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Abstract

Traditional time series analysis methods are limited on
some complex real-world time series data. Respiratory
motion prediction is one of such challenging problems.
The memory-based nearest neighbor approaches have
shown potentials in predicting complex nonlinear time
series compared to many traditional parametric pre-
diction models. However, the massive time series sub-
sequences representation, the similarity distance mea-
sures, the number of nearest neighbors, and the en-
semble functions create challenges as well as limit the
performance of nearest neighbor approaches in com-
plex time series prediction. To address these problems,
we propose a flexible time series pattern representa-
tion and selection framework, called the orthogonal-
polynomial-based variant-nearest-neighbor (OPVNN)
approach. For the respiratory motion prediction prob-
lem, the proposed approach achieved the highest and
most robust prediction performance compared to the
state-of-the-art time series prediction methods. With a
solid mathematical and theoretical foundation in or-
thogonal polynomials, the proposed time series repre-
sentation, subsequence pattern mining and prediction
framework has a great potential to benefit those indus-
try and medical applications that need to handle highly
nonlinear and complex time series data streams, such as
quasi-periodic ones.

Introduction

Although various time series modeling methods have been
proposed, it is still a challenge to make accurate and ro-
bust predictions for highly nonlinear and complex time se-
ries, such as respiratory motion trajectories. A few studies
showed that the memory-based nearest neighbor approach
can be useful to predict highly nonlinear and complex
time series patterns (Keogh, Lin, and Fu 2005; Sasu 2012;
Yankov, Decoste, and Keogh 2006). In general, a K-nearest
neighbor (KNN) method can be used to identify K most
similar time series patterns first and then predict the future
pattern of a query time series. Though promising for predict-
ing complex nonstationary time series, a significant limit of
these methods is on efficient subsequence pattern searching
in a low-dimensional space. Also the performance of these
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methods are sensitive to the number of nearest neighbors
K, the ensemble functions that combine nearest neighbor,
and the sliding window length. Currently, no effective ap-
proaches exist to guide the selection of these model parame-
ters. If too many neighbors are selected, the predicted values
of a query time series tend to be biased by including intrinsi-
cally different patterns; while if too few neighbors are used,
the predictions tend to be influenced by noises and outliers
with large variance. Such bias-variance dilemma is a well-
known issue in KNN applications (T. Hastie and Friedman
2009), and no systematic approach has been developed to
improve the efficiency of time series subsequence pattern
mining and the robustness of nearest-neighbor approaches
in time series prediction. In addition to pattern searching ap-
proaches, an efficient representation of time series itself is
also critical in time series pattern recognition and prediction.
There has been a huge interest in approximating time se-
ries with reduced dimensionality. Methods include discrete
Fourier transformation (DFT), single value decomposition
(SVD), discrete wavelet transformation (DWT), piecewise
approximation, and etc. (Fu 2011). Take the popular DFT-
based representation for example, although it can achieve
accurate time series approximation using a few signature
DFT coefficients, the representation cannot be applied to
weighted/penalized pattern matching problems. In summary,
four fundamental problems exist in time series pattern min-
ing and are in urgent need to be solved, including 1) data
representation: how to represent the essential shape charac-
teristics of a time series pattern in a largely reduced dimen-
sional space, while allows convenient penalization and sub-
sequence pattern mining; 2) similarity measure and pattern
matching: how to search perceptually similar patterns from
massive time series data effectively and efficiently ; 3) pa-
rameter selection: how to develop a data-driven method to
select parameters and avoid the bias-variance dilemma; 4)
ensemble function: how can we ensemble in order to achieve
reliable and robust predictions.

This study is motivated to address the aforementioned
time series data mining challenges, and provide a solution
to make accurate and robust predictions for complex time
series data. In particular, we developed a novel time series
pattern representation using orthogonal polynomial approx-
imation. A set of theories and similarity distance measures
were developed to achieve fast and efficient time series pat-
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tern mining with flexible temporal weighting capability in
massive time series subsequences. Based on the new time
series representation, we further developed an orthogonal-
polynomial-based variant-nearest-neighbor (OPVNN) ap-
proach to tackle the challenges of highly complex time series
prediction. The proposed OPVNN method has been success-
fully applied to the challenging respiratory motion predic-
tion problem, as most of the current time series models and
machine learning algorithms still cannot achieve satisfactory
prediction performance for clinical applications. The exper-
imental results show that the proposed method achieved sig-
nificantly superior and more robust prediction performance
than the state-of-the-art prediction methods on respiratory
motion trajectories from 27 patients.

