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Abstract

We present a new, efficient PAC optimal exploration algo-
rithm that is able to explore in multiple, continuous or dis-
crete state MDPs simultaneously. Our algorithm does not as-
sume that value function updates can be completed instanta-
neously, and maintains PAC guarantees in realtime environ-
ments. Not only do we extend the applicability of PAC opti-
mal exploration algorithms to new, realistic settings, but even
when instant value function updates are possible, our bounds
present a significant improvement over previous single MDP
exploration bounds, and a drastic improvement over previous
concurrent PAC bounds. We also present TCE, a new, fine
grained metric for the cost of exploration.

1 Introduction and Motivation

PAC-optimal exploration algorithms have received signifi-
cant attention from the Reinforcement learning (RL) com-
munity over the last few years. Considering how impor-
tant efficient exploration is for RL, this attention is well de-
served. Unlike non-sequential machine learning, in RL it is
often the case that samples have to be obtained by sequen-
tial interaction with a Markov decision process (MDP). As a
result, sampling certain regions that the optimal policy visits
often can be quite improbable unless we are actively trying
to reach those regions. Furthermore, even in cases where we
have a generative model of the environment, it may be the
case that only a tiny percentage of the state space is reach-
able from the starting state; in that situation, learning by col-
lecting samples from the entire space would be inefficient.

The first major roadblock preventing most PAC-optimal
exploration methods from being applicable in practice is that
they scale poorly to domains of realistic size. Not only do
they assume that the state-action space is discrete and fi-
nite, which renders them inapplicable to continuous space
domains, but their sample complexity becomes prohibitive
in all but the smallest problems. Both of these drawbacks
are a result of their inability to generalize, a weakness that
our algorithm does not share.

∗This research was performed while the first author was a grad-
uate student with the computer science department at Duke Uni-
versity.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In many real world problems value function updates are
not instantaneous. Consider the following two examples: 1)
A fast-paced realtime system, whose time-step is too short to
allow updating the value function between every step. 2) A
mobile system where instead of computing the value func-
tion locally we send new samples to a remote platform which
then returns the updated value function with some delay. De-
layed value function updates are the norm rather than the ex-
ception in real life, yet they are not adequately addressed by
current PAC-optimal exploration methods. As we will show
in our analysis, the worst case sample complexity of our al-
gorithm degrades gracefully with increasing value function
update delays.

Another situation that appears often in real life is when
we want to explore in multiple MDPs at the same time. This
scenario encompasses exploring in multiple “copies” of the
same MDP simultaneously, or exploring in multiple MDPs
with varying degrees of similarity. While both of these prob-
lems are interesting, the second one presents additional dif-
ficulties. It might be tempting to try to cluster MDPs into
discrete clusters, and then treat each cluster as if all MDPs
in the cluster are identical. Unfortunately this approach runs
into the same scalability issues as discrete state-action ex-
ploration algorithms that lack the ability to generalize. There
are many cases where we are dealing with MDPs that are dif-
ferent enough that we don’t want to treat them as identical,
but we would still like to be able to take advantage of any
similarities present. Consider for example the case where
we have multiple MDPs that are similar in most of the state-
action space, but differ drastically in a small but important
section. One of the ways this situation can occur is when we
have multiple MDPs with the same dynamics but different
goals. As we will see, generalizing over MDPs is no dif-
ferent than generalizing over state-actions. Our approach to
generalization will allow us to handle multiple MDPs seam-
lessly, taking advantage of any degree of similarity present.

Our focus in this paper is on the online, discounted ex-
ploration setting. The most commonly used metric in this
setting is the number of time-steps t such that V π(st) <
V ∗(st) − ε, commonly referred to as “sample complex-
ity” (Kakade 2003). One of the main drawbacks of sample
complexity is that it is very coarse: It only counts the num-
ber of significantly suboptimal steps, and does not discrim-
inate between the magnitude of different errors. In addition

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1977



to our algorithmic contribution, we present TCE, a new, fine
grained metric for the cost of exploration. As we will show
in section 3, TCE bounds imply sample complexity bounds.

Regret is a metric that shares the fine-grained nature of
TCE. While it has gained significant traction in other ex-
ploration settings, it is unsuitable for our setting. Regret
for discounted MDPs is defined as the difference between
the expected accumulated discounted reward of an optimal
policy and the discounted accumulated reward achieved by
the algorithm in question. For MDPs with non-negative re-
wards, regret for the discounted setting is upper bounded by
Rmax

1−γ . There are at least two ways in which regret in dis-
counted MDPs can be arbitrarily close to this upper bound:
1) A common and arguably necessary (Jaksch, Ortner, and
Auer 2010) assumption in regret analysis is a finite mix-
ing time/diameter. By assuming a finite diameter, we as-
sume that our algorithm cannot get trapped in a “bad” set
of states. Unfortunately this is a very strong assumption that
is not true for many real world domains (such as for any
robotic system that can get damaged or trapped, any living
organism that can get injured or simply bored and stop using
our system, and any financial entity that can go broke) As a
simple example of why the lack of finite diameter can yield
regret arbitrarily close to Rmax

1−γ , consider an MDP with two
states: The starting state has two actions, the first of which
is self-transitioning with a reward of Rmax, while the sec-
ond has zero reward and transitions to an absorbing state
with zero reward. If the algorithm is unlucky and chooses
the second action first, its regret will be Rmax

1−γ . 2) Even if
we assume a finite diameter, it is easy to design discounted
MDPs for which regret is arbitrarily close to Rmax

1−γ . Consider
an MDP where the starting state has two actions: The first is
self-transitioning with reward Rmax, while the second one
has zero reward and transitions to an n long chain of states
each of which has zero reward and the last of which transi-
tions back to the starting state. If the algorithm is unlucky
and chooses the second action first, its regret will be at least
(1− γn)Rmax

1−γ , where n can be as large as |S|. The situation
can become even worse if we add stochasticity.

