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Abstract

We study a novel machine learning (ML) problem setting of
sequentially allocating small subsets of training data amongst
a large set of classifiers. The goal is to select a classifier
that will give near-optimal accuracy when trained on all
data, while also minimizing the cost of misallocated samples.
This is motivated by large modern datasets and ML toolkits
with many combinations of learning algorithms and hyper-
parameters. Inspired by the principle of “optimism under un-
certainty,” we propose an innovative strategy, Data Allocation
using Upper Bounds (DAUB), which robustly achieves these
objectives across a variety of real-world datasets.
We further develop substantial theoretical support for DAUB
in an idealized setting where the expected accuracy of a clas-
sifier trained on n samples can be known exactly. Under these
conditions we establish a rigorous sub-linear bound on the re-
gret of the approach (in terms of misallocated data), as well
as a rigorous bound on suboptimality of the selected classi-
fier. Our accuracy estimates using real-world datasets only
entail mild violations of the theoretical scenario, suggesting
that the practical behavior of DAUB is likely to approach the
idealized behavior.

Introduction

The goal of our work is to develop novel practical methods
to enhance tractability of Data Science practice in the era of
Big Data. Consider, for example, the following very com-
mon scenario: A Data Science practitioner is given a data
set comprising a training set, a validation set, and a col-
lection of classifiers in an ML toolkit, each of which may
have numerous possible hyper-parameterizations. The prac-
titioner would like to determine which classifier/parameter
combination (hereafter referred to as “learner”) would yield
the highest validation accuracy, after training on all exam-
ples in the training set. However, the practitioner may have
quite limited domain knowledge of salient characteristics of
the data, or indeed of many of the algorithms in the toolkit.

In such a scenario, the practitioner may inevitably
resort to the traditional approach to finding the best
learner (cf. Caruana and Niculescu-Mizil 2006), namely,
brute-force training of all learners on the full training set,
and selecting the one with best validation accuracy. Such an
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approach is acceptable if the computational cost of training
all learners is not an issue. However, in the era of Big Data,
this is becoming increasingly infeasible. Web-scale datasets
are proliferating from sources such as Twitter, TREC, SNAP,
ImageNet, and the UCI repository, particularly in domains
such as vision and NLP. ImageNet datasets can exceed 100
gigabytes, and the recent “YouTube-Sports-1M” video col-
lection exceeds 40 terabytes. Moreover, the diverse set of
learners available in today’s ML packages (Hall et al. 2009;
Pedregosa and others 2011; Schaul et al. 2010; McCallum
2002) are continually expanding, and many of the most suc-
cessful recent algorithms entail very heavy training costs
(e.g., Deep Learning neural nets with Dropout).

The above factors motivate a search for techniques to re-
duce training cost while still reliably finding a near-optimal
learner. One could consider training each learner on a small
subset of the training examples, and choose the best per-
forming one. This entails less computation, but could result
in significant loss of learner accuracy, since performance on
a small subset can be a misleading predictor of performance
on the full dataset. As an alternative, the small-subset results
could be projected forward using parameterized accuracy
models to predict full training set accuracy. Creating such
models is, however, a daunting task (Guerra, Prudencio, and
Ludermir 2008), potentially needing prior knowledge about
learners and domain, characteristic features of the data, etc.

In this paper, we develop a novel formulation of what it
means to solve the above dual-objective problem, and we
present a novel solution approach, inspired by multi-armed
bandit literature (Auer, Cesa-Bianchi, and Fischer 2002;
Thompson 1933; Scott 2010; Agrawal and Goyal 2012). Our
method develops model-free, cost-sensitive strategies for se-
quentially allocating small batches of training data to se-
lected learners, wherein “cost” reflects misallocated samples
that were used to train other learners that were ultimately not
selected. We express the cost in terms of the regret of the ap-
proach, comparing the algorithm’s cost with that of an oracle
which only allocates data to the best learner.

Our main contributions are as follows. First, we give a
precise definition of a new ML problem setting, called the
Cost-Sensitive Training Data Allocation Problem. Second,
we present a simple, knowledge-free, easy-to-use and prac-
tical new algorithm for this setting, called DAUB (Data
Allocation with Upper Bounds). Third, we give empiri-
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cal demonstrations that DAUB achieves significant savings
in training time while reliably achieving optimal or near-
optimal learner accuracy over multiple real-world datasets.
Fourth, we provide theoretical support for DAUB in an ide-
alization of the real-world setting, wherein DAUB can work
with noiseless accuracy estimates when training on n sam-
ples, in lieu of actual noisy estimates. The real-world be-
havior of DAUB will progressively approach the idealized
behavior as n becomes large. In this setting, we establish
a bound on accuracy of learners selected by DAUB, a sub-
linear bound on the data misallocated by DAUB, and an as-
sociated bound on the computational training cost (regret).

Related work on traditional bandit strategies mentioned
above, such as the celebrated UCB1 (Auer, Cesa-Bianchi,
and Fischer 2002) and Thompson sampling (Thompson
1933; Agrawal and Goyal 2012), presume that additional
trials of a given arm yield stationary payoffs. Whereas in
our scenario, additional data allocations to a learner yield in-
creasing values of its accuracy. There are also existing meth-
ods to optimize a single arbitrary function while minimizing
the number of evaluations (cf. Munos 2014). These also do
not fit our setting: we are dealing with multiple unknown
but well-behaved functions, and wish to rank them on esti-
mated accuracy after training on the full dataset, based on
their upper-bounds from much fewer samples.