The rest of the paper is organized as follows. In Section
??rep we introduce the mathematical formulations of or-
thogonal polynomial based time series representation, and
the related similarity measures using orthogonal polynomial
coefficients. In Section ??framework we present the pro-
posed OPVNN prediction framework for multi-step time se-
ries prediction. Then in Section ??result we provide the ex-
perimental results of the proposed method for the challeng-
ing respiratory motion prediction problem. Finally, we con-
clude the paper in Section ??conclude.

Orthogonal-Polynomial Based Time Series

Representation and Pattern Mining

Given a real-valued time series x = [x0, x1, . . . , xN ], we
assume x can be modeled by a parameterized function f(t) :
R→ R. In addition, we assume that the function f(t) can be
represented by a linear combination of K+1 basis functions
fk with a parameter vector w with elements wk ∈ R in the
following form:

f(t) =
K∑

k=0

wk · fk(t), (1)

where the basis function fk can be polynomials, sigmoid
functions, wavelets, etc. The values of the K+1 basis func-
tions for the N + 1 time series points can be written into a
matrix F ∈ R

(N+1)(K+1) as follows:

F =

⎛
⎜⎝

f0(t0) · · · fK(t0)
...

. . .
...

f0(tN ) · · · fK(tN ).

⎞
⎟⎠ (2)

Then the linear least-squares approximation problem for
the time series x using the function f can be denoted by

min
w
‖Fw − x‖2, (3)

where ‖ ·‖ is the Euclidean norm. The least-squares solution
wLS can be obtained by setting the derivative of the above
objective function with respect to the parameter vector w to
zero. And

wLS = (F TF )−1F Tx = F +x, (4)

where F + = (F TF )−1F T is the pseudo-inverse F . If we
select orthogonal polynomials as the basis functions, such

that
∑N

n=0 fk1(tn) · fk2(tn) = 0 for any two basis func-
tions fk1 and fk2 with k1 �= k2, then we have the following
property of F

F TF =

⎛
⎜⎝
‖f0‖2 · · · 0

...
. . .

...
0 · · · ‖fK‖2

⎞
⎟⎠

= ΣF

(5)

With orthogonal basis functions, the least-squares solu-
tion of the parameter vector w can be rewritten as

wLS = (F TF )−1F Tx

=

⎛
⎜⎜⎜⎝

∑N
n=0

xn

‖f0‖2 f0(tn)
...∑N

n=0
xn

‖fK‖2 fK(tn)

⎞
⎟⎟⎟⎠

(6)

Then the sum of squared error SSELS of the orthogonal
polynomial approximation by

SSELS =

N∑
n=0

x2
n −

K∑
k=0

w2
k‖fk‖2. (7)

As a time series may drift over time and the relative mor-
phological patterns are more informative in similarity pat-
tern searching, one can remove the ”drift” of a time series by
removing its mean before approximation. Using the concept
of coefficient of determination, often denoted by R-squared,
we can introduce a new approximation accuracy measure of
the time series x by

R2
OP = 1− SSELS

SST (x)
,

=
wT

LSΣFwLS

xTx
.

(8)

Where the SST (x) = (x − x̄)T (x − x̄) = xTx for the
zero-mean time series vector, and ΣF is the pre-computed
(K + 1) × (K + 1) diagonal matrix, and K is the maxi-
mum order of orthogonal polynomials used for approxima-
tion. With R2

OP in formula 8, one can obtain the approxi-
mation performance of any time series efficiently only using
the orthogonal polynomial coefficients and the inner product
of the time series vector x.
The Benefits of Orthogonal Polynomials Approximations:
• Fast updating and approximation: according to equa-

tion 6, the least-squares solution of the parameter wLS is
simply a weighted linear combination of the time series
data values. This property enables a super fast approxi-
mation for real-time time series streams with a very low
computational complexity.