2 Background

A Markov Decision Process (MDP) is a 5-tuple
(S,A, P,R, γ), where SSS is the state space of the pro-
cess, AAA is the action space, PPP is a Markovian transition
model

(
p(s′|s, a) denotes the probability density of a

transition to state s′ when taking action a in state s
)
, RRR is a

reward function
(
R(s, a, s′) is the reward for taking action

a in state s and transitioning to state s′
)
, and γγγ ∈ [0, 1)

is a discount factor for future rewards. We will use AsAsAs to
denote the set of actions available at state s. A deterministic
policy πππ for an MDP is a mapping π : S �→ A from states
to actions; π(s) denotes the action choice in state s. The
value V π(s)V π(s)V π(s) of a state s under a policy π is defined as the
expected, accumulated, discounted reward when the process
begins in state s and all decisions are made according to
policy π. There exists an optimal policy π∗π∗π∗ for choosing
actions which yields the optimal value function V ∗(s),

defined recursively via the Bellman optimality equation:

V ∗(s)V ∗(s)V ∗(s) = sup
a
{
∫
s′
p(s′|s, a) (R(s, a, s′) + γV ∗(s′))}.

Similarly, the value Qπ(s, a)Qπ(s, a)Qπ(s, a) of a state-action pair (s, a) un-
der a policy π is defined as the expected, accumulated, dis-
counted reward when the process begins in state s by taking
action a and all decisions thereafter are made according to
policy π. The Bellman optimality equation for Q becomes:

Q∗(s, a)Q∗(s, a)Q∗(s, a) =
∫
s′
p(s′|s, a)

(
R(s, a, s′) + γ sup

a′
{Q∗(s′, a′)}

)
.

For a fixed policy π the Bellman operator for Q is defined
as:

BπQ(s, a)BπQ(s, a)BπQ(s, a) =

∫
s′
p(s′|s, a)

(
R(s, a, s′) + γQ(s′, π(s′))

)
.

In reinforcement learning (Sutton and Barto 1998), a
learner interacts with a stochastic process modeled as an
MDP and typically observes the state and immediate reward
at every step; however, the transition model P and reward
function R are not known. The goal is to learn a near op-
timal policy using experience collected through interaction
with the process. At each step of interaction, the learner ob-
serves the current state s, chooses an action a, and observes
the reward received r, the resulting next state s′, and As′ ,
the set of available actions in s′, essentially sampling the
transition model and reward function of the process. Thus
experience comes in the form of (s, a, r, s′,As′) samples.

There have been many definitions of sample complex-
ity in RL. For PAC-optimal exploration algorithms in dis-
counted MDPs, the most commonly used one is the follow-
ing (Kakade 2003):
Definition 2.1. Let π be an arbitrarily complex, possibly
non-stationary, possibly history dependent policy (such as
the policy followed by an exploration algorithm), and let
(s1, s2, s3, . . . ) be a random path generated by π. The sam-
ple complexity of exploration is the number of time-steps t
such that V π(st) < V ∗(st)− ε.

We will be defining a more fine-grained sample complex-
ity metric in section 3.

The notion of efficient PAC optimal exploration has also
evolved over the years. We will be using the following defi-
nition (Strehl, Li, and Littman 2009):
Definition 2.2. An algorithm is said to be efficient PAC-
MDP (Probably Approximately Correct in Markov Decision
Processes) if, for any ε > 0 and 0 < δ < 1, its sample com-
plexity, its per-timestep computational complexity, and its
space complexity, are less than some polynomial in the rel-
evant quantities (S,A, 1

ε ,
1
δ ,

1
1−γ ), with probability at least

1− δ.
Over the years, some researchers have dropped the poly-

nomial per-timestep computational and space complexity re-
quirements. While it is theoretically interesting to see what
we can achieve when computational and space complex-
ity requirements are lifted, algorithms whose computational
and/or space complexity is super-polynomial in the relevant
quantities are of limited use in practical applications.
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3 The Total Cost of Exploration (TCE)

When interacting with the real world we typically cannot
assume a finite diameter, yet we may care about more than
just the number of highly suboptimal steps an exploration
algorithm might incur. For example, if we are using our al-
gorithm to explore using a robot or some other physical sys-
tem, it would be more useful to have an upper bound on the
amount of wear and tear of the robot, rather than a bound on
the number of times the robot will be completely destroyed.

We now define a metric that does not require unrealistic
assumptions, is suitable for measuring exploration perfor-
mance in discounted MDPs, and provides fine-grained in-
formation:

Definition 3.1. Let π be an arbitrarily complex, pos-
sibly non-stationary, possibly history dependent policy
(such as the policy followed by an exploration algorithm),
(s1, s2, s3, . . . ) be a random path generated by π, ε a pos-
itive constant, T the (possibly infinite) set of time steps for
which V π(st) < V ∗(st)− ε, and define1:

εe(t) =V ∗(st)− V π(st)− ε, ∀ t ∈ T .
εe(t) =0, ∀ t /∈ T .

The Total Cost of Exploration (TCE) is defined as the undis-
counted infinite sum:

∞∑
t=0

εe(t).

It is now easy to see that for any policy for which the TCE
is bounded, the number of at least ε-suboptimal steps is also
bounded:

Lemma 3.2. For any policy π for which the TCE is bounded,
there will be at most: ∑∞

t=0 εe(t)

εthreshold

steps such that:

V π(st) < V ∗(st)− ε− εthreshold,

where εthreshold is any positive constant.