Somewhat related is algorithm portfolio selection (Rice
1976) which seeks the most suitable algorithm (e.g., learner)
for a given problem instance, based on knowledge from
other instances and features characterizing the current in-
stance. Note, however, that most selection algorithms use pa-
rameterized accuracy models which are fit to data (e.g., Hut-
ter et al. 2014). Also related is work on hyper-parameter
optimization, where one searches for novel configurations
of algorithms to improve performance (Snoek, Larochelle,
and Adams 2012; Bergstra, Yamins, and Cox 2013; Bergstra
and Bengio 2012; Bergstra et al. 2011) or a combination of
both (Feurer, Springenber, and Hutter 2015). An example
is Auto-Weka (Thornton et al. 2013), which combines se-
lection and parameter configuration based on Bayesian opti-
mization (cf. Brochu, Cora, and de Freitas 2009). Predicting
generalization error on unseen data has in fact been recog-
nized as a major ML challenge (Guyon et al. 2006).

A recent non-frequentist approach (Hoffman, Shahriari,
and de Freitas 2014) takes a Bayesian view of multi-armed
bandits, applicable especially when the number of arms ex-
ceeds the number of allowed evaluations, and applies it also
to automatic selection of ML algorithms. Like some prior
methods, it evaluates algorithms on a small fixed percentage
(e.g., 10%) of the full dataset. Unlike the above approaches,
we do not assume that training (and evaluation) on a small
fixed fraction of the data reliably ranks full-training results.

Finally, Domhan, Springenberg, and Hutter (2015) re-
cently proposed extrapolating learning curves to enable
early termination of non-promising learners. Their method
is designed specifically for neural networks and does not ap-
ply directly to many classifiers (SVMs, trees, etc.) that train
non-iteratively from a single pass through the dataset. They
also do not focus on a theoretical justification and fit accu-
racy estimates to a library of hand-designed learning curves.

Cost-Sensitive Training Data Allocation

We begin by formally defining the problem of cost-sensitive
training data allocation. As before, we use learner to refer
to a classifier along with a hyper-parameter setting for it. Let
C = C1, C2, . . . , CM be a set of M learners which can be
trained on subsets of a training set Tr and evaluated on a
validation set Tv . Let |Tr| = N . For k ∈ N, let [k] denote
the set {1, 2, . . . , k}.

For i ∈ [M ], let ci : [N ] → R
+ be a cost function denot-

ing expected computational cost of training learner Ci when
n training examples are drawn uniformly at random from
Tr.1 We make two common assumptions about the train-
ing process, namely, that it looks at all training data and its
complexity grows at least linearly. Formally, ci(n) ≥ n and
ci(m) ≥ m

n ci(n) for m > n.
For i ∈ [M ], let fi : [N ] → [0, 1] be an accuracy function

where fi(n) denotes expected accuracy of Ci on Tv when
trained on n training examples chosen at random from Tr.
The corresponding error function, ei(n), is defined as 1 −
fi(n). Note that our tool also supports accuracy functions
not tied to a fixed validation set Tv (e.g., cross-validation)
and other measures such as precision, recall, and F1-score;
our analysis applies equally well to these measures.

We denote a training data allocation of n training sam-
ples to learner i by a pair a = (i, n). Let S =(
(i(1), n(1)), (i(2), n(2)), . . . , (i(s), n(s))

)
be a sequence of

allocations to learners in C. We will use Si to denote the
induced subsequence containing all training data allocations
to learner Ci, i.e., the subsequence of S induced by all pairs
(i(k), n(k)) such that i(k) = i. In our context, if allocations
(i, n(k)) and (i, n(�)) are in Si with k < �, then n(k) < n(�).

Evaluating fi(n) amounts to training learner Ci on n ex-
amples from Tr and evaluating its accuracy. This, in expec-
tation, incurs a computational cost of ci(n). In general, the
expected training complexity or cost associated with C under
the data allocation sequence S is cost(S) =

∑
(i,n)∈S ci(n).

Our goal is to search for an ĩ ∈ [M ] such that fĩ(N)
is maximized, while also ensuring that overall training cost
is not too large relative to cĩ(N). This bi-objective cri-
terion is not easy to achieve. E.g., a brute-force evalua-
tion, corresponding to S = ((1, N), (2, N), . . . , (M,N))
and ĩ = argmaxi∈[M ] fi(N), obtains the optimal ĩ but
incurs maximum training cost of ci(N) for all subopti-
mal learners. On the other hand, a low-cost heuristic S =(
(1, n), (2, n), . . . , (m,n), (̃i, N)

)
for some n � N and

ĩ = argmaxi fi(n), incurs a small training overhead of only
ci(n) for each suboptimal Ci, but may choose an arbitrarily
suboptimal ĩ.

We seek an in-between solution, ideally with the best of
both worlds: a bounded optimality gap on Cĩ’s accuracy,
and a bounded regret in terms of data misallocated to suf-
ficiently suboptimal learners. Informally speaking, we will
ensure that learners with performance at least Δ worse than

1While we define the core concepts in terms of expected values
suitable for a formal definition and idealized analysis, the actual
DAUB algorithm will operate on observed values of ci on particu-
lar subsets of n training examples chosen at runtime.
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optimal are allocated only o(N) training examples, i.e., an
asymptotically vanishing fraction of Tr. Under certain con-
ditions, this will ensure that the training cost regret is sub-
linear. We next formally define the notions of suboptimality
and regret in this context.

Definition 1. Let C be a collection of M learners with
accuracy functions fi, Δ ∈ (0, 1], n ∈ N

+, and i∗ =
argmaxi∈[M ] fi(n). A learner Cj ∈ C is called (n,Δ)-
suboptimal for C if fi∗(n)−fj(n) ≥ Δ, and (n,Δ)-optimal
otherwise.

Definition 2. Let S be a data allocation sequence for a col-
lection C of learners with accuracy functions fi, Δ ∈ (0, 1],
and n ∈ N

+. The (n,Δ)-regret of S for C is defined as∑
i:Ci is (n,Δ)-suboptimal cost(Si).