• Efficient control of approximation performance: due to
the orthogonality, the coefficients of different polynomial
orders are independent to each other. The coefficients of
lower order terms do not change as the order of approx-
imation polynomials goes up. If lower order approxima-
tion is needed (for example, avoid over-fitting), we can
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just set the coefficients of higher order terms to zero with-
out re-fitting the approximation model. The approxima-
tion accuracy can be conveniently controlled by the pro-
posed measure in equation 8.

• Sparse representation: the coefficient vector of orthogo-
nal polynomial approximation is a high-level sparse rep-
resentation of raw time series data. The coefficient vec-
tor retains the essential time series pattern information
in a low-dimensional space. With attractive mathematical
properties, one can achieve very efficient similarity pat-
tern mining in the coefficient space of the time series data.

Similarity Distance Measure

In time series similarity pattern matching, different tempo-
ral points may have different levels of importance in pat-
tern searching. For example, we may consider the most re-
cent time points are more important than the older ones to
search for similar time series subsequence patterns. To en-
force different similarity-matching requirement for different
time points, we introduce a error-penalty vector in solving
the least-squares problem defined in 3.

Theorem 1. Let x1 and x2 be two time series with a length
of N + 1 time points, x̂1 and x̂2 are the Kth order orthog-
onal polynomial approximations of the two time series with
coefficient vectors w1 and w2, respectively. Given an error-
penalty vector P = p0, p1, . . . , pN for the N +1 time series
points. The weighted Euclidean distance between the two
time series approximations x̂1 and x̂2 can be obtained from
the orthogonal polynomial coefficients directly in O(K2).

Proof. We can rewritten the penalty vector P in a diagonal
matrix form Pd. Then the weighted sum of squared residual
errors WSSE between x̂1 and x̂2 can be represented by:

WSSE(x̂1, x̂2) = (w1 −w2)
TF TPdF (w1 −w2)

= (w1 −w2)
TGF (w1 −w2)

= [wT
1 GFw1,−2wT

1 GF ][1,w
T
2 ]

T

+wT
2 GFw2

= H(w1,GF )[1,w
T
2 ]

T +wT
2 GFw2.

(9)

The given error-penalty vector P generate a K ×K square
matrix GF . Using formula 9, the weighted Euclidean dis-
tance can be obtained by the orthogonal polynomial coeffi-
cients directly in O(K).

Theorem 2. Now assume we have a pattern library B with
orthogonal polynomial coefficient vectors of M time series
subsequences. For a query time series xt, the similarity pat-
tern searching problem in the pattern library can be effi-
ciently formulated by the inner product of the transformed
matrix H(B,ΣF ) or H(B,GF ) and the query orthogo-
nal polynomial coefficient vector wt.

Proof. For the equal-penalty case, the Euclidean distances
between the approximation of the query time series and the

library patterns can be represented by

SSE(B,xt) = H(B,ΣF )[1,w
T
t ]

T +wT
t ΣFwt.

(10)

Here we notice that the second term wT
t ΣFwt is only re-

lated to the query time series itself, this part can be removed
in the similarity pattern search in the library. Thus, we can
define a new distance measure by

D(B,xt) = H(B,ΣF )[1,w
T
t ]

T . (11)

With this formulation, the distances between the approxi-
mated query time series and the library patterns can be com-
puted efficiently by the inner product of the transformed
matrix H(B,ΣF ) and the query orthogonal polynomial
coefficient vector wt. The computational complexity is in
O(MK), and is not affected by the time series data length
N . Similarly for the weighted-penalty case, the new distance
measure can be obtained by

Dw(B,xt) = H(B,GF )[1,w
T
2 ]

T . (12)

The weighted Euclidean distance between the query time se-
ries and the library patterns can also be obtained efficiently
in O(MK) without any extra computational load.

