
Re-Active Learning: Active Learning with Relabeling

Christopher H. Lin
University of Washington

Seattle, WA
tchrislin@cs.washington.edu

Mausam
Indian Institute of Technology

Delhi, India
mausam@cse.iitd.ac.in

Daniel S. Weld
University of Washington

Seattle, WA
weld@cs.washington.edu

Abstract

Active learning seeks to train the best classifier at the low-
est annotation cost by intelligently picking the best examples
to label. Traditional algorithms assume there is a single an-
notator and disregard the possibility of requesting additional
independent annotations for a previously labeled example.
However, relabeling examples is important, because all an-
notators make mistakes — especially crowdsourced workers,
who have become a common source of training data. This
paper seeks to understand the difference in marginal value
between decreasing the noise of the training set via relabel-
ing and increasing the size and diversity of the (noisier) train-
ing set by labeling new examples. We use the term re-active
learning to denote this generalization of active learning. We
show how traditional active learning methods perform poorly
at re-active learning, present new algorithms designed for
this important problem, formally characterize their behavior,
and empirically show that our methods effectively make this
tradeoff.

Introduction

In order to minimize the expense of labeling training data,
active learning algorithms reason about the best examples
to annotate. Traditional active-learning methods assume
a single annotator, either perfect (Settles 2012) or noisy
(Kearns, Schapire, and Sellie 1994). In this setting, such
algorithms always pick a new example to label, since they
can gather no new information about examples which have
already been labeled. However, the single annotator as-
sumption is increasingly violated because machine learning
practitioners routinely employ multiple annotators (crowd-
sourced or professional) to label each training example in
order to increase its accuracy (e.g., (Snow et al. 2008;
LDC 2015)). In response, modern active learning algorithms
must deal with a fundamentally new tradeoff: whether to
gather the first label for an unlabeled example, or instead re-
duce the noise of an existing labeled example by asking for
an additional annotation of that example.

Previous work identifies this tradeoff (Sheng, Provost, and
Ipeirotis 2008; Ipeirotis et al. 2013), but does not deliver a
solution, instead assuming no unlabeled examples and re-
stricting attention to the choice of the best example to rela-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bel. Another method for learning with multiple, noisy an-
notators never relabels examples, and instead, finds the best
worker for a new example so that it is likely labeled at a high
accuracy (Yan et al. 2011). Yet another approach suggests a
single level of redundancy for each label, and samples points
uniformly (Lin, Mausam, and Weld 2014). To our knowl-
edge, no existing method answers the important question:
“Which data point should one actively label or relabel in or-
der to learn the best classifier?” We call this generalization
of active learning “re-active learning.”

Standard active learning strategies like uncertainty sam-
pling (Lewis and Catlett 1994) and expected error reduc-
tion (Roy and McCallum 2001; Kapoor, Horvitz, and Basu
2007) can be naı̈vely extended for re-active learning by al-
lowing them to pick any (labeled or unlabeled) point using
their existing approaches. Unfortunately, we show that such
extensions do not perform well, because they do not utilize
all sources of knowledge, are myopic, or both. These ex-
tensions often suffer from infinite looping, when the learner
repeatedly annotates the same example, starving others. In
addition to considering information gleaned from the classi-
fier, a re-active learner must also leverage information from
the number and agreement of the gathered labels themselves.

Therefore, we introduce alternative extensions of uncer-
tainty sampling that can reason about the information in the
labels. We also propose a new class of algorithms, impact
sampling, which picks the example to label that has the po-
tential to change the classifier the most. By reasoning about
whether an additional label can change the classifier, im-
pact sampling elegantly eliminates the starvation problems
described above. Many active learning methods use greedy
search to reduce combinatorial explosion, but the resulting
myopia is especially problematic with relabeling — if the
first two labels agree, then a third may have no effect. To
combat this problem, we introduce a novel technique, called
pseudo-lookahead, that can tractably mitigate myopia. We
then characterize the relationship between impact sampling
and uncertainty sampling, and show that, surprisingly, in
many noiseless settings, impact sampling can be viewed as
a generalization of uncertainty sampling. Finally, we con-
duct empirical experiments on both synthetic and real-world
datasets, showing that our new algorithms significantly out-
perform traditional active learning techniques and other nat-
ural baselines on the problem of re-active learning.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1845

Previous Work

Prior work (Sheng, Provost, and Ipeirotis 2008; Ipeirotis et
al. 2013) identifies the tradeoff between relabeling examples
and gathering new examples. They show that relabeling ex-
amples is useful for supervised learning, and they also con-
sider how to pick examples to relabel when relabeling is the
only option. However, crucially, unlike our work, they do
not consider any combination of relabeling and the label-
ing of new examples. Lin et al. (2014) investigate when
and why relabeling is useful. In contrast to Sheng et al.,
they find that relabeling is not always useful. They find that
learning problems with higher VC dimension, moderate lev-
els of noise, and lower fixed budgets may benefit more from
strategies with more relabeling.

