
Incremental Stochastic Factorization for Online Reinforcement Learning

André M. S. Barreto and Rafael L. Beirigo
Laboratório Nacional de Computação Cientı́fica

Petrópolis, RJ, Brazil
{amsb, rafaelb}@lncc.br

Joelle Pineau and Doina Precup
School of Computer Science, McGill University

Montreal, QC, Canada
{jpineau, dprecup}@cs.mcgill.ca

Abstract

A construct that has been receiving attention recently in rein-
forcement learning is stochastic factorization (SF), a partic-
ular case of non-negative factorization (NMF) in which the
matrices involved are stochastic. The idea is to use SF to ap-
proximate the transition matrices of a Markov decision pro-
cess (MDP). This is useful for two reasons. First, learning the
factors of the SF instead of the transition matrices can reduce
significantly the number of parameters to be estimated. Sec-
ond, it has been shown that SF can be used to reduce the num-
ber of operations needed to compute an MDP’s value func-
tion. Recently, an algorithm called expectation-maximization
SF (EMSF) has been proposed to compute a SF directly from
transitions sampled from an MDP. In this paper we take a
closer look at EMSF. First, by exploiting the assumptions un-
derlying the algorithm, we show that it is possible to reduce it
to simple multiplicative update rules similar to the ones that
helped popularize NMF. Second, we analyze the optimization
process underlying EMSF and find that it minimizes a modi-
fied version of the Kullback-Leibler divergence that is partic-
ularly well-suited for learning a SF from data sampled from
an arbitrary distribution. Third, we build on this improved un-
derstanding of EMSF to draw an interesting connection with
NMF and probabilistic latent semantic analysis. We also ex-
ploit the simplified update rules to introduce a new version
of EMSF that generalizes and significantly improves its pre-
cursor. This new algorithm provides a practical mechanism to
control the trade-off between memory usage and computing
time, essentially freeing the space complexity of EMSF from
its dependency on the number of sample transitions. The al-
gorithm can also compute its approximation incrementally,
which makes it possible to use it concomitantly with the col-
lection of data. This feature makes the new version of EMSF
particularly suitable for online reinforcement learning. Em-
pirical results support the utility of the proposed algorithm.

1 Introduction
It is widely recognized that efficient learning is only pos-
sible if one exploits some kind of regularity in the prob-
lem (Györfi et al. 2002). In reinforcement learning, a struc-
tural regularity that has been receiving attention recently
is a particular case of non-negative factorization (NMF)
called stochastic factorization (SF). As the name suggests,

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in this case a stochastic matrix P ∈ R
n×n is represented

as the product of two stochastic matrices D ∈ R
n×m and

K ∈ R
m×n, with m < n.

In the context of reinforcement learning, one is inter-
ested in Markov decision processes (MDPs) whose transi-
tion matrices can be well approximated by SFs. This inter-
est was originally triggered by an intriguing property of SF:
if we swap the factors of the factorization, we obtain an-
other stochastic matrix P̄ = KD that retains some impor-
tant properties of the Markov chain represented by P (Bar-
reto and Fragoso 2011). By replacing the transition matrices
of an MDP with their reduced counterparts, one can derive
a smaller MDP whose value function can be used to recover
the corresponding function of the original model (Barreto,
Pineau, and Precup 2014). This strategy of replacing P with
P̄ is sometimes referred to as the “SF trick.”

One difficulty in applying the SF trick in practice is the
need to compute the factorization itself, which has been
shown to be an NP-hard problem (Vavasis 2009). In a re-
cent paper we have suggested looking at the problem from
a different perspective: instead of assuming one knows the
transition matrix P and wants to compute the factors D and
K, we consider the scenario where one only has access to
transitions sampled from P (Barreto et al. 2015). In this case
one could of course compute an estimate of P by counting
the occurrences of transitions, which would take us back to
the original scenario. Instead, we proposed an approach to
compute D and K directly from data, without ever comput-
ing an explicit estimate of P. One obvious advantage of this
strategy is that the number of parameters to be estimated is
reduced from n2 to 2nm; since m is a parameter of the al-
gorithm, it serves as a practical device to control the trade
off between the estimation and approximation errors in the
model DK ≈ P (Györfi et al. 2002). Thus, besides the SF
trick, the possibility of using SF to speed up learning further
motivates our interest on this model.

The algorithm to compute an SF from data is an
expectation-maximization (EM) method called expectation-
maximization stochastic factorization (EMSF) (Barreto et
al. 2015). In this paper we take a closer look at EMSF.
First, by exploiting the assumptions underlying the algo-
rithm, we show that it is possible to reduce its original update
rules to simple multiplicative rules similar to the ones that
helped popularize non-negative factorization (NMF) (Lee

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1468

and Seung 1999; 2001). Second, we analyze the optimiza-
tion problem underlying EMSF and find that the dissimi-
larity function implicitly minimized by it is a specializa-
tion of the Kullback-Leibler divergence which is particularly
well-suited for the scenario where the factorization must be
learned from data sampled from an arbitrary distribution.
Third, we build on this improved understanding of EMSF
to draw a connection with probabilistic latent semantic anal-
ysis (PLSA), which in turn unveils a link with known NMF
algorithms (Hofmann 1999).