The regret of S is thus the cumulative cost of training all
(n,Δ)-suboptimal learners when using S.

Definition 3 (COST-SENSITIVE TRAINING DATA AL-
LOCATION PROBLEM). Let C = {C1, . . . , CM} be a set
of learners, Tr be a training set for C containing N exam-
ples, Tv be a validation set, ci and fi, for i ∈ [M ], be the
training cost and accuracy functions, resp., for learner Ci,
and Δ ∈ (0, 1] be a constant. The Cost-Sensitive Training
Data Allocation Problem is to compute a training data allo-
cation sequence S for C and Tr as well as a value ĩ ∈ [M ]
such that:

1. S contains (̃i, N),
2. Cĩ is (N,Δ)-optimal,
3. cost(Sĩ) ≤ d · cĩ(N) for some fixed constant d, and
4. (N,Δ)-regret of S is o(M · cost(Sĩ)) in N .

A solution to this problem thus identifies an (N,Δ)-
optimal learner Cĩ, trained on all of Tr, incurring on Cĩ no
more than a constant factor overhead relative to the min-
imum training cost of cĩ(N), and with a guarantee that
any (N,Δ)-suboptimal learner Ci incurred a vanishingly
small training cost compared to training Cĩ (specifically,
cost(Si)/cost(Sĩ) → 0 as N → ∞).

The DAUB Algorithm

Algorithm 1 describes our Data Allocation using Upper
Bounds strategy. The basic idea is to project an optimistic
upper bound on full-training accuracy fi(N) of learner i us-
ing recent evaluations fi(n). The learner with highest up-
per bound is then selected to receive additional samples.
Our implementation of DAUB uses monotone regression to
estimate upper bounds on fi(N) as detailed below, since
observed accuracies are noisy and may occasionally vio-
late known monotonicity of learning curves. Whereas in the
noise-free setting, a straight line through the two most recent
values of fi(n) provides a strict upper bound on fi(N).

As a bootstrapping step, DAUB first allocates b, br, and
br2 ≤ N training examples to each learner Ci, trains them,
and records their training and validation accuracy in arrays
fT
i and fV

i , resp. If fV
i at the current point is smaller than

at the previous point, DAUB uses a simple monotone regres-
sion method, making the two values meet in the middle.

Input : Learners C = {C1, . . . , CM}, training examples Tr ,
N = |Tr|, validation set Tv

Output : Learner Cĩ trained on Tr , data allocation sequence S
Params: Geom. ratio r > 1, granularity b ∈ N

+ s.t. br2 ≤ N

DAUB(C, Tr, Tv, r, b)
begin

S ← empty sequence
for i ∈ 1..M do

for k ∈ 0..2 do

append (i, brk) to S; TrainLearner (i, brk)

ni ← br2; ui ← UpdateBound (i, ni)
while (maxi ni) < N do

j ← argmaxi∈[M ] ui (break ties arbitrarily)
nj ← min{�rnj�, N}
append (j, nj) to S; TrainLearner (j, nj)
uj ← UpdateBound (j)

select ĩ such that nĩ = N
return Cĩ, S

end

TrainLearner(i ∈ [M ], n ∈ [N ])
begin

T ← n examples sampled from Tr; Train Ci on T
fT
i [n] ← training accuracy of Ci on T
fV
i [n] ← validation accuracy of Ci on Tv

if n/r ≥ b then

δ ← (fV
i [n]− fV

i [n/r])
if δ < 0 then fV

i [n/r] −= δ/2; fV
i [n] += δ/2

end

UpdateBound(i ∈ [M ], n ∈ [N ])
begin

f ′V
i [n] ← LinearRegrSlope(fV

i [n/r2], fV
i [n/r], fV

i [n])
ubVi [n] ← fV

i [n] + (N − n)f ′V
i [n]

return min{fT
i [n], ubVi [n]}

end

Algorithm 1: Data Allocation using Upper Bounds

After bootstrapping, in each iteration, it identifies a
learner Cj that has the most promising upper bound estimate
(computed as discussed next) on the unknown projected ex-
pected accuracy fj(N) and allocates r times more exam-
ples (up to N ) to it than what Cj was allocated previously.
For computing the upper bound estimate, DAUB uses two
sources. First, assuming training and validation data come
from the same distribution, fT

i [ni] provides such an esti-
mate. Further, as will be justified in the analysis of the ide-
alized scenario called DAUB*, ubVi [ni] = fV

i [ni] + (N −
ni)f

′V
i [ni] also provides such an estimate under certain con-

ditions, where f ′V
i [ni] is the estimated derivative computed

as the slope of the linear regression best fit line through
fV
i [n] for n ∈ {ni/r

2, ni/r, ni}. Once some learner Cĩ is
allocated all N training examples, DAUB halts and outputs
Cĩ along with the allocation sequence it used.

Theoretical Support for DAUB

To help understand the behavior of DAUB, we consider
an idealized variant, DAUB*, that operates precisely like
DAUB but has access to the true expected accuracy and cost
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functions, fi(n) and ci(n), not just their observed estimates.
As n grows, learning variance (across random batches of
size n) decreases, observed estimates of fi(n) and ci(n)
converge to these ideal values, and the behavior of DAUB
thus approaches that of DAUB*.

Let f∗ = maxi∈[M ] fi(N) be the (unknown) target ac-
curacy and Ci∗ be the corresponding (unknown) optimal
learner. For each Ci, let ui : [N ] → [0, 1] be an arbitrary
projected upper bound estimate that DAUB* uses for fi(N)
when it has allocated n < N training examples to Ci. We
will assume w.l.o.g. that ui is non-increasing at the points
where it is evaluated by DAUB*.2 For the initial part of the
analysis, we will think of ui as a black-box function, ignor-
ing how it is computed. Let umin(N) = mini∈[N ]{ui(N)}.
It may be verified that once uj(n) drops below umin(N),
DAUB* will stop allocating more samples to Cj . While this
gives insight into the behavior of DAUB*, for the analysis
we will use a slightly weaker form n∗

i that depends on the
target accuracy f∗ rather than umin(N).