Kääriäinen (2006) shows that if each label is indepen-
dently corrupted by noise, then active learning with noise
is theoretically almost as easy as active learning without
noise, because one can repeatedly label each point a suffi-
cient number of times to cancel out the noise. In contrast,
we show that the small theoretical difference can be quite
large in practice, and thus reasoning about whether or not to
relabel is extremely important.

The active learning algorithm of Wauthier et al. (2011)
can potentially trade off between relabeling and acquiring
labels for new examples. However, they do not identify the
tradeoff explicitly, nor explore it analytically or experimen-
tally. Furthermore, their solution requires gold labels, and is
tied to their own custom classifier.

Several researchers consider how to pick workers for ei-
ther labeling (Donmez and Carbonell 2008; Yan et al. 2011)
or relabeling (Dekel, Gentile, and Sridharan 2010). Un-
like our work, none of these works answers the fundamen-
tal question of when to relabel, or whether or not relabeling
is necessary. Researchers have also considered how to de-
cide when to relabel when the objective is data accuracy
(Dai et al. 2013; Lin, Mausam, and Weld 2012b; 2012a;
Bragg, Mausam, and Weld 2014; Kamar and Horvitz 2015)
or ranking (Chen et al. 2013) instead of the accuracy of a
classifier learned using the data.

Agnostic Active Learning (Kearns, Schapire, and Sellie
1994; Balcan, Beygelzimer, and Langford 2006; Golovin,
Krause, and Ray 2010) is a general learning setting for ac-
tive learning with noise. However, like the rest of the active
learning literature, it does not consider relabeling.

Zhang et al. (2015) consider an active learning setting
where instead of relabeling, one can choose between query-
ing an expert labeler who is more expensive or a noisy la-
beler who is cheaper. They learn a classifier that predicts
when these labelers differ in their labels and only ask the
expert when they predict disagreement.

On-the-job Learning (Werling et al. 2015) is an extension
of online active learning that allows the learning algorithm to
query the crowd (if doing so is likely to help) prior to making
a prediction. In contrast, we focus on how to train the best
classifier possible offline, and thus relabeling examples may
not always be necessary.

Impact sampling is similar to optimized probabilistic ac-
tive learning (Krempl, Kottke, and Lemaire 2015), which

computes how label distributions locally change from query-
ing additional examples.

Finally, impact sampling can be considered a general-
ization of selection by expected gradient length (Settles,
Craven, and Ray 2007), which queries the example that
would create the greatest change in the gradient of the ob-
jective function, but as we will show, impact sampling does
not require knowledge of the classifier’s objective function.

Preliminaries

We now set up the framework for re-active learning. Let X
denote the space of examples, Y = {0, 1} a set of labels, and
D, a distribution over X . Let the true concept be h∗ : X →
Y . Let H be a class of hypotheses, from which our learning
algorithm, A, tries to select the h ∈ H that minimizes the
error ε(h) = Px∼D(h(x) �= h∗(x)). Following common
practice for crowdsourcing labels, we assume that acquiring
a label for an example incurs a fixed unit cost.

Let XL ⊆ X denote the current set of labeled examples,
and XU = X − XL denote the set of unlabeled examples.
Let L = {(xi, yi)} denote the multiset of example and label
pairs, and for each xi ∈ XL, let Lxi

= {l1i , . . . , lτii } be the
multiset of labels for xi, where τi is the number of labels for
xi. Let f(Lxi

) output an aggregated label for an example
given the noisy labels for that example. f can be as simple
as majority vote or use more complex statistical techniques.
(e.g., (Dawid and Skene 1979; Whitehill et al. 2009; Lin,
Mausam, and Weld 2012a)). We run our learning algorithm
A using L and the corresponding aggregated labels output
by f . Given the current L, the goal of re-active learning is
to select an example x ∈ X (not x ∈ XU , as in traditional
active learning) such that acquiring a label for x and adding
it to L minimizes the long-term error of the classifier output
by A.

Algorithms For Re-Active Learning

Uncertainty Sampling

Uncertainty sampling (Lewis and Catlett 1994) is one of the
most popular algorithms for active learning (Settles 2012).
To pick the next example to label, it simply computes a mea-
sure of the classifier’s uncertainty for each example in the
unlabeled set, XU , and then returns the most uncertain one.
Let MA(xi) denote the entropy of the probabilities output by
the learning algorithm after training on L, for an example xi.
We denote as USXU

the strategy that returns the example in
XU with highest entropy: argmaxx∈XU

MA(x).
One could naı̈vely apply uncertainty sampling to re-active

learning by allowing it to sample from the full sample space
X = XU ∪ XL. We denote this algorithm USX . Unfortu-
nately, USX can result in extremely poor performance.