Besides highlighting the connection between EMSF and
other algorithms from the literature, the simplified update
rules also shed light on the mechanics of the algorithm. We
exploit this to develop an incremental version of EMSF that
generalizes and improves its precursor. By tuning the pa-
rameters of the new algorithm one can set the right balance
between memory usage and computing time. In the slow-
est end of the spectrum we recover the original EMSF; at
the other extreme we encounter an algorithm that is con-
siderably faster than its precursor. The incremental version
of EMSF can also be applied in parallel with the collection
of data, which makes it particularly suitable to online rein-
forcement learning (Sutton and Barto 1998). We test the new
algorithm empirically on simple problems.

2 Background and Notation
Random variables are represented by capital letters; we
use the notation A1:τ to refer to a sequence of variables
A1, A2, ..., Aτ . Scalar variables are represented by small let-
ters; boldface capital letters and boldface small letters are
used to denote matrices and vectors, respectively. Given a
matrix A, Ai is its ith row, Aj is its jth column, and Aij is
the element in the ith row and jth column.

A stochastic matrix has only non-negative elements and
its rows sum to 1. We call a square stochastic matrix a tran-
sition matrix. As described in the introduction, SF is a re-
lation P = DK in which P ∈ R

n×n, D ∈ R
n×m, and

K ∈ R
m×n are stochastic. The SF of a transition matrix

makes it possible to apply the SF trick: by swapping the
factors of the factorization one gets another transition ma-
trix P̄ = KD, potentially much smaller than the original,
that retains some fundamental properties of P, such as the
number of recurrent classes and their respective periods (see
Barreto and Fragoso’s paper for details, 2011).

Here we are interested in the application of the SF trick to
MDPs. We assume the reader is familiar with the basics of
reinforcement learning and MDPs; for our purposes it suf-
fices to see the latter as a collection of u transition matrices
Pa ∈ R

n×n, each one describing the dynamics associated
with an action a (Puterman 1994). Let M be an MDP with
transition matrices Pa. Roughly speaking, we want to com-
pute approximations DaKa ≈ Pa, define a new MDP M̄
whose transition matrices are P̄a = KaDa, solve M̄ , and
then use the solution to compute an approximation of the
value function of M (Barreto, Pineau, and Precup 2014).1

1The astute reader will notice a similarity between this strategy
and Bertsekas’s (2011) aggregation/disaggregation scheme. Note
though that in the latter the dynamics of the reduced model is given

Figure 1: Graphical model of an SFM

We have recently proposed an algorithm to compute
DaKa ≈ Pa using only transitions sampled from an MDP
M (Barreto et al. 2015). In order to do so, we endowed
stochastic factorization with a probabilistic interpretation,
which we now briefly describe. Let S ≡ {1, 2, ..., n}, H ≡
{1, 2, ...,m}, and A ≡ {1, 2, ..., u}. Consider the stochastic
process (S1, A1, H1, S2, A2, H2, ...), where St ∈ S are ob-
servable states, At ∈ A are observable actions, and Ht ∈ H
are hidden states. The proposed probabilistic model builds
on the following Markov assumptions:

(i) Pr(St|Ht−1, At−1, ..., S1) = Pr(St|Ht−1, At−1);
(ii) Pr(Ht|At, St, Ht−1, ..., S1) = Pr(Ht|At, St);

(iii) Pr(At|St, Ht−1, At−1, ..., S1) = Pr(At|St).
The assumptions above are depicted as a graphical
model in Figure 1. Given τ > 0, let W1:τ ≡
{S1, A1, ..., Aτ−1, Hτ−1, Sτ}. It is easy to compute the
probability of any possible instantiation of W1:τ under As-
sumptions (i), (ii), and (iii):

Pr(W1:τ) = Pr(S1)

τ−1∏
t=1

Pr(St+1|Ht, At)Pr(At|St)Pr(Ht|St, At).

Thus, the only quantities needed to fully characterize a
stochastic process with the properties above are Pr(S1),
Pr(St+1|Ht, At), Pr(At|St), and Pr(Ht|St, At). This leads
to the following definition:
Definition 1. An SF model (SFM) is a tuple λ ≡
(Da,Ka,Π,μ), where Da

ij = Pr(Ht = j|St = i, At = a),
Ka

ij = Pr(St+1 = j|Ht = i, At = a), Πia = Pr(At =
a|St = i), and μi = Pr(S1 = i).

An SFM λ provides a useful construct for computing the
factorization of an MDP from data. Let Z1:τ be the “observ-
able part” of W1:τ , that is, Z1:τ ≡ {S1, A1, ..., Aτ−1, Sτ}.
The idea is to assume that Z1:τ comes from an SFM λ and
then tune the parameters of the model in order to maximize
the likelihood of the data:

L(λ|z1:τ) = Pr(z1:τ |λ) = μs1

τ−1∏
t=1

Πstat(D
atKat)stst+1 .

(1)
We have shown that one can find matrices Da and Ka cor-

responding to a local maximum of (1) by successively ap-
plying the following update rules:

Da′
ij =

∑τ−1
t=1 Pr(Ht = j|Z1:τ = z1:τ , λ)1{st = i, at = a},

Ka′
ij =

∑τ−1
t=1 Pr(Ht = i|Z1:τ = z1:τ , λ)1{st+1 = j, at = a},

Da
ij = Da′

ij /
∑

l D
a′
il , and Ka

ij = Ka′
ij /

∑
l K

a′
il ,

(2)

by KPD rather than KD, and the multiplication DK is not seen
as an approximation of P.