Definition 4. ui : [N ] → [0, 1] is a valid projected upper
bound function if ui(n) ≥ fi(N) for all n ∈ [N ].

Definition 5. Define n∗
i ∈ N as N if ui(N) ≥ f∗ and as

min{� | ui(�) < f∗} otherwise.

A key observation is that when using uj as the only source
of information about Cj , one must allocate at least n∗

j ex-
amples to Cj before acquiring enough information to con-
clude that Cj is suboptimal. Note that n∗

j depends on the
interaction between uj and f∗, and is thus unknown. Inter-
estingly, we can show that DAUB*(C, Tr, Tv, r, b) allocates
to Cj at most a constant factor more examples, specifically
fewer than rn∗

j in each step and r2

r−1n
∗
j in total, if it has

access to valid projected upper bound functions for Cj and
Ci∗ (cf. Lemma 1 in Appendix). In other words, DAUB*’s
allocation is essentially optimal w.r.t. uj .

Remark 1. A careful selection of the learner in each round
is critical for allocation optimality w.r.t. uj . Consider a sim-
pler alternative: In round k, train all currently active learners
on n = brk examples, compute all fi(n) and ui(n), and per-
manently drop Cj from consideration if uj(n) < fi(n) for
some Ci. This will not guarantee allocation optimality; any
permanent decisions to drop a classifier must necessarily be
conservative to be correct. By instead only temporarily sus-
pending suboptimal looking learners, DAUB* guarantees a
much stronger property: Cj receives no more allocation as
soon as uj(n) drops below the (unknown) target f∗.

The following observation connects data allocation to
training cost: if DAUB* allocates at most n training exam-
ples to a learner Cj in each step, then its overall cost for Cj

is at most r
r−1cj(n) (cf. Lemma 2 in Appendix). Combining

this with Lemma 1, we immediately obtain the following re-
sult regarding DAUB*’s regret:3

2Since DAUB* evaluates ui for increasing values of n, it is easy
to enforce monotonicity.

3All proofs are deferred to the Appendix.

Theorem 1. Let C, Tr, Tv, N,M, ci and fi for i ∈ [M ] be
as in Definition 3. Let r > 1, b ∈ N

+, and S be the allo-
cation sequence produced by DAUB*(C, Tr, Tv, r, b). If the
projected upper bound functions uj and ui∗ used by DAUB*
are valid, then cost(Sj) ≤ r

r−1cj(rn
∗
j ).

In the remainder of the analysis, we will (a) study the
validity of the actual projected upper bound functions used
by DAUB* and (b) explore conditions under which (N,Δ)-
suboptimality of Cj guarantees that n∗

j is a vanishingly small
fraction of N , implying that DAUB* incurs a vanishingly
small training cost on any (N,Δ)-suboptimal learner.

Obtaining Valid Projected Upper Bounds. If fi for i ∈
[M ] were arbitrary functions, it would clearly be impossi-
ble to upper bound fi(N) by looking only at estimates of
fi(n) for n < N . Fortunately, each fi is the expected accu-
racy of a learner and is thus expected to behave in a certain
way. In order to bound DAUB*’s regret, we make two as-
sumptions on the behavior of fi. First, fi is non-decreasing,
i.e., more training data does not hurt validation accuracy.
Second, fi has a diminishing returns property, namely, as n
grows, the additional validation accuracy benefit of includ-
ing more training examples diminishes. Formally:

Definition 6. f : N → [0, 1] is well-behaved if it is non-
decreasing and its discrete derivative, f ′, is non-increasing.

These assumptions on expected accuracy are well-
supported from the PAC theory perspective. Let ubi(n) be
the projected upper bound function used by DAUB* for Ci,
namely the minimum of the training accuracy fT

i (n) of Ci

at n and the validation accuracy based expression fi(n) +
(N − n)f ′

i(n). For DAUB*, we treat f ′
i(n) as the one-sided

discrete derivative defined as (fi(n)−fi(n−s))/s for some
parameter s ∈ N

+. We assume the training and validation
sets, Tr and Tv , come from the same distribution, which
means fT

i (n) itself is a valid projected upper bound. Fur-
ther, we can show that if fi(n) is well-behaved, then ubi(n)
is a valid projected upper bound function (cf. Lemma 3 in
Appendix).

Thus, instead of relying on a parameterized functional
form to model fi(n), DAUB* evaluates fi(n) for certain
values of n and computes an expression that is guaranteed
to be a valid upper bound on fi(N) if fi is well-behaved.

Bounding Regret. We now fix ubi as the projected upper
bound functions and explore how (N,Δ)-suboptimality and
the well-behaved nature of fi together limit how large n∗

i is.

Definition 7. For Δ ∈ (0, 1] and a well-behaved accuracy
function fi, define nΔ

i ∈ N as N if f ′
i(N) > Δ/N and as

min{� | f ′
i(�) ≤ Δ/N} otherwise.