Consider Figure 1. Suppose that x1 and x2 are the only la-
beled points in this distribution of diamonds and circles and
h is the current hypothesis. Then, USX will pick x1 or x2 to
relabel, because they are the closest to h, and thus have the
highest uncertainty. In fact, USX will likely pick x1 or x2

to relabel repeatedly, because each time it picks x1 or x2, it
will receive a label that will most likely not change the ag-
gregated label, f(Lxi

) (assuming low label noise). Since the

1846

Figure 1: An example domain in which a naı̈ve extension of
uncertainty sampling to re-active learning, USX , can fall into
a trap. Given that x1 and x2 are the only labeled points in
this distribution of diamonds and circles and h is the current
hypothesis, uncertainty sampling is likely to converge to be-
havior in which it will always pick these same examples to
relabel and cause an infinite loop in which no learning takes
place. The true hypothesis, h∗, will never be learned.

labels used to train the classifier will not change, the classi-
fier itself will not change, forming an infinite loop during
which other useful points get starved and no learning takes
place, causing convergence to a suboptimal hypothesis.

This weakness is similar to the hasty generalization prob-
lem found in active learning (Dasgupta and Hsu 2008), but
is distinct, because points are not relabeled in traditional ac-
tive learning. We find experimentally that USX gets stuck
in unproductive infinite loops quite often. The problem is
that in many cases, the most uncertain example (according
to the classifier) could be a labeled example, which is actu-
ally quite certain (according to the current label multiset).

Extensions of Uncertainty Sampling for Re-Active
Learning Clearly, any extension of uncertainty sampling
to re-active learning needs to consider both MA(xi), the
classifier’s uncertainty, and the label’s uncertainty, which
we denote ML(xi). We define ML(xi) as the entropy of
the labels themselves: ML(xi) = −

∑
y∈Y P (h∗(xi) = y |

Lxi
) logP (h∗(xi) = y | Lxi

), where the label posterior
P (h∗(xi) | Lxi) is computed by applying Bayes’ rule to the
observed labels Lxi on top of a uniform prior.

We propose a new aggregate uncertainty measure, which
is a weighted average of these two uncertainties: (1 −
α)MA(xi) + αML(xi), where α ∈ [0, 1]. We denote this
new algorithm, which picks the example xi with the highest
aggregate uncertainty, as USα

X . By definition, US0
X is equiv-

alent to USX . We also note the following interesting and
counter-intuitive fact that weighting label uncertainty highly
(large α) results in behavior equivalent to that of standard
uncertainty sampling for active learning (USXU

), which only
considers classifier uncertainty. The proof is in the Supple-
mentary Materials.

Theorem 1. For any given learning problem, there exists an
α′ < 1.0 such that for all α ∈ [α′, 1.0], USα

X is equivalent
to USXU

.

An alternative way we can use the popular framework of
uncertainty sampling to fit the new framework of re-active
learning is to simply use USXU

, but label each new exam-
ple a fixed number of times. We use USj/k

XU
to denote the

algorithm that picks a new example to label via USXU
, and

then relabels that example using j/k-relabeling, where the

algorithm can request up to k labels, stopping as soon as
j = �k/2� identical labels are received. Unfortunately, for
both USα

X and USj/k
XU

, learning optimal values for hyperpa-
rameters, α or k, can be difficult.

Expected Error Reduction

Expected error reduction (EER) (Roy and McCallum 2001;
Kapoor, Horvitz, and Basu 2007) is another active learning
technique that can be extended to the framework of re-active
learning. EER simply chooses to label the example that
maximizes the expected reduction in classifier error, where
the expected error of a classifier is estimated using the prob-
abilities output by that classifier.

To extend EER to consider relabeling, we must first com-
pute the probability, Q(y|xi), that we receive label y if we
query example xi. Let PA(h∗(xi) = y | Lxi) be the proba-
bility that the correct label of xi is y; we may compute it by
first using the currently learned classifier’s beliefs as a prior
and then performing a Bayesian update with the observed
labels Lxi

. Then, let a denote label accuracy, the probabil-
ity that the queried label will be correct. Then, Q(y|xi) =
[aPA(h∗(xi) = y | Lxi

) + (1− a)PA(h∗(xi) �= y | Lxi
)].

Now, let L⊕ {(xi, y)} denote the addition of the element
(xi, y) to the multiset L, and let ε(A|L) denote the error of
the classifier returned by runningA using the labels, L. Con-
ceptually, EER returns argminx∈X [

∑
y∈Y Q(y|x)ε(A|L ⊕

{(x, y)})]− ε(A|L), and it approximates ε using the proba-
bilities output by the learned classifier.

Unlike USX , EER is able to incorporate knowledge about
label uncertainty. Unfortunately, like USX , EER can starve
points. Suppose that the expected reduction in error from
querying any unlabeled point xu is negative. Such a result
can be a common occurrence due to the myopic nature of
EER and the amount of uncertainty in the problem. Next,
suppose that the reduction in error from querying any la-
beled point xl is 0. Such a result is also common, since
oftentimes a single extra label will not change the resulting
aggregated labels output by f , especially if xl has already
been labeled many times. In this scenario, EER will query
xl over and over, starving valuable data points as did USX .
The key problem is myopia, since the best next example to
label may temporarily reduce the accuracy of the classifier.