Unfortunately upper “number of suboptimal steps” sam-
ple complexity bounds do not translate to tight TCE bounds.
Given a sample complexity bound for an exploration algo-
rithm for which V π(st) < V ∗(st) − ε for at most n time
steps, the best we can say is that

∑∞
t=0 εe(t) ≤ n(Vmax−ε).

Note that just like sample complexity, TCE does not make
any assumptions on the algorithm or the MDP to which
it is applied. For example, no assumptions are made as to
whether the algorithm distinguishes between “known” and
“unknown” states, or whether the MDP has a finite diam-
eter. While beyond the scope of this work, many existing
algorithms could be analyzed in terms of TCE.

1Note that V π(st) denotes the expected, discounted, accumu-
lated reward of the arbitrarily complex policy π from state s at time
t, rather than the expectation of some stationary snapshot of π.

Lower bound

Sample complexity is known to be log-linear in the size of
the state-action space |SA| (Strehl, Li, and Littman 2009),
quadratic in 1

ε , and cubic in 1
1−γ (Lattimore and Hutter

2012), for an overall lower worst case bound of:

Ω

(
|SA| log |SA|
ε2(1− γ)3

)
.

This implies a lower worst case bound of:

Ω

(
|SA| log |SA|
ε(1− γ)3

)

for TCE (if a better bound could be established, lemma 3.2
would imply a bound better than Ω

(
|SA| log |SA|
ε2(1−γ)3

)
for sam-

ple complexity which is a contradiction). In theorem 8.5 we
come within 1

1−γ of this lower bound (ignoring logarithmic
factors). This implies that we also come within 1

1−γ of the
lower bound for “number of suboptimal steps” sample com-
plexity.

4 Overview

One of the ways that our approach differs from previous
work on PAC-optimal exploration is that instead of assuming
a monolithic learner and policy execution algorithm, we al-
low learning and policy execution to occur on separate, par-
allel processes. Each concurrent MDP is assigned a policy
execution process, while a single learner processes samples
generated from all policy execution processes and computes
new policies.

A major challenge in the design of an efficient explo-
ration algorithm with low TCE is that of approximation.
Ideally we would like to have an infinite number of sam-
ples for every state-action-MDP triple. Unfortunately, main-
taining computational and memory efficiency means that we
have to limit the number of samples that we keep in mem-
ory and process at every step. In order to deal with the fact
that the state-action-MDP space may have infinite cardinal-
ity, we make a smoothness assumption (which is signifi-
cantly less restrictive than Lipschitz assumptions in previous
work). Our smoothness assumption allows us to use sam-
ples from nearby state-action-MDP triples to infer bounds
on the values of state-action-MDP triples for which we have
insufficient (or no) samples. For computational and mem-
ory efficiency purposes, when a sufficient number of sam-
ples has been gathered in the vicinity of a particular state-
action-MDP triple, future samples are discarded.

Finally, we need to be able to guarantee that the cost ac-
cumulated during exploration is low. To that end we use the
principle of optimism in the face of uncertainty, and prove
that our optimistic approximation scheme guarantees low
TCE with high probability.

5 Definitions and Assumptions

Let X be the domain of x. Throughout this paper, ∀∀∀x will
serve as a shorthand for ∀x ∈ X . For example we will use
∀(s, a) as a shorthand for ∀(s, a) ∈ (S,A).
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In the following s, s̄, s̃, s′s, s̄, s̃, s′s, s̄, s̃, s′ are used to denote vari-
ous states, a, ā, ã, a′a, ā, ã, a′a, ā, ã, a′ are used to denote actions, and
M, M̄, M̃ ,M ′M, M̄, M̃ ,M ′M, M̄, M̃ ,M ′ are used to denote MDPs.

We will use (s, a,M)(s, a,M)(s, a,M) to denote state-action (s, a) in
MDP M , Q(s, a,M)Q(s, a,M)Q(s, a,M) to denote the Q value function of
(s, a) in MDP M , BQ(s, a,M)BQ(s, a,M)BQ(s, a,M) to denote the application
of the Bellman operator for MDP M to Q(s, a,M), and
(s, a, r, s′,As′ ,M)(s, a, r, s′,As′ ,M)(s, a, r, s′,As′ ,M) to denote a (s, a, r, s′,As′) sample col-
lected from MDP M .

We assume that all value functions Q live in a complete
metric space. We also assume that all rewards are bounded,
and without loss of generality that they lie in [0, Rmax][0, Rmax][0, Rmax].2

Definition 5.1. QmaxQmaxQmax denotes an upper bound on the max-
imum expected, discounted reward from any state-action in
the family of MDPs we are considering:

0 ≤ Qπ(s, a,M) ≤QmaxQmaxQmax ≤
Rmax

1− γ
∀(s, a,M, π).

We also define Q̂maxQ̂maxQ̂max = Rmax + γQmax.

Definition 5.2. d(s, a,M, s̄, ā, M̄)d(s, a,M, s̄, ā, M̄)d(s, a,M, s̄, ā, M̄) is defined to be the dis-
tance of state-action (s, a) in MDP M , to state-action (s̄, ā)
in MDP M̄ in some well-defined distance metric. We also
define the shorthand:

d(s, a,M, s̄, ā, M̄ , dknown)d(s, a,M, s̄, ā, M̄ , dknown)d(s, a,M, s̄, ā, M̄ , dknown) =

max{0, d(s,a,M, s̄, ā, M̄)− dknown},

where dknown is a user defined constant.

Examples of distance metrics one could use include
weighted norms on the state-action-MDP space, norms on
linear and non-linear transformations of the state-action-
MDP space, as well as norms on features of the state-action-
MDP space.