Based on the new similarity distance formulation in 11
and 12, we can construct pattern library using the trans-
formed coefficient vector using the transformation function
H . The distance vector for a query time series xt can be
obtained efficiently by the inner product of the enhanced or-
thogonal polynomial coefficient vector [1,wt] and the pat-
tern library matrix. The transformed vector H(wt,ΣF ) or
H(wt,GF ) is then stored in the pattern library instead of
original coefficients.

Proof. Assume the sliding window to construct the pat-
tern library has a length of N + 1, a query time series
x′ = [x0, x1, . . . , xL−1] has a length of L with L <
N + 1, and the corresponding orthogonal polynomial co-
efficient vector is w′. To search for similar patterns in the
pattern library, we can design a error-penalty weight vec-
tor P ′ = [p0, p1, . . . , pN ] such that L consecutive penalty
weights are non-zero and the remaining penalty weights are
zeros. As the library stores time series subsequences contin-
uously with a small moving step, we can just set the the first
L penalty weights non-zero and others zero. We denote the
diagonal matrix form of the penalty vector by P ′

d. Then we
can employ the formula 9 to calculate the distances between
the query time series and the subsequences of length L in
the library patterns. In particular, denote F TP ′

dF = G′
F ,

the resulting distance vector can be obtained by

Dw(B,x′) = H(B,G′
F )[1,w

′T ]T . (13)

Statistical Similarity Measure in Pattern Matching: To
conveniently quantify the similarity between two time se-
ries patterns, the sum of squared residual errors (SSE) is
commonly used. However, the value of SSE is dependent
on time series amplitude and data length. To automatically
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scale the concept of similarly for massive time series with
different values ranges, we propose a statistical measure as
the similarity criterion to determine the best-matching sim-
ilar patterns automatically without giving a fixed number
of neighbors in pattern searching. Assume a pattern library
with n subsequences x̂j with j = 1, 2, . . . , n, and the ap-
proximation of a query time series is x̂t. The weighted sim-
ilarity measure of two time series sequences is defined by

R2
wm(x̂j , x̂t) = 1− WSSE(x̂j , x̂t)

WSST (x̂t)

= 1− H(wj,GF )[1,w
T
t ]

T +wT
t GFwt

wT
t GFwt

= −H(wj,GF )[1,w
T
t ]

T

wT
t GFwt

.

(14)

With the above definition, R2
m(x̂j , x̂t) or R2

wm(x̂j , x̂t)
is closer to one if two time series patterns are more simi-
lar to each other. If the two time series patterns are identi-
cal, R2

m(x̂j , x̂t) or R2
wm(x̂j , x̂t) is equal to 1. With such a

nice property, one can set the similarity requirement conve-
niently, such as 0.95, in the similarity pattern searching pro-
cess. The patterns with higher similarity values are selected
as best-matching patterns in the pattern library.

Online Time Series Subsequence Mining &

Prediction Framework

The memory-based nearest neighbor approaches have po-
tentials to predict highly complex and nonlinear time series
than many traditional parametric time series models. How-
ever, it is still challenging to mining massive time series
subsequences efficiently. The selection of time series rep-
resentations in low-dimensional space, the selection of sim-
ilarity distance measures, the determination of the number
of nearest neighbors, and the ensemble functions of nearest
neighbors are still serious issues that limit the performance
of the current nearest neighbor approaches for prediction of
highly nonlinear and complex time series patterns. In this
study, we propose a new approach to address these prob-
lems, called orthogonal polynomial based variant nearest
neighbor (OPVNN) prediction framework as shown in the
following subsections.

Time Series Prediction Problem Statement

For a real-time time series y = [y1, y2, . . . , yt, . . . ], a slid-
ing window is applied to monitor the time series with a win-
dow length of Lwin time points and a step size of Lstep

time points. Given a prediction horizon of h steps, at each
time step t, the prediction task is to find variant k best-
matching reference patterns in the time series history, and
ensemble the h-step-ahead values of the reference patterns
[yr1,h, yr2,h, . . . , yrk,h] to make the h-step prediction of the
query time series at time point t using an ensemble function
Θ. The prediction formulation can be written as

ŷt+h = Θ(yr1,h, yr2,h, . . . , yrk,h). (15)