This problem is exacerbated by the fact that full EER is
computationally intractable. Just computing the expected
future error for a single new label requires retraining a clas-
sifier twice. In order to make EER practical, one must re-
strict the set of examples from which EER may recommend
points. However, reducing the number of points that EER
may query from only increases the likelihood that EER falls
prey to infinite looping.

Impact Sampling

We now introduce a new class of algorithms, impact sam-
pling, which addresses the problems with uncertainty sam-
pling and EER. Impact sampling algorithms pick the next
example to (re)label that will impact the classifier the most,
the intuition being that an example that heavily impacts the
learned classifier must be a good example to label. Let hL be

1847

the hypothesis learned using learning algorithmA, labels L,
and aggregation function f . We define the impact of exam-
ple xi given label y, ψy(xi), as the probability that adding
the additional label y for xi changes the predicted label of an
example in X : ψy(xi) = Px∼D(hL(x) �= hL⊕{(xi,y)}(x)).

Algorithm 1 describes the framework for computing the
impact of an example xi. First, it trains the classifier us-
ing the labeled data, producing a baseline hypothesis, hL.
Then, it trains one classifier supposing that it received a la-
bel 0 for example xi, producing hypothesis hL0, and another
classifier supposing that it received the label 1 for example
xi, producing hypothesis hL1. Next, it computes ψ0(xi)
and ψ1(xi) by taking a sample from X and comparing the
predictions of hL1 and hL0 against the predictions of h on
that sample, and computing the fraction of predictions that
changed for each. Alternatively, it can reason about how
classifiers change with training. Finally, it returns some
weightedImpact(ψ0(xi), ψ1(xi)), as the total impact of
an example, ψ(xi). We construct variations of impact sam-
pling by redefining⊕ or implementing weightedImpact
in various ways, which we now describe.

Algorithm 1 Computation of Impact of an Example xi

Input: Learning algorithm A, Example xi ∈ X , Examples X ,
aggregation function f , and label multiset L.
Output: Total impact of example xi, ψ(xi)
Initialize ψ0 = 0, ψ1 = 0.
L1 = L⊕ {(xi, 1)}, L0 = L⊕ {(xi, 0)}
hL = retrain(A, f, L)
hL1 = retrain(A, f, L1)
hL0 = retrain(A, f, L0)
for xj ∈ sample(X) do

if hL0(xj) �= hL(xj) then
ψ0 = ψ0 +

1
|X|

end if
if hL1(xj) �= hL(xj) then
ψ1 = ψ1 +

1
|X|

end if
end for
ψ = weightedImpact(ψ0, ψ1)
Return ψ

Optimism The most straightforward way to implement
weightedImpact is to use label posteriors to compute
the total expected impact ψ(xi) =

∑
y∈Y Q(y|xi) · ψy(xi).

We use EXP to denote impact sampling algorithms that com-
pute an expected impact (e.g., impactEXP).

However, when training a classifier with noisy labels, the
learned classifier often outputs beliefs that are wildly wrong.
This can mislead the expected impact calculations and starve
certain examples that could substantially improve the clas-
sifier, all because the classifier believes the impactful labels
are unlikely. Furthermore, for most labeled examples in XL,
at least one of ψ0 and ψ1 will be 0, biasing impactEXP
to undervalue their impact over that of an unlabeled point.
Computing the expectation also requires knowledge of label
accuracy, which, like in EER, must be learned. To mitigate
these we inject impact sampling with some optimism by im-
plementing weightedImpact so that instead of returning

the expected impact, it instead returns the maximum impact:
ψ = max(ψ0, ψ1). This leads the system to pick the ex-
ample that could produce the largest possible impact on the
classifier. We use OPT to denote impact sampling with opti-
mism.

Pseudo-Lookahead The most straightforward way to im-
plement ⊕ is to simply add the new hypothetical labels for
xi into the multiset Lxi

. However, such an implementation
makes the algorithm myopic, because for certain multisets,
a single additional label may have no effect on the aggre-
gated label, f(Lxi), and thus no effect on the learned clas-
sifier. For example, if f is majority vote and Lxi currently
has 2 positive votes and 0 negative votes, any single new
annotation will have zero impact. Myopicity is problematic
because correcting labeling mistakes may require gathering
multiple labels for the same example. To alleviate this prob-
lem, we introduce the “pseudo-lookahead.”

Whenever impact sampling is considering an example
xi ∈ XL from the labeled set (the myopicity problem does
not exist when considering a new unlabeled example), we
implement the ⊕ operator so that instead of directly adding
the new label lnewi into the current multiset Lxi

, we en-
sure that the classifier is trained with lnewi as the aggre-
gated label, instead of f(Lxi

). Let ρ be the minimum num-
ber of additional labels needed to flip the aggregate label to
lnewi (ρ is zero if lnewi is already f(Lxi)). We implement
weightedImpact so that the computed impact of that la-
bel, ψlnew

i
, is divided by max(1, ρ) before any additional

computation: ψlnew
i

= ψlnew
i

/max(1, ρ). Intuitively, this
pseudo-lookahead is computing a normalized impact of a
single label, if impact sampling trainsAwith aggregate label
lnewi after receiving multiple such labels. We denote algo-
rithms that use pseudo-lookahead with PL. We note that in-
troducing pseudo-lookahead can theoretically cause impact
sampling to starve certain examples of labels, but that we
almost never see this behavior in our experimentation.