Definition 5.3. The covering number NSAM(dknown)NSAM(dknown)NSAM(dknown) of
a state-action-MDP space is the size of the largest minimal
set3 C of state-action pairs, such that for any (s, a) reach-
able from the starting state(s) of any MDP M in the set of
MDPs we are exploring in, there exists (s̄, ā, M̄) ∈ C such
that:

d(s, a,M, s̄, ā, M̄) ≤ dknowndknowndknown.

The covering number serves a dual purpose: It general-
izes the concept of cardinality of a state-action-MDP space
to the continuous setting, and it allows the user to trade off
sample, space, and computational complexity with approxi-
mation precision in both continuous and discrete spaces. In
the discrete setting NSAM(dknown) is bounded above by
the cardinality of the state-action-MDP space.

2It is easy to satisfy this assumption in all MDPs with bounded
rewards by simply shifting the reward space.

3A minimal set having property X is a set such that if any one of
its elements is removed it will cease to have property X . There can
be multiple such sets, of different cardinalities. Among the minimal
sets having property X , the largest minimal set has the greatest
cardinality.

Definition 5.4. |A||A||A| is defined as the upper bound on the
number of discrete actions the agent can take in any state.
For simplicity of exposition we assume that |A| is finite. In
section 9 we will show how any MDP with a continuous ac-
tion space can be treated as if it had a discrete action space.

Definition 5.5. The sample set is defined as a mutable set
of up to kNSAM(dknown) (si, ai, ri, s

′
i,As′i ,Mi) samples.

The reason that the sample set is constrained to at most
kNSAM(dknown) samples is for space and computational
efficiency.

Definition 5.6. An approximation unit u is defined to be a
2-tuple comprised of the following:

1. A real value.

2. A mutable set of up to kkk pointers to samples in the sample
set.

An approximation unit is identified by a state-action-MDP
triple as u(s, a,M)u(s, a,M)u(s, a,M).

As the name signifies, an approximation unit is the basic
unit of approximation used by our algorithm. For simplicity,
we will say “the samples in approximation unit u(s, a,M)”
to refer to the samples pointed to by approximation unit
u(s, a,M).

Definition 5.7. An approximation setUUU is defined as a mu-
table set of 0 to NSAM(dknown) approximation units. No
two approximation units in an approximation set can have
the same identifying state-action-MDP triple.

Definition 5.8. KaKaKa is defined to be the set Ka =
{20, 21, 22, . . . , 2i} ∪ {k}, where i is the largest positive in-
teger such that 2i < k. Let u(s, a,M) be an approxima-
tion unit pointing to k0 samples (si, ai, ri, s

′
i,As′i ,Mi) for

i ∈ [1, k0]. The function ka(u(s, a,M))ka(u(s, a,M))ka(u(s, a,M)) returns the largest
value ka in KaKaKa such that ka ≤ k0. If such a value does
not exist, ka(u(s, a,M))ka(u(s, a,M))ka(u(s, a,M)) returns 0. We will call the first
ka(u(s, a,M)) samples of u(s, a,M) the active samples of
u(s, a,M). Since no two approximation units in an approx-
imation set can have the same identifying state-action-MDP
triple, we will use ka(s, a,M)ka(s, a,M)ka(s, a,M) to denote ka(u(s, a,M)).

In other words the active samples in u(s, a,M) are the
samples in u(s, a,M) rounded down to the nearest power of
2, except when u(s, a,M) contains k samples in which case
all k samples are active. Some readers may wonder why Ka

only contains k and powers of 2, rather than all integers in
[1, k]. When setting Ka we have to balance two competing
goals: 1) Ensuring that the Bellman error drops quickly as
more samples are gathered, and 2) limiting the number of
policy changes. While setting Ka to all integers in [1, k] ac-
complishes the first goal, it does poorly on the second.

Definition 5.9. Let εbεbεb be a real value which we will
call the exploration bonus. Let u(s, a,M) be an approx-
imation unit for which ka(s, a,M) > 0. The function
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Fπ(Q, u(s, a,M))Fπ(Q, u(s, a,M))Fπ(Q, u(s, a,M)) is defined as:

Fπ(Q, u(s, a,M))Fπ(Q, u(s, a,M))Fπ(Q, u(s, a,M)) =
εb√

ka(s, a,M)
+

∑ka(s,a,M)
i=1

(
ri + γQ(s′i, π(s

′
i),Mi)

)

ka(s, a,M)
,

where (si, ai, ri, s
′
i,As′i ,Mi) is the i-th sample pointed

to by u(s, a,M). We will use F (Q, u(s, a,M))F (Q, u(s, a,M))F (Q, u(s, a,M)) to denote
FπQ

(Q, u(s, a,M)).

Fπ computes the average over the active samples of an
approximation unit, and returns the average plus a bonus
that depends on the number of samples in the approxima-
tion unit.

Definition 5.10. If U contains at least one approxima-
tion unit u(s, a,M) for which ka(s, a,M) > 0, the func-
tionN(U, s, a,M)N(U, s, a,M)N(U, s, a,M) returns the identifying state-action-MDP
triple of the approximation unit u(s̄, ā, M̄) ∈ U with
ka(s̄, ā, M̄) > 0 such that

d(s, a,M, s̄, ā, M̄ , dknown) +
εb√

ka(s̄, ā, M̄)

is minimized. Ties are broken by an arbitrary deterministic
function.

Instead of returning the identifying state-action-MDP
triple of the nearest approximation unit with respect to
d(s, a,M, s̄, ā, M̄ , dknown), N(U, s, a,M) takes into ac-
count the number of active samples of every approximation
unit.

Definition 5.11. For state-action (s, a) in MDP M , the ap-
proximate optimistic Bellman operator B̃πB̃πB̃π for policy π is
defined as:

B̃πQ(s, a,M)B̃πQ(s, a,M)B̃πQ(s, a,M) = min
{
Qmax, F

π(Q, u(N(U, s, a,M)))

+d(s, a,M,N(U, s, a,M), dknown)
}
.