Time Series Subsequence Representation

As the sliding window monitors the time series x, each time
series subsequence with a length of Lwin. At time point
t, denote the window time series subsequence by yt =
[yt−Lwin+1, yt−Lwin+2, . . . , yt−1, yt]. The orthogonal poly-
nomial approximation is applied to the zero-mean vector
ỹt = yt − ȳt, the resulting approximation coefficient vec-
tor is wt. According to distance formulas 9, we transform
the original coefficient vector into a new space by the trans-
formation function H(wrt,ΣF ) for equal-penalty match-
ing case, or H(wrt, GF ) for the weighted-penalty matching
case. The pattern library stores the transformed coefficient
vector of each time series subsequence.

Pattern Baseline Calibration

In addition to the zero-mean pre-processing, one can also
apply different aligning methods for time series subse-
quences depend on applications. For example, for the respi-
ratory time series prediction study, we noticed that the right-
aligned pattern matching can be more effective to find best
reference patterns for an accurate motion prediction. Instead
of subtracting the mean, each subsequence is subtracted by
its right-end value such that ỹt = yt − yt(Lwin). Then the
orthogonal polynomial approximation is performed for the
right-aligned pattern and store the transformed coefficient
vector into the pattern library.

Adaptive Nearest Neighbor Searching

Instead of selecting a pre-determined number of nearest
neighbors, we propose to employ the statistical similar-
ity measures Rwm to identify best-matching neighbors for
query time series patterns. The similarity measure is a scaled
metrics defined in [−∞, 1]. The closer the Rm or Rwm to
one, the two comparing time series patterns are more sim-
ilar. A lower value of Rm and Rwm indicates that the two
time series patterns are more dissimilar. Based on such inter-
pretable and easily controllable similarity measure, we can
define the pattern-matching similarity by giving a thresh-
old for similarity requirement. For example, we can set the
similarity requirement at 0.95, such that R∗

m = 0.95. Then
all the time series subsequences that meet the similarity-
matching requirement can be considered as nearest neigh-
bors of a query time series. In this way, we achieve the de-
sirable data-driven variant-nearest-neighbor selection, and
avoid the drawbacks of using a fixed number of nearest
neighbors. It is noted that the similarity measure 14 is de-
fined based on the zero-mean time series subsequences. If
we use the right-aligned subsequence representation, one
can just replace the denominator of the two similarity for-
mulas by SST (x̂t) = (Fwt − x̄t)

T (Fwt − x̄t), all other
parts are the same.

Statistical Screening of Predictive Neighbors

Assume we have a set of k best-matching reference subse-
quences, denoted by RI , that satisfy the similarity require-
ment R∗

m or Rmw∗. The next step is to make a statistical
analysis of the h-step-forward values of the reference sub-
sequences, denoted by yr(t + h) = [yr1,t+h, yr2,t+h, . . . ,
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yrk,t+h]. We estimate the distribution of the h-step-forward
values, and denote the qth percentile of the distribution of
the h-step future values yr(t+h) by Pyr,q . Then we can de-
termine the final predictive reference subsequence set RII

by removing the outliers in yr(t + h) using the following
statistical outlier detection formula:

RII = {j ∈ RPI |yrj,t+h ≤ Pyr,75 + 1.5(Pyr,75 − Pyr,25),

yrj,t+h ≥ Pyr,75 + 1.5(Pyr,75 − Pyr,25)}.
(16)

Similarity-Weighted Ensemble Function for
Multi-Step Time Series Prediction

At time point t, assume we obtain s reference subsequence
patterns after outlier removal. The h-step future time se-
ries value yt+h can be predicted by combining the h-step
future values of the reference patterns using an ensemble
function Θ(yr1,h, yr2,h, . . . , yrs,h). As there is no existing
guidelines for ensemble functions, a most common way of
current approaches is to take the mean of the h-step fu-
ture values of the reference patterns (Ichiji et al. 2013a;
2013b). In this study, we propose a similarity-weighted en-
semble function to combine the future values of the ref-
erence subsequences yr1,h, yr2,h, . . . , yrs,h. In particular,
the similarity-weighted ensemble function for the weighted-
penalty case can be defined by replacing R2

m with the
weighted R-squared measure R2

wm in the following

ŷ(t+ h) =

∑s
j=1 R

2
wm(yrj)(yrj,h − oj)∑s
j=1 R

2
wm(yrj)

+ ot. (17)

Experimental Results

The proposed OPVNN method was evaluated by the chal-
lenging respiratory motion prediction problem and com-
pared with the state-of-the-art time series prediction meth-
ods.