Using first order Taylor expansion, we can prove that
ubi(n

Δ
i ) < f∗, implying n∗

j ≤ nΔ
j (cf. Lemma 4 in Ap-

pendix). Combining this with Theorem 1, we obtain:

Theorem 2. Let C, Tr, Tv, N,M, ci and fi for i ∈ [M ] be
as in Definition 3. Let r > 1, b ∈ N

+,Δ ∈ (0, 1], Cj ∈ C
be an (N,Δ)-suboptimal learner, and S be the allocation
sequence produced by DAUB*(C, Tr, Tv, r, b). If fj and fi∗

are well-behaved, then cost(Sj) ≤ r
r−1cj(rn

Δ
j ).
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The final piece of the analysis is an asymptotic bound
on nΔ

i . To this end, we observe that the derivative of
any bounded, well-behaved, discrete function of N behaves
asymptotically as o(1/n) (cf. Proposition 1 in Appendix).
Applying this to fj , we can prove that if f ′

j(N) ≤ Δ/N ,
then nΔ

j is o(N) in N (cf. Lemma 5 in Appendix).
This leads to our main result regarding DAUB*’s regret:

Theorem 3 (Sub-Linear Regret). Let C, Tr, Tv, N,M, ci
and fi for i ∈ [M ] be as in Definition 3. Let r >
1, b ∈ N

+, and Δ ∈ (0, 1]. Let J = {j | Cj ∈
C is (N,Δ)-suboptimal}. For all j ∈ J , suppose fj is well-
behaved and f ′

j(N) ≤ Δ/N . If DAUB*(C, Tr, Tv, r, b) out-
puts S as the training data allocation sequence along with a
selected learner Cĩ trained on all of Tr, then:

1. cost(Sĩ) ≤ r
r−1cĩ(N);

2. (N,Δ)-regret of S is o(
∑

j∈J cj(N)) in N ; and

3. If cj(n) = O(cĩ(n)) for all j ∈ J , then the (N,Δ)-regret
of S is o(M · cost(Sĩ)) in N .

Thus, DAUB* successfully solves the cost-sensitive train-
ing data allocation problem whenever for j ∈ J , fj is well-
behaved and cj(n) = O(cĩ(n)), i.e., training any subopti-
mal learner is asymptotically not any costlier than training
an optimal learner. While more refined versions of this re-
sult can be generated, the necessity of an assumption on the
cost function is clear: if a suboptimal learner Cj was arbi-
trarily costlier to train than optimal learners, then, in order to
guarantee near-optimality, one must incur a significant mis-
allocation cost training Cj on some reasonable subset of Tr

in order to ascertain that Cj is in fact suboptimal.

Tightness of Bounds. The cost bound on misallocated
data in Theorem 2 in terms of nΔ

i is in fact tight (up to a
constant factor) in the worst case, unless further assumptions
are made about the accuracy functions. In particular, every
algorithm that guarantees (N,Δ)-optimality without further
assumptions must, in the worst case, incur a cost of the order
of cj(nΔ

j ) for every suboptimal Cj ∈ C (cf. Theorem 5 in
Appendix for a formal statement):

Theorem 4 (Lower Bound, informal statement). Let Δ ∈
(0, 1] and A be a training data allocation algorithm that al-
ways outputs an (N,Δ)-optimal learner. Then there exists
an (N,Δ)-suboptimal learner Cj that would force A to in-
cur a misallocated training cost larger than cj(n

Δ
j )/2.

Experiments

Our experiments make use of 41 classifiers covering a
wide range of algorithms (SVMs, Decision Trees, Neu-
ral Networks, Logistic Regression, etc.) as implemented in
WEKA (Hall et al. 2009). All experiments were conducted
on AMD Opteron 6134 machines with 32 cores and 64 GB
memory, running Scientific Linux 6.1.4

We first evaluate DAUB on one real-world binary classifi-
cation dataset, “Higgs boson” (Baldi, Sadowski, and White-
son 2014) and one artificial dataset, “Parity with distractors,”

4Code and data, including full parameterization for each classi-
fier, are available from the authors.

HIGGS PARITY
Full no fT DAUB Full no fT DAUB

Iterations 41 105 56 41 26 19
Allocation 1,578k 590k 372k 860k 171k 156k
Time (sec) 49,905 17,186 2,001 5,939 617 397

Table 1: Comparison of full training, DAUB without train-
ing accuracy bound fT , and DAUB.

to examine robustness of DAUB’s strategy across two ex-
tremely different types of data. In the latter task the class
label is the parity of a (hidden) subset of binary features—
the remaining features serve as distractors, with no influence
on the class label. We generated 65,535 distinct examples
based on 5-bit parity with 11 distractors, and randomly se-
lected 21,500 samples each for Tr and Tv . For the Higgs and
other real-world datasets, we first randomly split the data
with a 70/30 ratio and selected 38,500 samples for Tr from
the 70% split and use the 30% as Tv . We coarsely optimized
the DAUB parameters at b = 500 and r = 1.5 based on the
Higgs data, and kept those values fixed for all datasets. This
yielded 11 possible allocation sizes: 500, 1000, 1500, 2500,
4000, 5000, 7500, 11500, 17500, 25500, 385005.

Results for HIGGS and PARITY are as follows. The accu-
racy loss of the ultimate classifiers selected by DAUB turned
out to be quite small: DAUB selected the top classifier for
HIGGS (i.e. 0.0% loss) and one of the top three classifiers
for PARITY (0.3% loss). In terms of complexity reduction,
Table 1 shows clear gains over “full” training of all classi-
fiers on the full Tr, in both total allocated samples as well
total CPU training time, for both standard DAUB as well
as a variant which does not use training set accuracy fT

as an upper bound. Both variants reduce the allocated sam-
ples by ∼2x-4x for HIGGS, and by ∼5x for PARITY. The
impact on CPU runtime is more pronounced, as many sub-
optimal classifiers with supra-linear runtimes receive very
small amounts of training data. As the table shows, standard
DAUB reduces total training time by a factor of ∼25x for
HIGGS, and ∼15x for PARITY.

Figures 1 and 2 provide additional insight into DAUB’s
behavior. Figure 1 shows how validation accuracy pro-
gresses with increasing training data allocation to several
classifiers on the HIGGS dataset. The plots for the most
part conform to our ideal-case assumptions of increasing
accuracy with diminishing slope, barring a few monotonic-
ity glitches6 due to stochastic sampling noise. We note that,
while there is one optimal classifier C∗ (a parameteriza-
tion of a Rotation Forest) with best validation accuracy after
training on all of Tr, there are several other classifiers that
outperformed C∗ in early training. For instance, LADTree
is better than C∗ until 5,000 examples but then flattens out.