We will use B̃Q(s, a,M)B̃Q(s, a,M)B̃Q(s, a,M) to denote B̃πQ

Q(s, a,M). When
U is the empty set, B̃πQ(s, a,M) = Qmax.

The approximate optimistic Bellman operator is used in
the inner loop of our exploration algorithm.
Definition 5.12. The value function QUQUQU of an approxima-
tion set U is defined as:

QU (s, a,M)QU (s, a,M)QU (s, a,M) = min{Qmax, uv(N(U, s, a,M))+

d(s, a,M,N(U, s, a,M),dknown)},

where uv(N(U, s, a,M)) is the value stored in approx-
imation unit u(N(U, s, a,M)). If U is the empty set
QU (s, a,M) = Qmax ∀(s, a,M).
Definition 5.13. εcεcεc ≥ 0 is the minimal non-negative con-
stant satisfying:

∀(s, a,M, s̄, ā, M̄ , π,QŨ ),

|BπQŨ (s, a,M)−BπQŨ (s̄, ā, M̄)| ≤
εcεcεc + d(s, a,M, s̄, ā, M̄ , dknown).

Note that while dknown is a user-defined parameter, algo-
rithm execution does not require εc to be known.

Definition 5.13 describes one of the most important con-
cepts this work is based on. It will allow us to show that as
long as BπQŨ (s, a,M) is similar for nearby state-action-
MDP triples, our algorithm will perform well. Contrary to
previous work (Pazis and Parr 2013), we can guarantee this
even when BπQŨ (s, a,M) is not Lipschitz continuous, or
when our algorithm is learning from multiple MDPs rather
than a single MDP.

6 Concurrent Exploration
When exploring in kpkpkp concurrent MDPs, our algorithm con-
sists of kp (one per MDP) instantiations of the policy ex-
ecution process (algorithm 1), and a single learner4 (algo-
rithm 2). Policy execution processes communicate with the
learner by adding samples to a queue for inclusion in the
sample set, and the learner communicates with the policy
execution processes by publishing Ũ̃ŨU , a set of degenerate5

approximation units that define the approximate value func-
tion QŨQŨQŨ .

Algorithm 1 Policy execution (kp instantiations, one for
each concurrent MDP):

1: Initialize Ũ to the empty set.
2: loop
3: From state s in MDP M , using the latest available

published Ũ :
4: Perform action a = arg supã QŨ (s, ã,M)
5: Receive reward r
6: Transition to state s′, and observe As′ .
7: Submit (s, a, r, s′,As′ ,M) to the inclusion candidate

queue.
8: end loop

Algorithm 1 is a greedy policy execution algorithm. At
every step, it uses the latest available published Ũ , selects
the greedy action, collects a sample, and submits it to the
learner for processing.

Algorithm 2 is based on value iteration. Samples sub-
mitted by the policy execution processes are processed se-
quentially in lines 4 through 12. If a sample is more than
dknown away from the nearest approximation unit in the ap-
proximation set, a new approximation unit is added. If the
sample is within dknown of an approximation unit that has
fewer than k samples, the sample is added to the sample set,
and a pointer to the sample is added to all approximation
units within dknown distance that have fewer than k samples.
Lines 13 through 19 perform a single step of value iteration
and publish the updated value function. They are repeated
until the one step Bellman error of QU drops below εa.

4Our results readily generalize to the case where we have multi-
ple learners, even in the case where the order in which samples are
processed is different for each learner. For simplicity of exposition
we will assume that only a single learner exists.

5Since only values of published approximation units are ever
accessed, approximation units in Ũ do not contain sample pointers.
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Algorithm 2 Learner
1: Initialize U to the empty set, publish a snapshot of U as

Ũ , and set update to false.
2: loop
3: Set Uold to U .
4: while the inclusion candidate queue is not empty do
5: Pop (s, a, r, s′,As′ ,M) from the queue.
6: if d(s, a,M, s̄, ā, M̄) > dknown ∀ u(s̄, ā, M̄) ∈ U

then
7: Add a new approximation unit u(s, a,M) to

U , initialize it with up to k pointers to any
(si, ai, ri, s

′
i,As′i ,Mi) samples in the sample set

for which d(s, a,M, si, ai,Mi) ≤ dknown, and
set update to true.

8: end if
9: if d(s, a,M, s̄, ā, M̄) ≤ dknown for some

u(s̄, ā, M̄) ∈ U containing fewer than k samples
then

10: Add (s, a, r, s′,As′ ,M) to the sample set, and a
pointer to each u(s̄, ā, M̄) ∈ U containing fewer
than k samples for which d(s, a,M, s̄, ā, M̄) ≤
dknown. If this increases the number of active
samples for at least one approximation unit, set
update to true.

11: end if
12: end while
13: if update is true then

14: Set QU to B̃QUold
.

15: Publish a snapshot of U as Ũ .
16: if −εaεaεa ≤ QUold

(s, a,M) − QU (s, a,M) ≤
εaεaεa ∀ u(s, a,M) ∈ U then

17: Set update to false.
18: end if
19: end if
20: end loop

There are couple of implementation issues we should
elaborate on:

• Setting QU in line 14 of the learner is performed by
setting the values of each u(s, a,M) ∈ U for which
ka(s, a,M) > 0 to F (QUold

, u(s, a,M)).

• Computing F (QUold
, u(s, a,M)) does not require re-

computing N(U, s′, a′,M). By maintaining |A| point-
ers to approximation units per sample (one for each
a′ ∈ As′ ), F (QUold

, u(s, a,M)) can be computed ef-
ficiently. To initialize the pointers for a particular sam-
ple, N(U, s′, a′,M) needs to be called up to |A| times
(once for each a′ ∈ As′ ) when the sample is added to
the sample set, and the pointers need to be updated ev-
ery time the number of active samples for an approxima-
tion unit changes (at a much lower cost than recomputing
N(U, s′, a′,M)).