1469

where 1{·} is the indicator function. The question that nat-
urally arises is of course how to compute Pr(Ht|Z1:τ , λ).
For that, we proposed an iterative method, inspired on
the forward-backward procedure to compute probabilities
in a Hidden Markov Model (Baum 1972), which works
by propagating auxiliary variables αi(t) and βi(t) through
time. Specifically, we showed that, starting from αi(1) =
μs1Πs1a1

Da1
s1i and βi(τ − 1) = K

aτ−1

isτ
, by applying the

recursive equations

αj(t+ 1) =
∑

i αi(t)K
at
ist+1

Πst+1at+1D
at+1

st+1j

βi(t− 1) =
∑

j βj(t)D
at
stj

ΠstatK
at−1

i,st

(3)

one can compute Pr(Ht = i|Z1:τ , λ) for any t and any i as
the product of a scaled version of αi(t) and βi(t). The re-
sulting algorithm is expectation-maximization SF (EMSF).

3 A Closer Look at EMSF
In this section we derive simplified rules for EMSF, analyze
the divergence function it implicitly minimizes, and draw a
connection with PLSA and NMF.

Simplified Update Rules
By exploiting Assumptions (i), (ii), and (iii) it is possible to
break the dependence of Pr(Ht|Z1:τ , λ) on events that hap-
pened before time t or after time t + 1. This eliminates the
need for the recursive computations in (3), leading to partic-
ularly simple instances of update equations (2). The follow-
ing result states that the distribution of Ht only depends on
St, At, and St+1:

Proposition 1. Under Assumptions (i), (ii), and (iii)
Pr(Ht|Z1:τ) = Pr(Ht|St+1, At, St).

Proof. (Sketch) We start from

Pr(Ht|St, At, St+1) =
Pr(St+1|Ht, At)Pr(Ht|St, At)

Pr(St+1|St, At)
(4)

and show that if we expand Pr(Ht, Z1:τ) and Pr(Z1:τ) we
find that Pr(Ht|S1:τ) = Pr(Ht, S1:τ)/Pr(S1:τ) reduces
to (4). The detailed proof is in the supplementary mate-
rial (Barreto et al. 2016).

We can now use Proposition 1 in update equations (2). We
start by rewriting (4) using the parameters of an SFM:

Pr(Ht = j|Z1:τ , λ) =
Dat

stj
Kat

jst+1∑
l D

at
stl

Kat
lst+1

=
Dat

stj
Kat

jst+1

(Dat)st(K
at)st+1

.

(5)
We can then plug (5) in (2) to obtain our improved update
rules. We define u matrices Ca where Ca

ij is the number of
transitions in which st = i, at = a, and st+1 = j. Then,

Da′
ij =

∑τ−1
t=1 1{st = i, at = a}

Da
ijK

a
jst+1

(Da)i(Ka)st+1

=
∑n

l=1

∑τ−1
t=1 1{st = i, at = a, st+1 = l}

Da
ijK

a
jl

(Da)i(Ka)l

= Da
ij

n∑
l=1

Ca
ilK

a
jl

(DaKa)il
.

(6)

If we proceed in the same way starting from the update
equation for Ka′

ij , we arrive at the following update rule:

Ka′
ij = Ka

ij

n∑
l=1

Ca
ljD

a
li

(DaKa)lj
. (7)

Equations (6) and (7) improve (3) in at least three ways.
First, they are easier and faster to compute (we discuss the
precise computational costs in Section 4). Second, they al-
low one to learn an SFM without knowledge of the policy
Π and initial distribution μ used to collect the data. Third,
they make it clear that the updates of Da and Ka only de-
pend on the transitions in which the action a was selected,
and thus the model update can be broken in u independent
subproblems. On top of that, (6) and (7) highlight a nice
feature of EMSF: since any elements Da

ij and Ka
ij that are

initially zero will remain zero throughout its iterations, one
can force the resulting model to be sparse, either for compu-
tational reasons or as a way of introducing prior knowledge
in the approximation. For example, if we know that the ex-
ecution of action a in state i cannot possibly lead to some
states, we can zero the corresponding entries in some rows
of Ka and define Da

i accordingly: daij �= 0 only if Ka
j is one

of the zeroed rows.

Divergence Function Being Minimized by EMSF

Update rules (6) and (7) make it possible to compute an SF
directly from data. Alternatively, one could use the sample
transitions to compute an estimate of Pa, let it be denoted by
P̂a, and then resort to a NMF algorithm to compute Da and
Ka. In fact, Cohen and Rothblum (1991) have shown that
one can always derive an SF from a NMF of a stochastic
matrix; thus, in principle, any NMF algorithm can be used.

A natural question is thus how to choose between EMSF
and one of the many NMF algorithms available in the liter-
ature (Wang and Zhang 2013). NMF algorithms minimize
different divergence functions, and some are more appropri-
ate than others depending on the application. In this section
we show that maximization of (1) corresponds to the mini-
mization of a specific divergence function that is well suited
for learning an SF from data, which indicates that EMSF
may indeed be a good choice.