Implementation Issues We can construct four different
impact sampling algorithms with these different imple-
mentations of ⊕ and weightedImpact: impactEXP,
impactOPT, impactPLEXP and impactPLOPT. In
practice, optimism and pseudo-lookahead bias towards more
relabeling, so we implement them for computing impacts of
labeled examples only.

Computing the impact of a single point can require re-
training a classifier twice (much like EER), and thus pick-
ing a single point to (re)label can require up to 2|X | re-
trainings. To speedup the implementation, we restrict im-
pact sampling to choose only between 2 points instead of all
of X : the point recommended by USXU

, and the point rec-
ommended by USXL

(uncertainty sampling applied to only
XL.) We also try versions that choose among 7 points: the
2 points as before, and the 5 points returned by USα

X where
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. In the experiments, we indi-
cate the number of points from which the strategy draws in
parentheses.

Computing the impact also requires iteration over a sam-
ple ofX . Significant speedups may be achieved by sampling
examples from regions that that are likely to have been af-

1848

fected by the additional hypothetical labels. One can keep
track of such examples using k-d trees and geometric rea-
soning about the domain.

Behavior of Impact Sampling

We first return to the example of Figure 1, to verify that
impactEXP indeed solves the problems that traditional ac-
tive learning algorithms encounter when applied to re-active
learning . As a given point is labeled more and more, the ex-
pected impact of that point goes to 0, because the probability
that the aggregated label f(Lxi

) changes with an additional
label goes to 0 as the number of labels for example xi goes
to infinity. Thus, impact sampling considers both classifier
and label uncertainty, and will pick different points that have
not yet been labeled many times, avoiding the infinite loops
that starve USX and EER.

While impact sampling and uncertainty sampling are os-
tensibly optimizing for two different objectives, we now
show that, surprisingly, impact sampling is a generaliza-
tion of uncertainty sampling to the re-active learning setting.
Specifically, in some noiseless learning problems (where re-
labeling is unnecessary) impactEXP reduces to USXU . Yet
when relabeling is allowed, impactEXP behaves quite dif-
ferently than USX , the extension of USXU that can relabel.

For example, consider the following setting. Let P be the
class of 1-D threshold noiseless learning problems, a pop-
ular class in the active learning literature (Dasgupta 2004;
2005): The goal is to learn a threshold t∗ on X =
[a, b], a, b ∈ R, a < b, where D is uniformly distributed on
X , and the data are linearly separable. We assume that active
learning methods subsample from R first to get a finite set
of candidate points. Suppose we are learning a max-margin
classifier that outputs probability predictions PA(h∗(xi) =
0) and PA(h∗(xi) = 1) that are monotonic, i.e., for all
x1, x2 ∈ X , x1 > x2 if and only if PA(h∗(x1) = 1) >
PA(h∗(x2) = 1) and PA(h∗(x1) = 0) < PA(h∗(x2) = 0),
or x1 > x2 if and only if PA(h∗(x1) = 1) < PA(h∗(x2) =
1) and PA(h∗(x1) = 0) > PA(h∗(x2) = 0). Max-margin
classifiers like SVMs can easily output monotonic proba-
bility predictions (e.g., by normalizing the distance to the
hyperplane).

Theorem 2. In the noiseless learning problem P (with no
relabeling), xi is the point chosen by USXU if and only if xi

is the point chosen by impactEXP.

See the Supplementary Materials for the proof of this the-
orem, as well as more general conditions for when impact
sampling reduces to uncertainty sampling.

Experiments

We now present empirical experiments on both synthetic and
real-world datasets to compare the performances of USα

X ,
USj/k

XU
, and impact sampling. As baselines, we include EER

and USXU
(uncertainty sampling without relabeling). We do

not show results for USX , uncertainty sampling with relabel-
ing, since it performs extremely poorly as explained earlier.

We begin with a synthetic domain containing two ran-
dom Gaussian clusters, which correspond to two classes,

and train using L2-regularized logistic regression. We gen-
erate a dataset by randomly picking two means, μ1, μ2 ∈
[0, 1]z , and two corresponding covariance matrices Σ1,Σ2 ∈
[0, 1]z×z . We ensure a pool of 1,000 examples for each
Gaussian cluster (class) exists at every timestep, in order to
simulate an infinite pool of examples from which the algo-
rithms may choose. All experiments are averaged over 250
random datasets (all figures show faded 95% confidence in-
tervals, most of which are extremely small). We vary the
number of features among z ∈ {10, 30, 50, 70, 90}. We
seed training with 50 examples, use a total budget of 1,000,
and test on 300 held-out examples. Note that our budget
is much larger than what is common in the active learning
literature, with many works experimenting with budgets 10-
40 times smaller than ours (e.g., (Dasgupta and Hsu 2008;
Golovin, Krause, and Ray 2010)). We use a larger budget
for two reasons. First, to make our experiments more realis-
tic than prior work, and second, to account for slower con-
vergence due to noise. We assume the classification noise
model (Angluin and Laird 1988): each label is indepen-
dently flipped from the true label, h∗(x), with probability
0.25. We assume that label accuracy is known and use ma-
jority vote for f , the label aggregation function.