7 Concurrency, Time, and Delay Models

We will keep our definitions of concurrency, timestep, and
value function update delays general, so as to cover as many

real-world situations as possible.

Definition 7.1. kpkpkp ≥ 1 denotes the maximum number of
MDPs we are exploring in parallel.

Definition 7.2. Timestep tititi of MDP Mi is defined as the
ti-th action our policy takes in MDP Mi.

Definition 7.3. Global time tgtgtg is a measure of time that is
common between all MDPs.

We do not assume that actions in different MDPs are
synchronized, that they happen at a constant rate with re-
spect to global time, or that all MDPs have the same start
time. For example, it could be the case that in global time
[tg(s), tg(f)] the policy at MDP M1 takes actions 2, 3, the
policy at MDP M2 takes actions 7, 8, 9, 10, while no actions
have been taken yet in MDPs M3 and M4.

Assumption 7.4. For ease of exposition we assume that
samples are processed by the learner in the same order (with
respect to global time) as the actions that generate them.
This assumption can be easily removed, but it makes exposi-
tion significantly simpler.

Definition 7.5. Let action (s, a) be taken at MDP Mi at
global time tg(s) generating sample (s, a, r, s′,As′ ,Mi).
D(s,a,r,s′,As′Mi),Mj
D(s,a,r,s′,As′Mi),Mj
D(s,a,r,s′,As′Mi),Mj

is the delay for sample
(s, a, r, s′,As′ ,Mi) with respect to MDP Mj . If pro-
cessing (s, a, r, s′,As′ ,Mi) does not cause the update
flag of the algorithm to be set, D(s,a,r,s′,As′ ,Mi),Mj

= 0
for all Mj . Otherwise D(s,a,r,s′,As′ ,Mi),Mj

is the number
of actions taken in MDP Mj in [tg(s), tg(uj)), where
tg(uj) is the time Mj receives an updated value function
QU for which −εaεaεa ≤ QUold

(s, a,M) − QU (s, a,M) ≤
εaεaεa ∀ u(s, a,M) ∈ U on line 16 of algorithm 2 after
(s, a, r, s′,As′ ,Mi) has been processed. Every action taken
in MDP Mj during [tg(s), tg(uj)) is called a delay step for
MDP Mj .

8 Analysis

From Lemmas 8.1, 8.2, 8.3, and 8.4, and theorem 8.5 below,
we have that the combination of Algorithms 1 and 2 is effi-
cient PAC-MDP. Due to space constrains proofs are deferred
to the appendix, available at the authors’ websites.

Lemma 8.1. The space complexity of algorithm 1 is:

O (NSAM(dknown))

per concurrent MDP.

Lemma 8.2. The space complexity of algorithm 2 is:

O (k|A|NSAM(dknown)) .

Lemma 8.3. The per step computational complexity of al-
gorithm 1 is bounded above by:

O (|A|NSAM(dknown)) .

Since every step of algorithm 1 results in a sample be-
ing processed by algorithm 2, we will be bounding the per
sample computational complexity of algorithm 2:
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Lemma 8.4. Let c be the maximum number of approxima-
tion units to which a single sample can be added6. The per
sample computational complexity of algorithm 2 is bounded
above by:

O

(
ck|A|NSAM(dknown) +

k|A|NSAM(dknown)

ln γ
ln

ε

Qmax

)
.

Theorem 8.5 below is the main theorem of this paper. It
decomposes errors into the following four sources:

1. εs is the error caused by the fact that we are using only a
finite set of samples (at most k) to estimate the mean, thus
we only have an estimate.

2. εc, a function of dknown, is the error caused by the fact
that since the space is continuous we cannot have samples
for every state-action.

3. εa is the error caused by the fact that we are only finding
an εa-approximation, rather than the true fixed point of B̃.

4. Finally, εe(t, j) is the error caused by the fact that at time
t there may exist state-actions in MDP Mj that do not
have an approximation unit with k samples within dknown

distance, and value function updates may not be instanta-
neous.

Theorem 8.5. Let (s1,j , s2,j , s3,j , . . . ) for j ∈ {1, . . . , kp}
be the random paths generated in MDPs M1, . . . ,Mkp

respectively on some execution of algorithm 1, and π̃̃π̃π
be the (non-stationary) policy followed by algorithm 1.

Let εbεbεb = Q̂max

√
ln

4�1+log2 k�NSAM(dknown)2

δ

2 , kkk ≥
Q̂2

max

2ε2s(1−γ)2 ln
(

4�1+log2 k�NSAM(dknown)
2

δ

)
, εc be defined as

in definition 5.13, εa be defined as in algorithm 2, kp
be defined as in definition 7.1, and TjTjTj be the set of
non-delay steps (see definition 7.5) for MDP Mj . If
2	 1

1−γ ln Qmax
εs

 ln 2�1+log2 k�

δ

(1+kp)NSAM(dknown)
< 1 and NSAM(dknown) ≥ 2,

with probability at least 1− δ, for all t, j:

V π̃(st,j ,Mj) ≥ V ∗(st,j ,Mj)− 4εc + 2εa

1− γ
− 3εs − εe(t, j),

where7:
kp∑
j=1

∞∑
t=0

εe(t, j) =

kp∑
j=1

∑
t∈Tj

εe(t, j) +

kp∑
j=1

∑
t/∈Tj

εe(t, j),

with:
kp∑
j=1

∑
t∈Tj

εe(t, j)

≈ Õ

⎛
⎝
(

Q̂max

εs(1−γ) + kp

)
NSAM(dknown)Q̂max

(1− γ)

⎞
⎠

6c will depend on the dimensionality of the state-action-MDP
space. For domains that are big enough to be interesting it will be
significantly smaller than other quantities of interest.