Equations (6) and (7) resemble Lee and Seung’s (1999)
multiplicative update rules that helped to popularize NMF,
in particular the ones used to minimize the Kullback-Leibler
(KL) divergence:

KL(P̂a||DaKa) =
n∑

i=1

KL(P̂a
i , (D

aKa)i)

=

n∑
i=1

n∑
j=1

(
P̂a

ij log
P̂a

ij

(DaKa)ij

)
. (8)

We now show that EMSF minimizes a modified version
of (8) which is particularly adequate for learning an SF. As
an EM method, EMSF aims at maximizing (1), which is

1470

equivalent to maximizing

logL(λ|z1:τ) = logμs1
+

τ−1∑
t=1

logΠst,at+

+

τ−1∑
t=1

log(DatKat)stst+1 . (9)

Since μ and Π are not estimated by EMSF, we can exclude
these fixed terms from (9) and write

logL(λ|z1:τ) ∝
u∑

a=1

n∑
i=1

n∑
j=1

Ca
ij log(D

aKa)ij

=
u∑

a=1

n∑
i=1

∑
l

Ca
il

n∑
j=1

Ca
ij∑

l C
a
il

log(DaKa)ij

=
u∑

a=1

n∑
i=1

n∑
l=1

Ca
il

n∑
j=1

P̂a
ij log(D

aKa)ij , (10)

where P̂a is an estimate of Pa computed through counting,
as in (8). The term

∑n
j=1 P̂

a
ij log(D

aKa)ij is the negative
of the cross entropy between P̂a

i and (DaKa)i, denoted by
H(P̂a

i , (D
aKa)i). It is well known that H(P̂a

i , (D
aKa)i) =

H(P̂a
i) + KL(P̂a

i ||(DaKa)i), where H(P̂a
i) is the en-

tropy of P̂a
i (Bishop 2006). Since H(P̂a

i) is fixed in
H(P̂a

i , (D
aKa)i), this term plays no rule in the maximiza-

tion of (10). Therefore, if we divide (10) by τ − 1, we see
that maximizing (9) corresponds to minimizing the follow-
ing divergence function:

WKL =

u∑
a=1

n∑
i=1

∑n
l=1 C

a
il

τ − 1
KL(P̂a

i ||(DaKa)i). (11)

We can look at
∑n

l=1 C
a
il/(τ − 1) as an estimate of Pr(St =

i, At = a) under the stochastic process induced by μ and
Π. Thus, minimization of (11) can be seen as an empirical
minimization of

KL(μ,Π) = E(i,a)∼(μ,Π)

[
KL(P̂a

i ||(DaKa)i)
]
, (12)

where E(i,a)∼μ,Π[·] denotes expected value when i ∈ S and
a ∈ A come from the distribution induced by μ and Π.

Therefore, the divergence function minimized by EMSF
is a weighted version of (8). The difference may seem subtle
at first, but the fact that (12) takes into account the actual
distribution from which the data is coming may be a great
advantage in some cases. To see why this is so, consider the
scenario where the distribution induced by μ and Π makes
the occurrence of the event St = i, At = a very unlikely
(this is often the case in reinforcement learning). If we are
minimizing (8) or (11) using a finite dataset, one would ex-
pect that the estimate P̂a

i is not a very good approximation
of the ith row of Pa. Since (8) weighs the approximation of
all the rows of Pa equally, by minimizing this function one
will “waste resources” in the attempt to approximate a bad
estimate of the true Pa

i . In contrast, EMSF will essentially
ignore Pa

i , using the free parameters of Da and Ka to ap-
proximate the rows of Pa that actually occur under μ and Π
(the precise way this happens will become clear shortly).

Relation with NMF and PLSA
Interestingly, it has been shown in the literature that (11) is
the divergence function minimized by the asymmetric for-
mulation of PLSA (Shashanka, Raj, and Smaragdis 2008).
In fact, if we appropriately combine the three update equa-
tions usually used in PLSA we arrive precisely at (6) and (7);
thus, from a strictly algorithmic point of view this model is
a particular case of EMSF when u = 1.

PLSA is a statistical technique for modeling the co-
occurrence of data by associating latent variables with ob-
servations (Hofmann 1999). Although it has been originally
motivated by the analysis of text, it can be applied to arbi-
trary count data. In contrast with SF, though, in PLSA the
variables being analyzed usually have different semantics—
such as words and documents, for example—and the sam-
pling process is assumed to be independent draws from an
underlying distribution.

Besides being interesting on its own, the connection be-
tween EMSF and PLSA is beneficial because it immediately
makes available many results regarding the latter. It clarifies,
for example, the precise relationship between EMSF and
NMF: it can be shown that rules (6) and (7) are numerically
equivalent to NMF using (8) and applied to 1/(τ − 1)Ca

instead of P̂a (Gaussier and Goutte 2005).
More generally, the connection between EMSF and PLSA

helps to contextualize the former within the framework
of discrete component analysis, which in turn highlights
a link with other models that are also potentially useful
in the context of SF (Buntine and Jakulin 2006). From
a more practical point of view, the equivalence between
the two algorithms suggests several possible extensions for
EMSF, such as Bayesian methods to determine an appro-
priate value for m (Mclachlan and Peel 2000), techniques
to avoid overfitting (Hofmann 1999) and to induce spar-
sity (Shashanka, Raj, and Smaragdis 2008), and hierarchical
variants of the algorithm (Vinokourov and Girolami 2002;
Gaussier et al. 2002).