Figure 2 shows the performance of several strategies when
setting the number of features z = 90. Figure 2(a) compares
USα

X with α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We find that α = 0.1
does the best, and that as we increase α from 0.1, the per-
formance of the learned classifier drops, though not drasti-
cally. Although not shown, we also experiment with USj/k

XU
,

varying j/k ∈ {1/1, 2/3, 3/5, 4/7, 5/9}. We see that per-
formance improves as j/k increases from 1/1 to 3/5 but
then decreases as we continue to increase the amount of re-
labeling redundancy. Different α and j/k work better with
different number of features, and the best hyperparameter
for a given number of features is difficult to predict.

Figure 2(b) shows the effect of introducing optimism
and pseudo-lookahead into impact sampling. We notice
that these methods are able to substantially increase perfor-
mance. impactOPT(2) outperforms impactEXP(2),
and impactPLOPT(2) performs significantly better than
impactOPT(2). We also see that allowing impact sam-
pling to choose from a larger pool of candidate examples
(impactPLOPT(7)) improves performance over the 2-
example version (impactPLOPT(2)). Henceforth, in sub-
sequent figures we show only the performance of our most
robust impact sampling algorithm, impactPLOPT(7).

Although also not shown, we also investigate the effect of
applying optimism and pseudo-lookahead to EER. We find
that although such techniques help make some substantial
initial gains, all versions of EER get caught by infinite loops
and performance suffers due to starvation.

Figure 2(c) compares impact sampling to uncertainty
sampling and EER. We observe that impactPLOPT(7)
significantly outperforms all other methods (p < 0.001 us-
ing a Welch’s t-test on the average accuracies at the max-
imum budget). Although not shown, we find that even
impactEXP(2), the weakest impact sampling strategy,
strictly dominates vanilla USXU

. The results for z ∈

1849

b)a) c)

Figure 2: Average generalization accuracy of logistic regression over randomly generated Gaussian datasets with 90 features
and label accuracy 0.75, when trained using various strategies. a) compares various settings of USα

X and shows α = 0.1 is
best. b) compares various impact sampling strategies and shows impactPLOPT(7) is best. c) compares impact sampling,
uncertainty sampling, and EER, and shows that impact sampling produces the best results.

a) Internet Ads (1558 features)

b) Arrhythmia (279 features)

Figure 3: Comparison of impact sampling versus uncer-
tainty sampling on real-world datasets, Internet Ads and Ar-
rhythmia, using simulated labels modeling annotaters whose
accuracy is 0.75. Impact sampling shows significant gains.

{30, 50, 70} look very similar. However, when z = 10,
all strategies perform about the same, because the learning
problem is too easy. We also repeated these experiments us-
ing synthetic datasets with three Gaussian clusters instead of
two, where one class contains a mixture of two clusters, and
found extremely similar results.

Figure 3 compares impact sampling against uncertainty
sampling on datasets from the UCI Machine Learning
Repository (Bache and Lichman 2013) with synthetically-
generated labels. We use a budget that is equal to half of the
size of the dataset, and randomly generate a training set of

a) Galaxy Zoo (62 features)

b) Relation Extraction (1013 features)

Figure 4: Impact sampling performs well against uncer-
tainty sampling on the real-world datasets with real human-
generated labels.

70% of the examples, a held-out set of 15% of the examples,
and a test set of the remaining 15% of the examples. We
again present results averaged over 250 of these randomiza-
tions and display 95% confidence intervals. In both datasets,
impactPLOPT(7) is substantially and statistically signif-
icantly better than USXU

(p < 0.001).
Finally, we investigate how well our methods work on

real-world datasets with real human-generated labels. In the
following experiments, we use F-score as the metric because
of high skew. Whenever a strategy requests a label, we sam-
ple from the set of available annotations. Unlike the previous
experiments, here we do not assume knowledge of label ac-

1850

curacy. To make this relaxation, first, we always apply opti-
mism to all examples that we consider, instead of only when
examples will be relabeled. Second, instead of including 5
points returned by USα

X among the subset of 7 from which
impact sampling chooses, we include 5 random points.

We first consider a popular dataset (Kamar, Hacker, and
Horvitz 2012; Lintott et al. 2011; 2008) from Galaxy Zoo,
a website on which volunteer workers contribute annota-
tions for images of galaxies gathered by the Sloan Digital
Sky Survey. Each image has 62 features obtained from ma-
chine vision analysis, and workers are asked to label each
galaxy as “elliptical,” “spiral,” or “other.” Each galaxy is
labeled by at least 10 workers. We use a small version of
the dataset containing 3937 galaxies, and train a logistic re-
gression classifier to predict whether a galaxy is elliptical.
About 12.8% of galaxies are in the positive class. Figure 4a
shows that impactPLOPT(7) performs well against the
baselines, but the difference is not statistically significant.