Figure 2 gives perspective on how DAUB distributes data
allocations among the 41 classifiers when run on the HIGGS

5Unfortunately some of our classifiers crash and/or run out of
memory above 38500 samples.

6In our experience, most of these glitches pertain to weak clas-
sifiers and thus would not significantly affect DAUB, since DAUB
mostly focuses its effort on the strongest classifiers.
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Full Training DAUB
Dataset Application Area Allocation Time (s) Iterations Allocation Time (s) Speedup Loss
Buzz social media 1,578k 56,519 57 302k 5,872 10x 0.0%
Cover Type forestry 1,578k 43,578 13 160k 3,848 11x 1.1%
HIGGS signal processing 1,578k 49,905 56 372k 2,001 25x 0.0%
Million Songs music 1,578k 115,911 53 333k 17,208 7x 0.6%
SUSY high-energy physics 1,578k 26,438 31 214k 837 31x 0.9%
Vehicle Sensing vehicle management 1,578k 68,139 50 296k 5,603 12x 0.0%

Table 2: Comparison of full training and DAUB across six benchmarks.
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Figure 1: Higgs validation accuracy curves of several classi-
fiers that initially outperform the classifier (Rotation Forest)
that is ultimately the best when given all training data.

dataset. The classifiers here are sorted by decreasing valida-
tion accuracy fi(N). While DAUB manages to select C∗ in
this case, what’s equally critical is the distribution of allo-
cated training data. The figure shows that DAUB allocates
most of the training data to the top eight classifiers. Most
classifiers receive 2500 or fewer samples, and only four
classifiers receive more than 10k samples, with all of them
within 1.5% of the optimal performance.

Finally, in Table 2 we report results of DAUB on
Higgs plus five other real-world benchmarks as indicated:
Buzz (Kawala et al. 2013); Covertype (Blackard and Dean
2000); Million Song Dataset (Bertin-Mahieux et al. 2011);
SUSY (Baldi, Sadowski, and Whiteson 2014); and Vehicle-
SensIT (Duarte and Hu 2004). These experiments use ex-
actly the same parameter settings as for HIGGS and PAR-
ITY. As before, the table shows a comparison in terms of al-
located training samples and runtime. In addition it displays
the incurred accuracy loss of DAUB’s final selected clas-
sifier. The highest loss is ∼1%, well within an acceptable
range. The average incurred loss across all six benchmarks
is 0.4% and the average speedup is 16x. Our empirical find-
ings thus show that in practice DAUB can consistently se-
lect near-optimal classifiers at a substantial reduced compu-
tational cost when compared to full training of all classifiers.
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Figure 2: Number of Higgs examples allocated by DAUB
to various classifiers, sorted by decreasing validation perfor-
mance at N = 38500.

Conclusion

We reiterate the potential practical impact of our original
Cost-Sensitive Training Data Allocation problem formula-
tion, and our proposed DAUB algorithm for solving this
problem. In our experience, DAUB has been quite easy to
use, easy to code and tune, and is highly practical in robustly
finding near-optimal learners with greatly reduced CPU time
across datasets drawn from a variety of real-world domains.
Moreover, it does not require built-in knowledge of learners
or properties of datasets, making it ideally suited for prac-
titioners without domain knowledge of the learning algo-
rithms or data characteristics. Furthermore, all intermediate
results can be used to interactively inform the practitioner of
relevant information such as progress (e.g., updated learn-
ing curves) and decisions taken (e.g., allocated data). Such a
tool was introduced by Biem et al. (2015) and a snapshot of
it is depicted in the Appendix.

Our theoretical work on the idealized DAUB* scenario
also reveals novel insights and provides important support
for the real-world behavior of DAUB with noisy accuracy
estimates. As dataset sizes scale, we expect that DAUB will
better and better approach the idealized behavior of DAUB*,
which offers strong bounds on both learner sub-optimality as
well as regret due to misallocated samples.

There are many opportunities for further advances in both
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the theoretical and practical aspects of this work. It should
be possible to develop more accurate bound estimators given
noisy accuracy estimates, e.g., using monotone spline re-
gression. Likewise, it may be possible to extend the theory to
encompass noisy accuracy estimates, for example, by mak-
ing use of PAC lower bounds on generalization error to es-
tablish upper bounds on learner accuracy. DAUB could be
further combined in an interesting way with methods (Ali,
Caruana, and Kapoor 2014) to optimally split data between
training and validation sets.
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Appendix: Proof Details

Lemma 1. Let C, Tr, Tv, N,M, and fi for i ∈ [M ] be as in
Definition 3. Let r > 1 and b ∈ N

+. If the projected upper
bound functions uj and ui∗ used by DAUB*(C, Tr, Tv, r, b)
are valid, then it allocates to Cj fewer than rn∗

j examples in

each step and r2

r−1n
∗
j examples in total.

Proof of Lemma 1. Suppose, for the sake of contradiction,
that DAUB* allocates at least rn∗

j examples to learner Cj at
some point in its execution. Since r > 1 and all allocation
sizes are at most N , n∗

j < N . Further, since nj , the number
of examples allocated to Cj , is always incremented geomet-
rically by a factor of at most r, at some previous point in the
algorithm, we must have nj ∈ {n∗

j , . . . , rn
∗
j − 1}. Since the

projected upper bound function uj is non-increasing, at that
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Figure 3: Implementation of a practitioners tool based on DAUB. The interactive dashboard shows the performance of various
learners in terms of loss on the validation set based on training on currently allocated training data points. For each learner there
are continuously updated plots that show the learning curve and a comparison of training and validation performance.

previous point in the algorithm, uj(nj) ≤ uj(n
∗
j ) < f∗ by

the definition of n∗
j . On the other hand, since the projected

upper bound function ui∗ is valid, the projected upper bound
for Ci∗ would always be at least f∗.