However, in this paper we are interested in one particular
extension of EMSF, namely, an algorithm able to compute an
SF approximation of an MDP online. Given the connection
between EMSF and PLSA/NMF, it is only natural to consult
the literature on the latter in search of online versions of the
basic algorithms.

There is indeed a recent trend to develop PLSA and
NMF algorithms that can operate online (Lefevre, Bach,
and Févotte 2011; Duan, Mysore, and Smaragdis 2012;
Bassiou and Kotropoulos 2014). Unfortunately, these algo-
rithms are not readily applicable to the scenario considered
by EMSF. In PLSA and NMF, each row of P represents an
object, such as a document, image, or genome. The online
algorithms were thus developed to handle a very long (or
even infinite) stream of objects, which corresponds to hav-
ing access to the rows of P incrementally. In contrast, when
we are trying to approximate an MDP online any element
of P̂a can change with the arrival of new data. This reflects
the difference on the generative models underlying the two
frameworks: while in PLSA “new data” is an entire object,
in EMSF it is a single co-occurrence of two events—in the

1471

case of an MDP, a sample transition.
In the next section we build on the simplified EMSF up-

date rules to develop a new version of the algorithm which is
able to process data incrementally, in the “atomic” sense ex-
plained above. Translating back to the terminology usually
adopted in PLSA, our algorithm is able to process a stream
of words, each one associated with a given document. To
the best of our knowledge this is the first method that allows
such an asynchronous analysis of objects, so the algorithm
we are about to present can be considered as a contribution
to the areas of PLSA and NMF as well.

4 Incremental Algorithm
We start the derivation of the new algorithm by rewriting (6)
and (7) in terms of the rows of Da and columns of Ka.
Specifically, given auxiliary matrices D̂a and K̂a, for each
Ca

ij �= 0 we simply make

wa
ij ←

(Da)i ⊗ (Ka)j

(Da)i(Ka)j
,

D̂a
i ← D̂a

i +Ca
ijw

a
ij and (K̂a)j ← (K̂a)j +Ca

ijw
a
ij ,

(13)

and after every nonzero element of Ca has been processed
matrices D̂a and K̂a are normalized and substituted for Da

and Ka (here ‘⊗’ denotes element-wise multiplication).
Update rules (13) make it explicit the advantages of the

new version of EMSF in terms of computational resources
required. Let ηa be the number of nonzero elements in ma-
trix Ca and let η = maxa η

a. Each iteration of EMSF has
computational complexity O(ηum), while the algorithm’s
memory complexity is O(u(η + nm)). Note that, unlike in
the original version of EMSF, in which both the amount of
memory used and the number of operations performed are
O(τm), in the new version of the algorithm these quantities
do not depend on the number of transitions τ (except if we
consider the construction of Ca, which is O(τ)).

As discussed in Section 3, wa
ij is an m-dimensional vec-

tor that represents Pr(Ht|St = i, At = a, St+1 = j). One
can look at this vector as a distribution reflecting the “inter-
section” between Da

i and (Ka)j . Thus, each row of Da and
each column of Ka will be updated as a weighted sum of
these stochastic vectors in which the weight of wa

ij is Ca
ij ,

the number of times St = i, At = a, and St+1 = j. It is in
this sense that EMSF allocates more resources to transitions
that actually occur under μ and Π; in particular, if Ca

ij is
close to zero, the corresponding wa

ij will have a small influ-
ence on the update of Da

i and (Ka)j .
Besides shedding light on its mechanics, this view of

EMSF provides a very flexible framework that can be spe-
cialized to different contexts. In particular, if we decouple
the accumulation of changes to Da and Ka from their com-
mitting, we can define an incremental version of EMSF.

Algorithm 1 shows the incremental version of EMSF. At
each iteration the algorithm gets a new sample transition, ei-
ther from a finite dataset or from direct interaction with the
MDP. The transition is then added to the appropriate ma-
trix of countings Ca and discarded. If the sum of nonzero

elements in the matrices Ca reaches a certain limit ηmax,
defined according to the amount of memory available, the
statistics stored in Ca are used to compute the updates to Da

and Ka, which are accumulated in the auxiliary matrices D̂a

and K̂a, as in (13). At every tc iterations the modifications
in D̂a and K̂a are committed to Da and Ka.

Algorithm 1 Incremental EMSF

Input:

m ∈ N � SF’s order
tc ∈ N � Interval to commit updates
α ∈ (0, 1] � Learning rate
ηmax ∈ N � Max. number of nonzero elements

Output: DaKa ≈ Pa, for a ∈ A
for each a ∈ A do

Da ← random stochastic matrix ∈ R
n×m

Ka ← random stochastic matrix ∈ R
m×n

Ca ← 0 ∈ R
n×n � Matrix with countings

D̂a ← 0 ∈ R
n×m � Auxiliary matrix

K̂a ← 0 ∈ R
m×n � Auxiliary matrix

x̂a ← 0 ∈ R
n � Sums of D̂a’s rows

ŷa ← 0 ∈ R
m � Sums of K̂a’s rows

for t = 1, 2, ... do
get next s, a, s′ � From dataset or online
Ca

ss′ ← Ca
ss′ + 1 � Count transition

ct ← (t mod tc = 0) � ct stands for “commit time”
if
∑

a η
a = ηmax or ct then � Accumulate changes

for each a ∈ A do
for each Ca

ij �= 0 do
g ← Da

i (K
a)j

w ← (Ca
ij/g) × (Da

i ⊗ (Ka)j)