7f(n) = Õ(g(n)) is a shorthand for f(n) =
O(g(n) logc g(n)) for some c.

and:

∑
t/∈Tj

εe(t, j) ≤

⎛
⎝Qmax

∑
ka∈Ka

NSAM(dknown)∑
i=1

Di,j,ka

⎞
⎠ ,

where Di,j,ka
is the delay of the ka-th sample for ka ∈ Ka in

the i-th approximation unit, with respect to MDP Mj . Note
that the probability of success 1 − δ holds for all timesteps
in all MDPs simultaneously, and

∑kp

j=1

∑∞
t=0 εe(t, j) is

an undiscounted infinite sum. Unlike
∑kp

j=1

∑
t∈Tj

εe(t, j)

which is a sum over all MDPs,
∑

t/∈Tj
εe(t, j) gives a bound

on the total cost due to value function update delays for each
MDP separately.

As we can see, increasing kp by one, increases the TCE

over all MDPs by only Õ
(

Q̂maxNSAM(dknown)
(1−γ)

)
, which is

significantly less with respect to εs, Qmax and γ than the cost
of exploring in an additional MDP separately (completely
independent of 1

εs
and cheaper by a factor of Qmax

1−γ ).
“Number of suboptimal steps” sample complexity in the

discrete, single MDP, instantaneous update case is not the
focus of this work, yet using lemma 3.2 to convert theo-
rem 8.5 to a “number of suboptimal steps” PAC bound yields
an improvement over the best available bounds for discrete
MDPs (Szita and Szepesvári 2010), by a factor of Qmax

(1−γ) .

9 Discussion

Theorem 8.5 has a linear dependence on 1
εs

for the TCE met-
ric, leading to bounds that are quadratic in 1

εs
with respect to

the “number of suboptimal steps” metric. While both bounds
are optimal with respect to what these metrics are measur-
ing (see section 3), the fact that we are able to achieve linear
dependence on 1

εs
for TCE is very informative. Since TCE

is arguably much better aligned with how practical applica-
tions evaluate cost, it tells us that achieving low εs is much
easier than the “number of suboptimal steps” metric would
suggest.

Generalization

Definition 5.13 allows us to generalize across states, actions,
and MDPs. One thing to notice is that there is no fundamen-
tal difference between generalizing across state-actions of
the same MDP and state-actions of different MDPs. Gener-
alizing across state-action-MDP triples is a natural extension
of the idea of generalizing across state-actions rather than
just across states.

When exploring in two identical MDPs, the distance be-
tween the same state-action in the two MDPs will be zero,
while the covering number of the state-action-MDP space
will be identical to the covering number of each MDP. Con-
versely, when two MDPs have nothing in common, the dis-
tance between state-actions across the two MDPs will be
greater than or equal to Qmax, and the covering number of
the combined state-action-MDP space will be the sum of the
covering numbers of the individual MDPs. The power of our
generalization scheme is that in addition to these two ex-
treme cases, it can handle everything in between. MDPs in a
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state-action-MDP space can have sections in which they are
identical, completely dissimilar, or exhibit varying degrees
of similarity. Definition 5.13 allows us to take advantage of
any degree of similarity to decrease the cost of exploration.

Contrary to previous work (Pazis and Parr 2013), defini-
tion 5.13 does not assume that BπQŨ (s, a,M) is Lipschitz
continuous. The Lipschitz assumption is problematic for two
reasons: Not only are Lipschitz continuity based algorithms
required to know the Lipschitz constant in advance (which
will typically not be the case in an exploration scenario), but
even small discontinuities break their guarantees. By con-
trast, the effect that discontinuities and underestimations of
the distance function have on definition 5.13 is an increase
of εc, which causes our bounds to degrade gracefully.

Algorithms 1 and 2 are directly applicable to discrete
MDPs. A distance function can be defined over a discrete
space just as easily as it can be defined over a continu-
ous one. Even if no distance information exists, by picking
the distance function which returns d(s, a,M, s̄, ā, M̄) = 0
when (s, a,M) = (s̄, ā, M̄) and d(s, a,M, s̄, ā, M̄) = ∞
otherwise, the covering number becomes the cardinality of
the state-action-MDP space |S||A|kp and our bounds still
hold for discrete MDPs.

Continuous action spaces

In definition 5.4 we assumed that there exists a finite upper
bound |A| on the number of actions the agent can take in
any state. To some extent this is trivially true as long as we
are dealing with electronics. Any digital to analogue con-
verter will have finite precision and accept a discrete set of
values as input. While this is sufficient to satisfy efficient
PAC-MDP requirements, enumerating the available range is
impractical for many practical applications.

Dealing with action selection in continuous and/or multi-
dimensional action spaces is an open research problem that
we cannot hope to fully cover in this section. Instead we
will present a simple method to limit |A|. Similarly to how
we defined a covering number over the state-action-MDP
space, we can define a covering set Na(dknown) for a par-
ticular action a. We will define |A| such that the cardinality
of the covering set for any action in the state-action-MDP
space will be less than or equal to |A|. From definition 5.13,
an approximate Bellman operator B̄ that evaluates only the
actions in the covering set for each next state will only dif-
fer by at most εc from the approximate Bellman operator B̃
that evaluates all actions (even in the cases where B̃ has an
infinite number of available actions). This means that even
if we were to discretize our action space to |A| intelligently
selected actions, we would only have to pay a penalty of at
most εc

1−γ in our bounds.