We also consider a dataset gathered for the task of re-
lation extraction. Given a sentence, e.g., “Barack Obama
was born in Hawaii,” two entities in that sentence, “Barack
Obama” and “Hawaii,” and a relation, “born-in,” the goal is
to determine whether the given sentence expresses the given
relation between the two entities. In this example, the sen-
tence does express the relation that Barack Obama was born
in Hawaii. The dataset contains 2000 sentences, each la-
beled by 10 Amazon Mechanical Turk workers with at least
a 95% approval rating. Each example sentence is described
by 1013 features. We train a logistic regression classifier
to predict whether an example expresses the “born-in” rela-
tion. Positive examples comprise about 7.4% of the dataset.
Figure 4b shows that impactPLOPT(7)makes significant
gains (p < 0.01) against the baselines.

Discussion and Future Work

Our experiments show that impact sampling trains better
classifiers than previous active learning algorithms given the
same labeling budget. However, this assessment does not
consider the cost of computational resources or time. One
drawback of our method, shared with active learning tech-
niques such as expected error reduction (Roy and McCallum
2001; Kapoor, Horvitz, and Basu 2007), is the high compu-
tational cost of picking the next data point to (re)label. This
computational burden stems from impact sampling’s need
to retrain a classifier twice per candidate data point. In some
cases this computational load may be prohibitive, especially
if the training cost of the classifier is high, such as for multi-
layer perceptrons or non-linear SVMs or in problems with
high dimensional feature spaces. These cases raise the ques-
tion of whether or not re-active learning is truly useful in
practice.

For example, in our final experiment on relation extrac-
tion, impact sampling takes over 7 hours1 to choose the set
of 1000 examples to (re)label. In other words, impact sam-
pling takes, on average, about 26 seconds to compute the

1Recall that this domain has 1013 features. Experiments are
programmed in Python using an Intel Xeon E7-4850-v2 processor
(2.3 GHz, 24M Cache) with 512 GB of RAM.

best example to send to a human, who would likely take
about the same time to label the example. In contrast, un-
certainty sampling and random sampling are much faster,
taking approximately 210 and 70 seconds, respectively, to
select their 1000 examples.

Note, however, that there are many ways to increase the
speed of impact sampling. As we have discussed and shown,
instead of choosing an example to (re)label from all of X ,
choosing among a small subset of X can result in large com-
putational savings and still be very effective. And although
in our implementation we used a simple logistic regression
classifier that was retrained from scratch after each conjec-
tured label, when used with a classifier that has a mecha-
nism for incremental training (e.g., stochastic gradient de-
scent initialized with the previous solution or incremental
decision tree induction), impact sampling would likely run
much more quickly and scale to even more complex learn-
ing problems. If one is faced with a problem too large for
impact sampling, we suggest using USXU

, uncertainty sam-
pling with no relabeling, but note that one will likely require
significantly more human annotation than needed by impact
sampling to achieve the same learner accuracy.

Finally, we note that through our experiments, we have
shown the robustness of impact sampling, but like with all
active learning techniques, there exist datasets in which our
methods do not perform well. Further work is necessary to
understand the properties of learning problems that affect
the performance of re-active learning algorithms.

Conclusion

Our paper tackles the problem of re-active learning, a gen-
eralization of active learning that explores the tradeoff be-
tween decreasing the noise of the training set via relabel-
ing and increasing the size of the (noisier) training set by
labeling new examples. We introduce two re-active learn-
ing algorithms: an extension of uncertainty sampling, and a
novel of class of impact sampling algorithms. We character-
ize their theoretical properties and investigate interrelation-
ships among these algorithms. We find that impact sampling
is equivalent to uncertainty sampling for some noiseless
cases, but provides significant benefit for the case of noisy
annotations. We empirically demonstrate the effectiveness
of impact sampling on synthetic domains, real-world do-
mains with synthetic labels, and real-world domains with
real human-generated labels.

Acknowledgments

We thank Jonathan Bragg, Gagan Bansal, Ece Kamar, and
Eric Horvitz for helpful discussions. Xiao Ling contributed
a key insight used in our proofs. We thank the anonymous
reviewers for their useful comments. This work was sup-
ported by NSF grant IIS-1420667, ONR grant N00014-12-
1-0211, the WRF/Cable Professorship, a gift from Google,
a language understanding and knowledge discovery focused
award from Google, and a research grant from KISTI.