(D̂a)i ← (D̂a)i +w
x̂a
i ← x̂a

i +
∑

l wl

(K̂a)j ← (K̂a)j +w
ŷa ← ŷa +w

Ca ← 0 ∈ R
n×n � Free memory

if ct then � Commit changes
for each a ∈ A do

for i ∈ 1, 2, ...,m do K̂a
i ← K̂a

i /ŷ
a
i

Ka ← (1− α)Ka + αK̂a

for i ∈ 1, 2, ..., n do
if x̂a

i �= 0 then � If row i changed
Da

i ← (1− α)Da
i + αD̂a

i /x̂
a
i

D̂a ← 0 ∈ R
n×m; K̂a ← 0 ∈ R

m×n

x̂a ← 0 ∈ R
m; ŷa ← 0 ∈ R

n

Update policy used to collect data � Optional

The scheme above can give rise to different instantiations
of EMSF. For example, the case in which tc = τ −1, α = 1,
and ηmax ≥ un2 corresponds exactly to the batch version
of EMSF, which we know converges to a stationary point
of (9) and (11) (Bishop 2006). Here though we are mostly
interested in the scenario where we have to process a very
long or infinite sequence of transitions, so learning should
start before all the data is processed. On top of that, we also
consider the additional difficulty of handling matrices whose

1472

size n is large compared to the amount of memory available.
We deal with the memory issue first. The need to keep

O(u(η + nm)) elements makes it infeasible to store Ca

when this matrix is dense and n is large. We can solve this
problem by only partially filling the matrices Ca and then
deleting them from memory after the corresponding updates
have been accumulated in the auxiliary matrices D̂a and K̂a.
This can be accomplished with Algorithm 1 by setting the
parameter ηmax, the maximum number of nonzero elements
in the matrices Ca, so that these matrices will fit in the avail-
able memory. Observe that this strategy breaks the memory
complexity’s dependency on η, which means that EMSF’s
memory usage can be reduced to O(unm). Despite this fact,
when tc = τ−1 EMSF will converge to the exact same solu-
tion as its batch counterpart, though using a larger number of
operations, as each application of (13) will be broken in sev-
eral rounds. When ηmax = 1, in particular, EMSF will per-
form roughly the same number of operations performed by
its original version. More generally, by using ηmax < un2

one is simply trading space for computation time, since the
parameter ηmax does not affect the algorithm’s result.

Since the issue with large n has been solved through the
parameter ηmax, we now turn to the second challenge: how
to make EMSF work online. This is where the parameter
tc comes into play. Specifically, by making tc < τ − 1,
the matrices Da and Ka can be updated at arbitrary time
steps. It is not difficult to see that update rules (13) only de-
pend on the relative magnitude of the elements of Ca; thus,
as long as tc is large enough, these rules will have the ex-
pected effect. In particular, as tc → ∞ the solution found
by EMSF should approach the solution that would be com-
puted in the limiting case of an infinite sample—i.e., when
Ca

ij/(τ − 1) = Pr(St = i, At = a, St+1 = j).
An interesting modification of EMSF that can potentially

speed up convergence is to let the algorithm commit the
changes accumulated in D̂a and K̂a at shorter time intervals
tc. Since in this case the auxiliary matrices may not be “fully
formed” at committing time, such modification may lead to
increased variance on EMSF’s results. One alternative in this
case is to use α < 1 in Algorithm 1. Roughly, this modifica-
tion corresponds to changing from batch-mode learning to a
stochastic approximation regime, as commonly done in neu-
ral networks training (Bishop 2006). The convergence of the
algorithm should occur under the usual conditions imposed
on α for the convergence of stochastic approximation tech-
niques (Bertsekas and Tsitsiklis 1996). In the case in which
α < 1 and ηmax = tc = 1 Algorithm 1 reduces to the in-
stance of EM proposed by Nowlan (1991).

5 Experiments
In this section we use computational experiments to illus-
trate some of the properties of EMSF. Since PLSA/NMF al-
gorithms similar to EMSF have already been submitted to
extensive empirical analysis (Wang and Zhang 2013), we fo-
cus on illustrating characteristics that are specific to EMSF.

We argued that one potential advantage of EMSF is that
the divergence function it minimizes is particularly suitable
for learning an SF from data because it promotes a more

Figure 2: Approximation error for transition matrices gen-
erated as P = D′K′, with the rows of D′ ∈ R

100×20 and
K′ ∈ R

20×100 sampled from a Dirichlet distribution with
concentration parameter set to 0.5. Both algorithms used
m = 10; EMSF was run with tc = τ − 1 and α = 1. Shad-
owed regions represent one standard error over 50 runs.

rational allocation of resources. We now test this hypothe-
sis by comparing the batch version of EMSF with Lee and
Seung’s (1999) NMF algorithm that minimizes the conven-
tional KL divergence (8) (we call the method KLM). In or-
der to check our hypothesis, we carried out an experiment in
which 105 transitions were sampled from P in two different
regimes. In the first one the rows of P were sampled from a
uniform distribution ρ (that is, we first sample a state i uni-
formly from S and then sample the next state from Pi). This
corresponds to weighing all rows Pi the same, as in (8). In
the second experiment we concentrated 90% of the proba-
bility mass of ρ in 50% of the states (we did so by simply re-
normalizing ρ). This heterogeneous sampling scheme em-
ulates situations in which some states are much more likely
to be sampled than others, such as in reinforcement learning.
The results of the experiments, shown in Figure 2, illustrate
how the approximation computed by EMSF takes into ac-
count the distribution used to sample the data.

