a near optimal policy, accelerating before hovering around
the target point to collect reward. Both least-squares meth-
ods out performed the KS method, and planning for the com-
pressed CME approach is significantly more efficient. Com-
pression to a finite pseudo-MDP of size 100-150 (from a
total of 2400 data points over 12 iterations) was achieved.
Results are shown in Figure 3.
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Figure 1: Cart-pole reward and timing results

Figure 2: Mountain-car reward and timing results

6 Summary

We have presented a model-based policy iteration algorithm,
based on learning a compressed CME of the transition dy-
namics, and solving the induced finite pseudo-MDP exactly
using dynamic programming. This results in a stable algo-
rithm with good performance guarantees in terms of the tran-
sition model error. An analysis of the CME approach sug-
gested a principled means to choose a compression set for
the CME, which guarantees an at most small loss in the rep-
resentation power of the CME, and only a small degrada-
tion in performance bound. To learn the CME our approach
builds a state-action representation online based on interac-
tions with the system using sparse-greedy feature selection
from a data-defined dictionary of kernel functions, enhanc-
ing the state-action representation to maximally improve the
model. We overcome the planning bottleneck of competitor
methods and obtain better policies on a range of MDPs. The
compression approach could be used in other related algo-
rithms such as KBRL. Future work could include using other
representations of the CME in this context, such as deep neu-
ral networks. We remark that it is possible to combine the
compression approach with the constrained approach of Yao
et al. (2014) which we defer for a longer version.
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Figure 3: Simulated quadrocopter navigation reward and timing results
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Appendix

A Proof of Theorem 4.1

We begin with a lemma:
Lemma A.1. Given {s′1, s′2, ..., s′n}, suppose C =
{c1, ..., cm} ⊆ S is such that for all s′j ∈ D there exists
b = b(s′j) ∈ R

m, ||b||1 ≤ 1 such that

||
m∑
i=1

bi(s
′
j)φ(ci)− φ(s′j)||F ≤ δ. (21)

Then let μ(·) be defined via μ(s, a) =
∑n

j=1 αj(s, a)φ(s
′
j),

with ||α(s, a)||1 ≤ 1 for all (s, a) ∈ S × A.
If we define αCMP

i (s, a) =
∑n

j=1 bi(s
′
j)αj(s, a) then∑m

i=1 |αCMP
i (s, a)| ≤ 1 and for all (s, a)

||μ(s, a)− μ̂CMP (s, a)||F < δ.

Proof.
m∑
i=1

|αCMP
i (s, a)| =

m∑
i=1

|
n∑

j=1

bi(s
′
j)αj(s, a)|

≤
n∑

j=1

|αj(s, a)|
m∑
i=1

|bi(s′j)| ≤ 1,

and,

||μ̂(s, a)− μ̂CMP (s, a)||F

= ||
n∑

j=1

αj(s, a)φ(s
′
j)−

m∑
i=1

αCMP
i (s, a)φ(ci)||F

= ||
n∑

j=1

αj(s, a)(φ(s
′
j)−

m∑
i=1

bi(s
′
j)φ(ci))||F

≤
n∑

j=1

|αj(s, a)|max
j

||φ(s′j)−
m∑
i=1

bi(s
′
j)φ(ci))||F

≤ δ.

Note that by construction the compression set returned
by Algorithm 2 satisfies condition (21) and is therefore a δ-
lossy compression. Hence Lemma A.1 directly implies The-
orem 4.1.

B The Weight Projection via Lasso

Projections of the following form

proj(α) = argmin
β∈Rm,||β||1≤1

||
m∑
j=1

αjφ(sj)−
m∑
j=1

βjφ(sj)||F .

(22)

are used throughout the method to maintain compression
sets and project weights to obtain propoer CMEs. Problem
(22) can be reduced to:

proj(α) = argmin
β∈Rm,||β||1≤1

||Rβ −Rα||2.

where R�R = L, and Lij = 〈φ(si), φ(sj)〉F , which can
be solved with Lasso (Tibshirani 1996). Note that the feature
vectors do not need to be computed – the Gram matrix is all
that is needed. R can be an incomplete (low-rank) Cholesky
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decomposition (Shawe-Taylor and Cristianini 2004) of L
with few rows, so that the effective number of “data points”
in the Lasso is small, and therefore efficient. For example
we use an incomplete Cholesky factorization with 200 rows
in our experiments.

C Further Experimental Details

We begin with settings common to all MDPs. The horizon
of each MDP is 100, so that nnew = 200 data points were
added at each iteration. To perform planning at each itera-
tion we performed J = 10 policy evaluation/improvement
steps, before returning to the MDP to collect more data. For
the compressed CME the size of the sparse-greedy feature
space was constrained to be no greater than d = 200. For
all 3 methods we performed 5-fold cross-validation over
10 bandwidth parameters to optimize the “input” kernel
K on S × A. For the two least-squares methods we also
cross-validated the regularization parameter over 20 values.
The “output” feature map corresponds to a Gaussian kernel
φ(s) = L(s, ·), and the bandwidth of L was chosen using
an informal search for each MDP (it is not clear how this
parameter can be validated). For planning we set γ = 0.98,
but we report results for γ = 0.99.