Incorporating prior knowledge

Apart from a distance function (which is not even required
to be informative for discrete state-action-MDP spaces), our
analysis assumed that we are starting from a blank slate
without any knowledge of the MDPs we are exploring in.
It is very easy to incorporate prior knowledge from multiple
sources, without adversely affecting our bounds.

Existing sample sets generated from the same state-
action-MDP space (but not necessarily from the same MDPs
we are going to explore) can be simply added to the inclu-
sion candidate queue before (or even during) policy execu-
tion. Every sample added to the queue before policy execu-
tion begins, that was generated from the same MDPs we are
going to be exploring in, has the potential to reduce explo-
ration’s sample requirements by one.

Rather than a fixed bound of Qmax for every state-action-
MDP triple, prior knowledge of a better upper bound for
some state-action-MDP triples can be incorporated directly
into the Bellman operator. ((1 − γ)εs + εa)-accurate prior
knowledge of the value of the identifying state-action-MDP
triple of an approximation unit effectively reduces the cov-
ering number by one.

One of the ways in which we can derive a good distance
function is by partial knowledge of the reward and tran-
sition models. Upper bounds on the reward received from
various state-action-MDP triples and knowledge about their
next-state distributions can be used to derive very accurate
distance functions (or refine a coarser distance function). A
distance function that accurately reflects the behavior of the
Bellman operator can help keep the covering number small.

While beyond the scope of this work, there are many other
approaches that can be combined with our algorithms to in-
corporate prior knowledge without adversely affecting our
bounds (Mann 2012).

10 Related Work

The only other work we are aware of where learning and
policy execution happen in parallel processes is the work of
Hester et al. (Hester and Stone 2013; 2012; Hester, Quin-
lan, and Stone 2012). The authors correctly argue that while
there exist algorithms that learn with few samples, and there
exist algorithms that are sufficiently computationally effi-
cient so as to be able to take actions in realtime, no pre-
vious work addresses both problems simultaneously. They
then proceed to demonstrate experimentally that their algo-
rithm is in fact able to learn very quickly while acting in real-
time. While the experimental results of Hester et al. are very
encouraging, their algorithm does not come with any perfor-
mance guarantees, nor does it handle concurrent exploration
in multiple MDPs (though extending it to the multiple MDP
case appears straightforward).

A recent paper has demonstrated that it is possible to ex-
plore in multiple MDPs simultaneously (Guo and Brunskill
2015). Our work significantly improves on that result, by: 1)
Extending concurrent exploration to continuous state-action
spaces, 2) allowing for non-instantaneous value function up-
dates, 3) reducing the sample complexity of exploration on
all key quantities, and 4) allowing smooth generalization be-
tween concurrent MDPs, rather than clustering MDPs and
treating each cluster as identical.

Lattimore and Hutter (2012) present an algorithm that,
similarly to our own, integrates new samples every time
the available number of samples for a particular state-action
doubles. As a result, their algorithm achieves optimal de-
pendence on the discount factor. Unfortunately their bounds
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only hold for the restricted case of discrete MDPs where ev-
ery state-action can transition to at most two next states.

Exploration in Metric State Spaces (Kakade, Kearns, and
Langford 2003) is the first example in the PAC-MDP liter-
ature which tries to address exploration in continuous state
spaces. While definitely a step in the right direction, the pa-
per did not offer a concrete algorithm.

C-PACE (Pazis and Parr 2013), a fixed point based algo-
rithm, was the first concrete PAC-optimal exploration algo-
rithm for online, discounted, continuous state-action MDPs.

DGPQ (Grande, Walsh, and How 2014), is the first Q-
learning inspired algorithm for PAC-optimal exploration in
continuous spaces. Its development was motivated by the
fact that many PAC-optimal algorithms (including C-PACE),
perform a fixed point computation after every step, which
makes them unsuitable for realtime applications. Experi-
mental results with DGPQ are encouraging, as the authors
demonstrate that DGPQ requires significantly less computa-
tion per step than C-PACE. While a step in the right direc-
tion, DGPQ does have some drawbacks of its own: 1) DGPQ
assumes that it will always be able to perform an update be-
tween steps, which is not true for domains with delays. 2)
Like all Q-learning inspired algorithms, DGPQ requires sig-
nificantly more samples than fixed-point based methods. As
this paper has demonstrated we can have the best of both
worlds: The sample efficiency of fixed-point based methods
can be combined with realtime execution if we allow for pol-
icy execution and learning to run on parallel processes.

11 Future Work

We designed and analyzed our algorithm in a setting where
we only care about the total cost of exploration, not when
this cost is incurred. While this setting is popular with the
theoretical community, in practical applications when costs
are incurred is far from irrelevant. Consider for example the
case where PAC-optimal exploration is employed by a com-
pany designing a product. Exploration costs incurred during
development are far less important than exploration costs in-
curred when the product has reached the end user. Designing
and analyzing algorithms that have explicit exploration and
exploitation phases based on the theory developed in this
work is a promising next step.

One aspect of the real world which our exploration algo-
rithm did not take into account is that in many real life sys-
tems catastrophic failures are unacceptable. Consequently
methods for safe exploration are of great real world inter-
est (Moldovan and Abbeel 2012).

A central assumption made by our algorithm in the con-
text of continuous state-action spaces and multiple concur-
rent MDPs, is that there exists some distance function in
which the effects of applying the Bellman operator are ap-
proximately smooth8. While it is reasonable to expect that
such a distance function exists, many obvious distance func-
tions that a user might try may not satisfy this requirement.

8Our bounds allow for discontinuous functions, and small, local
discontinuities will not significantly affect performance. Unfortu-
nately, large discontinuities on a global scale can make εc unac-
ceptably large.

Automatic discovery of suitable distance functions is an im-
portant next step.
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