We now analyze the online performance of EMSF by ex-
ecuting Algorithm 1 with different values of tc and α (recall
that ηmax is only a way to balance memory usage and exe-
cution time, not affecting the solution computed by the al-
gorithm). In this experiment learning took place with transi-
tions sampled through direct interaction with P, which cor-
responds to collecting data under its stationary distribution.
The results of the experiment, shown in Figure 3, corrobo-
rate the hypothesis that values of α < 1 can indeed speed
up convergence. They also illustrate an interesting interplay
between this parameter and tc: note that, when using larger
values for tc, we can afford to use larger values for α as
well. This is expected, since we know that for sufficiently
large tc EMSF will converge to a stationary point of (11)

1473

0 5000 10000 15000 20000 25000

0
.6

2
0

.6
4

0
.6

6
0

.6
8

0
.7

0
0

.7
2

0
.7

4
0

.7
6

τ

K
L

ρ
(P

,
D

K
)

tc = 600 α = 0.1

tc = 600 α = 0.3

tc = 600 α = 0.7

tc = 900 α = 0.1

tc = 900 α = 0.3

tc = 900 α = 0.7

Figure 3: KLρ(P||DK), with n = 100, m = 30, and ρ the
stationary distribution of P. The rows of P were generated
from a Dirichlet distribution with concentration parameter
0.5. Error bars representing one standard error over 50 runs
are shown, but are almost imperceptible at the plot’s scale.

using α = 1.
Finally, we investigate the performance of EMSF in the

context of reinforcement learning. In order to do so, we
replicated our previous experiments with the game of black-
jack, but now considering the online regime (Barreto et al.
2015). The experiment was carried out as follows. Starting
with a random policy π, each algorithm collected a batch
of 100 episodes. This data was used to improve π, which
was then tested on 106 hands of blackjack. Next, an 0.15-
greedy version of π was used to collect a second batch of
100 episodes, restarting the loop.

In order to evaluate EMSF we combined it with an al-
gorithm called policy iteration based on stochastic factor-
ization (PISF). Given DaK ≈ Pa, PISF computes an ap-
proximation of the MDP’s value function by applying the SF
trick in each policy evaluation step (see the article by Bar-
reto, Pineau, and Precup, 2014 for details). EMSF+PISF was
compared with two alternatives. The first method keeps u

approximations P̂a ∈ R
n×n, computed through maximum-

likelihood estimation —that is, counting transitions—, and
uses policy iteration to determine π. We call this method
“CNT+PI.” The second algorithm is Q-learning using a
learning rate of 0.1 (this rate resulted in the best performance
among the values {0.01, 0.1, 0.3}).

The results on the game of blackjack are shown in Fig-
ure 4. It is clear from the figure that the model-based algo-
rithms perform considerably better than Q-learning on this
task. When we compare the model-based methods only, we
see that EMSF+PISF can outperform CNT+PI using a model
that is only 5% the size of the MDP. This suggests that the
approximations DaK ≈ Pa computed by EMSF represent
a better compromise between estimation and approximation
errors (or “bias” and “variance”), as discussed in the original
paper presenting the algorithm (Barreto et al. 2015).

Regarding computational cost, the results shown in Fig-

0 2000 4000 6000 8000 10000

−
0

.1
2

−
0

.1
0

−
0

.0
8

Episodes

R
e

tu
rn

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●
● ●

● CNT+PI (Δ = 16.1 s)

Q−learning (Δ = 2.8 s)

EMSF + PISF (α = 1) (Δ = 59.6 s)

EMSF + PISF (α = 0.5) (Δ = 67.3 s)

EMSF + PISF (α = 0.1) (Δ = 67 s)

Figure 4: Results on blackjack. The values are the empiri-
cal return obtained on 106 games; Δ is the execution time.
EMSF was run with tc = 100 episodes and ηmax = ∞. Er-
ror bars representing one standard error over 100 runs are
shown, but are almost imperceptible at the plot’s scale.

ure 4 suggest that EMSF+PISF is considerably slower than
CNT+PI. Note though that there is a trade-off here: if on one
hand EMSF spends more time than CNT to build the model,
on the other hand PISF is significantly faster than PI. Specif-
ically, in the worst case each iteration of EMSF is O(n2) and
each iteration of PISF is O(n), while CNT is O(n) and PI is
roughly O(n3) per iteration. The relative costs of CNT+PI
and EMSF+PISF will thus depend on the number of iter-
ations performed by each of their components, which will
in turn have an impact on the quality of the approximations
computed by the algorithms. How exactly these factors in-
teract with each other is a matter yet to be investigated. We
refer the reader to the supplement for additional experiments
and further analysis (Barreto et al. 2016).