Therefore, the algorithm, when choosing which learner to
allocate the next set of examples to, will, from this point
onward, always prefer Ci∗ (and possibly another learner ap-
pearing to be even better) over Cj , implying that nj will
never exceed its current value. This contradicts the assump-
tion that DAUB* allocates at least rn∗

j examples to Cj at
some point during its execution.

For the bound on the total number of examples allocated
to Cj , let k = 	logr rn∗

j

b 
. Since DAUB* allocates fewer
than rn∗

j examples to Cj in any single step and the allocation
sizes start at b and increase by a factor of r in each step, Cj

must have received precisely b+br+br2+. . .+brk examples
in total. This is smaller than r

r−1br
k ≤ r2

r−1n
∗
j .

Lemma 2. Let C, Tr, Tv, N,M, and ci for i ∈ [M ] be as in
Definition 3. Let r > 1, b ∈ N

+, and S be the training data
allocation sequence produced by DAUB*(C, Tr, Tv, r, b). If
DAUB* allocates at most n training examples to a learner
Cj ∈ C in each step, then cost(Sj) ≤ r

r−1cj(n).

Proof of Lemma 2. As in the proof of Lemma 1, let
k = 	logr(n/b)
 and observe that the data alloca-
tion subsequence Sj for learner Cj must have been
(b, br, br2, . . . , brk). The corresponding training cost for Cj

is cost(Sj) = cj(b)+cj(br)+cj(br
2)+ . . . cj(br

k). By the

assumption that cj grows at least linearly: cj(br�) ≤ cj(br
k)

rk−�

for � ≤ k. It follows that:
cost(Sj) ≤ cj(br

k) · (r−k + r−k+1 + r−k+2 + . . .+ 1)

<
r

r − 1
cj(br

k) ≤ r

r − 1
cj(n)

This finishes the proof.

Lemma 3. If fi(n) is well-behaved, then ubi(n) is a valid
projected upper bound function.

Proof of Lemma 3. Recall that ubi(n) is the minimum of
fT
i (n) and fi(n) + (N − n)f ′

i(n). Since fT
i (n) is a non-

increasing function and is already argued to be an upper
bound on fi(N), it suffices to show that g(n) = fi(n) +
(N − n)f ′

i(n) is also a non-increasing function of n and
g(n) ≥ fi(N).

g(n+ 1) = fi(n+ 1) + (N − n− 1)f ′
i(n+ 1)

≤ (fi(n) + f ′
i(n)) + (N − n− 1)f ′

i(n+ 1)

≤ (fi(n) + f ′
i(n)) + (N − n− 1)f ′

i(n)

because f ′
i is non-increasing

= fi(n) + (N − n)f ′
i(n) = g(n)

The first inequality follows from the assumptions on the
behavior of fi w.r.t. n and its first-order Taylor expansion.
Specifically, recall that f ′

i(n) is defined as (fi(n) − fi(n −
s))/s for some (implicit) parameter s. For concreteness, let’s
refer to that implicit function as hi(n, s). Let h′

i(n, s) de-
note the discrete derivative of hi(n, s) w.r.t. n. The non-
increasing nature of f ′

i(n) w.r.t. n implies h′
i(n, s), for any

fixed n, is a non-decreasing function of s. In particular,
f ′
i(n) = h′

i(n, s) ≥ h′
i(n, 1) for any s ≥ 1. It follows that

fi(n+1) = fi(n) + h′
i(n+1, 1) ≤ fi(n) + h′

i(n+1, s) =
fi(n) + f ′

i(n+ 1) ≤ fi(n) + f ′
i(n), as desired.

Thus, g(n) is non-increasing. Since g(N) = f(N) by
definition, we have g(n) ≥ f(N), finishing the proof.

Lemma 4. For an (N,Δ)-suboptimal learner Cj with well-
behaved accuracy function fj , n∗

j ≤ nΔ
j .
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Proof of Lemma 4. If f ′
j(N) > Δ/N , then nΔ

j = N and
the statement of the lemma holds trivially. Otherwise, by the
definition of nΔ

j , f ′
j(n

Δ
j ) ≤ Δ/N . In order to prove n∗

j ≤
nΔ
j , we must show that ubj(nΔ

j ) < f∗. We do this by using
first-order Taylor expansion:

ubj(n
Δ
j ) ≤ fj(n

Δ
j ) + (N − nΔ

j ) f
′
j(n

Δ
j )

≤ fj(n
Δ
j ) + (N − nΔ

j )
Δ

N
by above observation

< fj(n
Δ
j ) + Δ

≤ fj(N) + Δ since nΔ
j ≤ N ; fj is non-decreasing

≤ fi∗(N) by (N,Δ)-suboptimality of Cj

Hence, ubj(nΔ
j ) < fi∗(N) = f∗.

Proposition 1. If g : N → [m1,m2] is a well-behaved func-
tion for m1,m2 ∈ R, then its discrete derivative g′(n) de-
creases asymptotically as o(1/n).

Proof of Proposition 1. Recall the definition of the discrete
derivative from Section and assume for simplicity of exposi-
tion that the parameter s is 1, namely, g′(n) = g(n)−g(n−
1). The argument can be easily extended to s > 1. Applying
the definition repeatedly, we get g(n) = g(1) + (g′(2) +
. . .+g′(n)) ≥ m1+g′(2)+ . . . g′(n). If g′(n) was Ω(1/n),
then there would exist n0 and c such that for all n ≥ n0,
g′(n) ≥ c/n. This would mean g(n) ≥ m1 +

∑
n≥n0

c/n.
This summation, however, diverges to infinity while g(n) is
bounded above by m2. It follows that g′(n) could not have
been Ω(1/n) to start with. It must thus decrease asymptoti-
cally strictly faster than 1/n, that is, be o(1/n).