Data Acquisition

Time series of abdominal displacement of 27 lung and
liver cancer patients were collected with the Real-time Po-
sition ManagementTM(RPM)(Varian Inc., Santa Clara, CA)
infrared camera and reflective marker block system during
their PET/CT examination. These time series trajectories
serve as respiratory motion surrogate of lung tumor inside
of the body (Wang et al. 2014). The sampling rate of the res-
piratory traces was 30 Hz. The duration of data collection
for each patient was from 30 to 45 minutes when they did
PET/CT scan.

Baseline Methods

This study was motivated from our research project of res-
piratory motion management in radiotherapy. The current
prediction methods still cannot work well for real-time pre-
diction of respiratory motion in clinics. To tackle this prob-
lem, we studied various different methods, including Gaus-
sian Process methods, Kalman Filter, Kernel density esti-
mation (KDE), support vector regression (SVR), Seasonal

ARIMA, Neural Networks, etc. Respiratory motion predic-
tion is a challenging unsolved problem, Ernst et al. (Ernst
et al. 2013) made comprehensive comparisons on various
existing prediction methods, including the above mentioned
ones, the wLMS and SVR were the top performers, we had
similar conclusions in our experiments. Also we identified a
most recent method res-TVSAR from Ichiji et al. (Ichiji et
al. 2013a; 2013b) that performed better than KDE and Sea-
sonal ARIMA. This paper compared the proposed method
with the carefully selected most recent top performing mod-
els based on our extensive investigation on various methods.
The prediction performances are presented in the following.

Experimental Design and Settings

We compared our method with the state-of-the-art time se-
ries pattern mining and prediction approaches, including
wLMS, SVRpred and TVSAR, and Seasonal ARIMA. To
make a fair comparison, the parameters of all the prediction
approaches were determined through a training-testing pro-
cess. In particular, we used the first 15 minutes of the respi-
ratory trajectory of each patient as the training data for pa-
rameter optimization. In particular, 80% of the training data
were used for construct a pattern library and the remaining
20% of the time series data was used for prediction perfor-
mance testing. The optimal parameter setting is the set that
maximizes the testing accuracy. The unused next 15 minutes
of the respiratory data of each patient was used for predic-
tion performance validation. We report the validation results
of each method over the 27 patients.

For the OPVNN method, the personalized sliding win-
dow size was selected from the options of [0.50, 0.75, 1.0,
1.25, 1.50] times of the median length of respiratory cycles
of each patient. The step length was three time points rep-
resenting 100ms in respiratory motion. A weighted-penalty
vector was employed in the pattern matching. Since we as-
sign higher priority to the sub-pattern closer to the prediction
point in similar-pattern searching, as shown in Figure 1, we
put higher matching-error penalties to the right side (more
recent time points). Setting the long-horizon matching-error
penalty (left-side) to 1 as a baseline, we made the recent
short-horizon penalty (right-side) as a parameter with op-
tions of [1, 5, 10]. The length of the high-penalty portion
was selected from [0.1, 0.15, 0.2, 0.3] of the sliding win-
dow. These parameter were all determined in the training-
testing process. In the adaptive nearest neighbor searching
step, the similarity threshold R∗

wm was set at 0.95. For a slid-
ing window query time series, if none of the library patterns
meet the similarity requirement 0.95, we reduce the similar-
ity requirement by 0.02, until at least three reference subse-
quences are selected for prediction. The similarity-weighted
ensemble function defined in equation 17 was applied to
make multi-step predictions for each sliding window.