6 Conclusion
The contributions of this paper are twofold. First, it improves
considerably our understanding of EMSF. By analyzing the
algorithm, we were able to derive simple multiplicative up-
date rules that supersede the original ones, and also uncover
the divergence function implicitly minimized, which is par-
ticularly adequate for learning an SF from data sampled
from an arbitrary distribution. We also established an inter-
esting connection with PLSA and NMF that contextualizes
EMSF and opens up possibilities of extensions. Building on
this improved understanding of the algorithm we presented
the paper’s second contribution: an incremental version of
EMSF that makes it possible to learn an SF concomitantly
with the collection of data. This can speed up the conver-
gence of the algorithm considerably, and makes it particu-
larly suitable for online reinforcement learning.

Acknowledgments The authors thank Eduardo Krempser
for helping with the experiments. Funding for this research
was provided by Conselho Nacional de Desenvolvimento

1474

Cientı́fico e Tecnológico (CNPq), grant 461739/2014-3, and
by the NSERC Discovery grant program.

References
Barreto, A. M. S., and Fragoso, M. D. 2011. Computing
the stationary distribution of a finite Markov chain through
stochastic factorization. SIAM Journal on Matrix Analysis
and Applications 32:1513–1523.
Barreto, A. M. S.; Beirigo, R. L.; Pineau, J.; and Precup, D.
2015. An expectation-maximization algorithm to compute
a stochastic factorization from data. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJ-
CAI), 3329–3336.
Barreto, A. M. S.; Beirigo, R.; Pineau, J.; and Precup, D.
2016. Incremental stochastic factorization for online rein-
forcement learning: Supplementary material. Available on-
line.
Barreto, A. M. S.; Pineau, J.; and Precup, D. 2014. Policy
iteration based on stochastic factorization. Journal of Artifi-
cial Intelligence Research 50:763–803.
Bassiou, N., and Kotropoulos, C. 2014. Online PLSA: Batch
updating techniques including out-of-vocabulary words.
IEEE Transactions on Neural Networks and Learning Sys-
tems 25(11):1953–1966.
Baum, L. E. 1972. An inequality and associated maximiza-
tion technique in statistical estimation of probabilistic func-
tions of Markov processes. Inequalities 3:1–8.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Bertsekas, D. P. 2011. Approximate policy iteration: a sur-
vey and some new methods. Journal of Control Theory and
Applications 9(3):310–335.
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning. Springer-Verlag.
Buntine, W., and Jakulin, A. 2006. Discrete component
analysis. In Subspace, Latent Structure and Feature Selec-
tion, volume 3940 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg. 1–33.
Cohen, J. E., and Rothblum, U. G. 1991. Nonnegative ranks,
decompositions and factorizations of nonnegative matrices.
Linear Algebra and its Applications 190:149–168.
Duan, Z.; Mysore, G. J.; and Smaragdis, P. 2012. On-
line PLCA for real-time semi-supervised source separation.
In Latent Variable Analysis and Signal Separation, vol-
ume 7191 of Lecture Notes in Computer Science, 34–41.
Springer Verlag.
Gaussier, E., and Goutte, C. 2005. Relation between PLSA
and NMF and implications. In Proceedings of the Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 601–602.
Gaussier, . E.; Goutte, C.; Popat, K.; and Chen, F. 2002.
A hierarchical model for clustering and categorising doc-
uments. In Proceedings of the 24th BCS-IRSG European
Colloquium on IR Research, 229–247.

Györfi, L.; Kohler, M.; Krzyżak, A.; and Walk, H. 2002.
A Distribution-Free Theory of Nonparametric Regression.
Springer Verlag, New York.
Hofmann, T. 1999. Probabilistic latent semantic indexing.
In Proceedings of International ACM SIGIR Conference on
Research and Development in Information Retrieval, 50–57.
Lee, D. D., and Seung, H. S. 1999. Learning the parts of ob-
jects by non-negative matrix factorization. Nature 401:788–
791.
Lee, D. D., and Seung, H. S. 2001. Algorithms for non-
negative matrix factorization. In Advances in Neural Infor-
mation Processing Systems (NIPS). 556–562.
Lefevre, A.; Bach, F.; and Févotte, C. 2011. Online algo-
rithms for nonnegative matrix factorization with the Itakura-
Saito divergence. In IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (WASPAA), 313–316.
Mclachlan, G., and Peel, D. 2000. Finite Mixture Models.
Wiley-Interscience, 1 edition.
Nowlan, S. J. 1991. Soft Competitive Adaptation: Neural
Network Learning Algorithms Based on Fitting Statistical
Mixtures. Ph.D. Dissertation, Carnegie Mellon University,
Pittsburgh, PA, USA.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John Wiley &
Sons, Inc.
Shashanka, M.; Raj, B.; and Smaragdis, P. 2008. Sparse
overcomplete latent variable decomposition of counts data.
In Advances in Neural Information Processing Systems
(NIPS). 1313–1320.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Vavasis, S. A. 2009. On the complexity of nonnegative ma-
trix factorization. SIAM Journal on Optimization 20:1364–
1377.
Vinokourov, A., and Girolami, M. 2002. A probabilistic
framework for the hierarchic organisation and classification
of document collections. Journal of Intelligent Information
Systems 18(2-3):153–172.
Wang, Y.-X., and Zhang, Y.-J. 2013. Nonnegative matrix
factorization: A comprehensive review. IEEE Transactions
on Knowledge and Data Engineering 25(6).

1475