Lemma 5. For an (N,Δ)-suboptimal learner Cj with a
well-behaved accuracy function fj satisfying f ′

j(N) ≤
Δ/N , we have that nΔ

j is o(N) in N .

Proof of Lemma 5. From Proposition 1, f ′
j(N) = o(1/N),

implying Δ/f ′
j(N) = ω(NΔ). This means that a value N ′

that is o(N/Δ) and suffices to ensure Δ/f ′
j(N

′) ≥ N for
all large enough N , that is, f ′

j(N
′) ≤ Δ/N . Since nΔ

j is, by
definition, no larger than N ′, nΔ

j must also be o(N/Δ).

Proof of Theorem 3. Since DAUB* never allocates more
than N training examples in a single step to Ci for any i ∈
[M ], it follows from Lemma 2 that cost(Si) ≤ r

r−1ci(N).
In particular, cost(Sĩ) ≤ r

r−1cĩ(N).
The (N,Δ)-regret of DAUB*, by definition, is∑
j∈J cost(Sj). By Theorem 2, this is at most

r
r−1

∑
j∈J cj(rn

Δ
j ). Since the cost function cj is as-

sumed to increase at least linearly, this quantity is at

most r
r−1

∑
j∈J

rnΔ
j

N cj(N). From Lemma 5, we have that

nΔ
j = o(N/Δ) and hence

rnΔ
j

N = o(1) in N . Plugging this
in and dropping the constants r and Δ from the asymptotics,
we obtain that the regret is o(

∑
j∈J cj(N)).

Finally, if cj(n) = O(cĩ(n)), then
∑

j∈J cj(N) =

O(
∑

j∈J cĩ(N)), which is simply O(M · cĩ(N)). Since

cost(Sĩ) ≥ cĩ(N), this quantity is also O(M · cost(Sĩ))
in N . It follows from the above result that the (N,Δ)-regret
of DAUB* is o(M · cost(Sĩ)) in N , as claimed.

Theorem 5 (Lower Bound). Let Δ ∈ (0, 1] and A be a
training data allocation algorithm that, when executed on
a training set of size N , is guaranteed to always output an
(N,Δ)-optimal learner. Let C, Tr, Tv, N,M, ci and fi for
i ∈ [M ] be as in Definition 3. Let γ = (

√
5 − 1)/2 and

Cj ∈ C be an (N,Δ)-suboptimal learner. Then there exists
a choice of fj(n) such that fj is well-behaved, f ′

j(N) ≤
Δ/N, and A(C, Tr, Tv) allocates to Cj more than γnΔ

j ex-
amples, thus incurring a misallocated training cost on Cj

larger than γcj(n
Δ
j ).

Proof of Theorem 5. We will argue that, under certain cir-
cumstances, A must allocate at least γNΔ

j examples to Cj

in order to guarantee (N,Δ) optimality.
To prove the desired result by contradiction, we consider

the optimal learner Ci∗ and will construct specific accuracy
functions fj(n) and fi∗(n) such that they are identical for
all n ≤ γNΔ

j , have derivative no more than Δ/n at NΔ
j ,

but differ by at least Δ when evaluated at n = N . This
would imply that A simply cannot distinguish between the
accuracy of Cj and Ci∗ by evaluating them on at most γNΔ

j

examples and thus cannot guarantee (N,Δ)-optimality of
the learner it outputs.

Suppose we can preserve the properties of fj required by
the theorem, including f ′

j(N
Δ
j ) ≤ Δ/N , but can enforce

that f ′
j(γN

Δ
j ) ≥ dΔ/N for some d > 1 whose value we

will determine shortly. Further, let us alter fj such that it
remains unchanged for n ≤ γNΔ

j and is altered for larger
n such that f ′

j(n) = dΔ/N for γNΔ
j < n ≤ NΔ

j and
f ′
j(n) = Δ/N for n > NΔ

j . Recalling that NΔ
j ≤ N , this

modified fj then satisfies:

fj(N)− fj(γN
Δ
j ) = (NΔ

j − γNΔ
j )

dΔ

N
+ (N −NΔ

j )
Δ

N

= (1− γ − 1/d)NΔ
j

dΔ

N
+Δ

which is at least Δ as long as 1/d ≤ 1− γ. Now define fi∗
s.t. fi∗(n) = fj(n) for n ≤ γNΔ

j and fi∗(n) = fj(γN
Δ
j )

for n > γNΔ
j . Thus, fj and fi∗ are identical for n ≤ γNΔ

j

but fi∗(N)− fj(N) ≥ Δ, as desired.
It remains to show that we can choose a valid fj satis-

fying the properties required by the theorem but such that
f ′
j(γN

Δ
j ) ≥ dΔ/N . To achieve this, consider fj(n) =

1 − cΔ/n for any c > 0. Then fj is non-decreasing,
f ′
j(n) = cΔ/n2 is non-increasing, nΔ

j =
√
cN , f ′

j(n
Δ
j ) =

Δ/N , and f ′
j(γn

Δ
j ) = f ′

j(γ
√
cN) = Δ/(γ2N). Notice that

γ = (
√
5 − 1)/2 satisfies the condition γ2 ≤ 1 − γ; it is

in fact the largest value that satisfies the condition. Hence,
we can choose d = 1/γ2 in order to ensure 1/d ≤ 1 − γ,
which in turn ensures that the altered fj(N) and fj(γN),
as constructed above, differ by at least Δ. This finishes the
construction for the lower bound.
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