1851

References

Angluin, D., and Laird, P. 1988. Learning from noisy ex-
amples. Machine Learning 2(4):343–370.
Bache, K., and Lichman, M. 2013. UCI machine learning
repository.
Balcan, M.-F.; Beygelzimer, A.; and Langford, J. 2006. Ag-
nostic active learning. In ICML.
Bragg, J.; Mausam; and Weld, D. S. 2014. Parallel task
routing for crowdsourcing. In HCOMP.
Chen, X.; Bennett, P. N.; Collins-Thompson, K.; and
Horvitz, E. 2013. Pairwise ranking aggregation in a crowd-
sourced setting. In WSDM.
Dai, P.; Lin, C. H.; Mausam; and Weld, D. S. 2013. Pomdp-
based control of workflows for crowdsourcing. Artificial In-
telligence 202:52–85.
Dasgupta, S., and Hsu, D. 2008. Hierarchical sampling for
active learning. In ICML.
Dasgupta, S. 2004. Analysis of a greedy active learning
strategy. In NIPS.
Dasgupta, S. 2005. Coarse sample complexity bounds for
active learning. In NIPS.
Dawid, A., and Skene, A. M. 1979. Maximum likelihood
estimation of observer error-rates using the em algorithm.
Applied Statistics 28(1):20–28.
Dekel, O.; Gentile, C.; and Sridharan, K. 2010. Robust
selective sampling from single and multiple teachers. In
COLT.
Donmez, P., and Carbonell, J. G. 2008. Proactive learn-
ing: cost-sensitive active learning with multiple imperfect
oracles. In CIKM, 619–628.
Golovin, D.; Krause, A.; and Ray, D. 2010. Near-optimal
bayesian active learning with noisy observations. In NIPS.
Ipeirotis, P. G.; Provost, F.; Sheng, V. S.; and Wang, J. 2013.
Repeated labeling using multiple noisy labelers. Data Min-
ing and Knowledge Discovery 28(2):402–441.
Kääriäinen, M. 2006. Active learning in the non-realizable
case. In ALT.
Kamar, E., and Horvitz, E. 2015. Planning for crowdsourc-
ing hierarchical tasks. In AAMAS.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining hu-
man and machine intelligence in large-scale crowdsourcing.
In AAMAS.
Kapoor, A.; Horvitz, E.; and Basu, S. 2007. Selective super-
vision: Guiding supervised learning with decision-theoretic
active learning. In IJCAI.
Kearns, M. J.; Schapire, R. E.; and Sellie, L. M. 1994. To-
ward efficient agnostic learning. Machine Learning 17:115–
141.
Krempl, G.; Kottke, D.; and Lemaire, V. 2015. Op-
timised probabilistic active learning. Machine Learning
100(2):449–476.
LDC. 2015. Linguistic Data Consortium: Annota-
tion Overview, ldc.upenn.edu/communications/
data-sheets/annotation-overview.

Lewis, D. D., and Catlett, J. 1994. Heterogeneous uncer-
tainty sampling for supervised learning. In ICML.
Lin, C. H.; Mausam; and Weld, D. S. 2012a. Crowdsourcing
control: Moving beyond multiple choice. In UAI.
Lin, C. H.; Mausam; and Weld, D. S. 2012b. Dynami-
cally switching between synergistic workflows for crowd-
sourcing. In AAAI.
Lin, C. H.; Mausam; and Weld, D. S. 2014. To re(label), or
not to re(label). In HCOMP.
Lintott, C. J.; Schawinski, K.; Slosar, A.; Land, K.; Bam-
ford, S.; Thomas, D.; Raddick, M. J.; Nichol, R. C.; Szalay,
A.; Andreescu, D.; Murray, P.; and Vandenberg, J. 2008.
Galaxy zoo: morphologies derived from visual inspection of
galaxies from the sloan digital sky survey. Monthly Notices
of the Royal Astronomical Society 389(3):1179–1189.
Lintott, C.; Schawinski, K.; Bamford, S.; Slosar, A.; Land,
K.; Thomas, D.; Edmondson, E.; Masters, K.; Nichol, R. C.;
Raddick, M. J.; Szalay, A.; Andreescu, D.; Murray, P.; and
Vandenberg, J. 2011. Galaxy zoo 1: data release of morpho-
logical classifications for nearly 900 000 galaxies. Monthly
Notices of the Royal Astronomical Society 410(1):166–178.
Roy, N., and McCallum, A. 2001. Toward optimal active
learning through sampling estimation of error reduction. In
ICML.
Settles, B.; Craven, M.; and Ray, S. 2007. Multiple-instance
active learning. In NIPS.
Settles, B. 2012. Active Learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining us-
ing multiple, noisy labelers. In Proceedings of the Four-
teenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. 2008.
Cheap and fast — but is it good? evaluating non-expert an-
notations for natural language tasks. In EMNLP’08.
Wauthier, F. L., and Jordan, M. I. 2011. Bayesian bias miti-
gation for crowdsourcing. In NIPS.
Werling, K.; Chaganty, A.; Liang, P.; and Manning, C. D.
2015. On-the-job learning with bayesian decision theory. In
NIPS.
Whitehill, J.; Ruvolo, P.; Bergsma, J.; Wu, T.; and Movellan,
J. 2009. Whose vote should count more: Optimal integration
of labels from labelers of unknown expertise. In NIPS.
Yan, Y.; Rosales, R.; Fung, G.; and Dy, J. G. 2011. Active
learning from crowds. In ICML.
Zhang, C., and Chaudhuri, K. 2015. Active learning from
weak and strong labelers. In NIPS.

1852