Prediction Performance Criterion

The prediction performance was evaluated by a R-squared
measure denoted by

R2
pred = 1− SSE(yval − ypred)

SST (yval)
= 1− ‖yval − ypred‖2

‖yval − ȳval‖2 ,
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Figure 1: The employed matching-error penalty weight
function used for similarity pattern searching.

where yval is the actually time series data in validation,
ypred is the predicted values for a prediction horizon h. This
measure evaluates how close the predicted respiratory mo-
tion ypred to the actual motion trajectory yval of each pa-
tient.

Prediction Performance Comparison

The proposed OPVNN framework consists of four key
components, including the OP-based approximation, the
adaptive-aligned similarity pattern matching, the time-
delay-penalized variant-best-neighbor pattern searching,
and the R2-weighted ensemble prediction scheme. We eval-
uated the effectiveness of each key component by replacing
the component with a widely used method while keeping the
other three components unchanged. In particular, the four
replacement frameworks include 1) replaced the OP-based
time series approximation by the popular DFT representa-
tion developed in (Cooley and Tukey 1965); 2) employed the
simple averaged prediction from best-neighbors instead of
the R2-weighted ensemble method; 3) applied equal weights
to the entire time series pattern without penalties over time;
4) performed similarity pattern searching using raw time
series patterns without adaptive alignment at each predic-
tion step. Figure 2 shows the box plots of the five models
with respect to prediction horizon of 10 steps. One can see
clearly that the best prediction performance was achieved by
the proposed OPVNN method with all the four key compo-
nents were actively working together. Removing any of the
four key components can reduce the overall prediction per-
formance significantly.

Figure 3 shows the R2
pred values of the proposed OPVNN

method and the four state-of-the-art time series modeling
and prediction methods for respiration motion prediction,
including res TVSAR (Ichiji et al. 2013a; 2013b), wLMS
(Ernst, Schlaefer, and Schweikard 2007; Ernst et al. 2013),
SVRpred (Ernst and Schweikard 2009; Ernst et al. 2013) and
SARIMA (T. Hastie and Friedman 2009). It clearly showed
that the proposed OPVNN approach achieved significant
better prediction performance than the four state-of-the-art
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Effectiveness Evaluation of the Four Components of the OPVNN Framework (H = 10)

Figure 2: Effectivenessof the four key components of the
OPVNN framework with a prediction horizon of 10 steps.

methods for all prediction horizons up to 30 steps. The pre-
diction performance of the OPVNN method were also a lot
more robust (with less prediction variances over the 27 pa-
tients) than the four comparing recent methods. This experi-
mental result outcome further confirmed the high efficiency
and effectiveness of the proposed OPVNN method for mas-
sive time series subsequence pattern mining and prediction
of complex time series data (like respiratory motion trajec-
tories).

� � �� �� �� �� ��
�

�

�

�

�

�

�
�	
��
���	�������	��
����	���������������
�����	 �� ��	 �
��	�����

�
	����������
��������	���

��
��


�
� 

��!
� �

�

�

�����

	� "�#�!
$%&#
#�!�
	�
#�!'&�

Figure 3: Prediction performance of the proposed OPVNN
approach and the four state-of-the-art methods including
res TVSAR, wLMS, SVRpred and SARIMA.

Discussion and Conclusion

In this study, we developed a new time series modeling and
representation method using orthogonal-polynomial approx-
imations. A set of theories and similarity distance measures
have been developed to achieve fast and efficient pattern
mining for massive time series subsequences. Based on the
OP-based representation, we proposed a new time series pat-
tern mining method OPVNN to achieve an efficient and ro-
bust prediction of highly complex time series patterns. The
proposed OPVNN method has showed its effectiveness in
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the challenging respiratory motion prediction problem, and
achieved and significant superior and robust performance
to most of the current time series prediction approaches.
In summary, this study developed a new time series repre-
sentation method using orthogonal polynomials, and a new
prediction framework for time series subsequence modeling,
similarity-pattern searching, and multi-step prediction. The
proposed OPVNN approach is a general framework that has
a great potential to benefit many industry and medical ap-
plications that need handling highly complex real-time time
series data streams.
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