C.1 Cart-Pole Experiment Details

This problem simulates a pole attached at a pivot to a cart,
and by applying force to the cart the pole must be swung
to the vertical position and balanced. The problem is under-
actuated in the sense that insufficient power is available to
drive the pole directly to the vertical position, hence the
problem captures the notion of trading off immediate re-
ward for long term gain. We used the same simulator as
Lagoudakis and Parr (2003), except here we choose a con-
tinuous reward signal. The state space is two dimensional,
s = (θ, θ̇) representing the angle (θ = 0 when the pole
is pointing vertically upwards) and angular velocity of the
pole. The action set is {−50, 0, 50} representing the hori-
zontal force in Newtons applied to the cart. Uniform noise
in [−10, 10] is added to each action. The system dynamics
are θt+1 = θt +Δtθ̇t, θ̇t+1 = θ̇t +Δtθ̈t where

θ̈ =
g sin(θ)− αm
(θ̇)2 sin(2θ)/2− α cos(θ)u

4
/3− αm
 cos2(θ)
,

where g = 9.8m/s2 is the acceleration due to gravity, m =
2kg is the mass of the pole, M = 8kg is the mass of the cart,

 = 0.5m is the length of the pole and α = 1/(m + M).
We choose Δt = 0.1s. Rewards R(s, a) = 1+cos(θ)

2 , the
discount factor is γ = 0.99, the horizon is H = 100, and the
pole begins in the downwards position, s0 = (π, 0).

The state kernel is a Gaussian L(s, s′) =

exp
(

−1
2σ2

S
(s− s′)�MS(s− s′)

)
with

MS = diag(1, 1/4), and the state-
action kernel is K((s, a), (s′, a′)) =

exp
(

−1
2σ2

S×A
((s, a)− (s′, a′))�MS×A((s, a)− (s′, a′))

)
with MS×A = diag(1, 1/4, 1/10000). The output feature
map φ(s) = L(s, ·) with σS = 0.5 (chosen by informal

search). During model learning we performed 5-fold cross
validation over a range of 10 bandwidths in the range
[0.01, 5] to optimize σS×A. For the compressed CME the
tolerance of the compression set was set to δ = 0.1, i.e. we
use a δ-lossy compression set C with δ = 0.1.

Cumulative reward of 50 is a near optimal policy in which
the pole is quickly swung up and balanced for the entire
episode. Cumulative reward of 40 to 45 indicates that the
pole is swung up and balanced, but either not optimally
quickly, or that the controller is unable to balance the pole
for the entire remainder of the episode.

C.2 Mountain-Car Experiment Details

In this problem the agent controls a car located at the bot-
tom of a valley and the objective is to drive to the top of
a hill but does not have enough power to achieve this di-
rectly and must climb the opposite hill a short distance be-
fore accelerating toward the goal (see e.g. Singh and Sut-
ton (1996)). States s = (x, v) are position and velocity,
S = (−1.2, 0.7) × (−0.07, 0.07), A = {−1, 0, 1} and
r(s, a) = e−8(x−0.6)2 and s0 = (−0.5, 0). Dynamics are
x′ = x+v+ ε1, v′ = v+0.001a−0.0025 cos(3x)+ ε2/10,
where ε1, ε2 are Gaussian random variables with standard
deviation 0.02. If x′ > 0.6 then the state is set to (0.6, 0).
For a horizon H = 100 the optimal return is around 45.
Doing nothing receives almost no reward.

The state kernel is a Gaussian L(s, s′) =

exp
(

−1
2σ2

S
(s− s′)�MS(s− s′)

)
with

MS = diag(1, 100), and the state-
action kernel is K((s, a), (s′, a′)) =

exp
(

−1
2σ2

S×A
((s, a)− (s′, a′))�MS×A((s, a)− (s′, a′))

)
with MS×A = diag(1, 100, 1/25). The output feature map
φ(s) = L(s, ·) with σS = 0.5 (chosen by informal search).
During model learning we performed 5-fold cross valida-
tion over a range of 10 bandwidths in the range [0.01, 5] to
optimize σS×A. For the compressed CME the tolerance of
the compression set selection was set to δ = 0.01, i.e. we
use a δ-lossy compression set C with δ = 0.01.

C.3 Quadrocopter Experiment Details

The state kernel is a Gaussian L(s, s′) =

exp
(

−1
2σ2

S
(s− s′)�MS(s− s′)

)
with MS =

diag(1/5,1/105,1,1/105, 0) where 1 = (1, 1, 1),
(which essentially reduces the state observations to 6
dimensions), and the state-action kernel is
K((s, a), (s′, a′))

=exp

( −1

2σ2
S×A

((s, a)−(s′, a′))�MS×A((s, a)−(s′, a′))
)

with MS×A = diag(1/5,1/105,1,1/105, 0,1/100). The
output feature map φ(s) = L(s, ·) with σS = 1 (chosen
by informal search). During model learning we performed
5-fold cross validation over a range of 10 bandwidths in the
range [0.01, 5] to optimize σS×A. For the compressed CME
the tolerance of the compression set selection was set to δ =
0.1, i.e. we use a δ-lossy compression set C with δ = 0.1.
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