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Abstract

Recurrent neural networks, particularly the long short-term
memory networks, are extremely appealing for sequence-to-
sequence learning tasks. Despite their great success, they typ-
ically suffer from a fundamental shortcoming: they are prone
to generate unbalanced targets with good prefixes but bad
suffixes, and thus performance suffers when dealing with
long sequences. We propose a simple yet effective approach
to overcome this shortcoming. Our approach relies on the
agreement between a pair of target-directional LSTMs, which
generates more balanced targets. In addition, we develop
two efficient approximate search methods for agreement that
are empirically shown to be almost optimal in terms of
sequence-level losses. Extensive experiments were performed
on two standard sequence-to-sequence transduction tasks:
machine transliteration and grapheme-to-phoneme transfor-
mation. The results show that the proposed approach achieves
consistent and substantial improvements, compared to six
state-of-the-art systems. In particular, our approach outper-
forms the best reported error rates by a margin (up to 9% rel-
ative gains) on the grapheme-to-phoneme task. Our toolkit is
publicly available on https://github.com/lemaoliu/Agtarbidir.

Recurrent neural networks (RNNs) (Mikolov et al. 2010),
particularly Long Short-term Memory networks (LSTMs)1

(Hochreiter and Schmidhuber 1997; Graves 2013), provide
a universal and powerful solution for various tasks that have
traditionally required carefully designed, task-specific so-
lutions. On classification tasks (Graves and Schmidhuber
2008; Tai, Socher, and Manning 2015), they can readily
summarize an unbounded context which is difficult for tran-
ditional solutions, and this leads to more reliable prediciton.
They have advantages over traditional solutions on a more
general and challenging tasks such as sequence-to-sequence
learning (Sutskever, Vinyals, and Le 2014), where a se-
ries of local but dependent predictions are required. RNNs
make use of the contextual information for the entire source
sequence and also critically are able to exploit the entire
sequence of previous predictions. On various sequence-to-
sequence transduction tasks, RNNs have been shown to be
comparable to the state-of-the-art (Bahdanau, Cho, and Ben-
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1Throughout this paper, an LSTM network denote a particular
RNN with LSTM hidden units.

Figure 1: Illustraction of the fundamental shortcoming of an
LSTM in decoding.

gio 2015; Meng et al. 2015) or superior (Jean et al. 2015;
Luong et al. 2015).

Despite their sucesses on sequence-to-sequnce learning,
RNNs suffer from a fundamental and crucial shortcoming,
which has surprisingly been overlooked. When making pre-
dictions (in decoding), an LSTM needs to encode the pre-
vious local predictions as a part of the contextual informa-
tion. If some of previous predictions are incorrect, the con-
text for subsequent predictions might include some noises,
which undermine the quality of subsequent predicitons, as
shown in Figure 1.

In the figure, larger fonts indicate greater confidence in
the predicted target character. The prediction at t = 7 uses a
context consisting of the input and all previous predictions.
Since at t = 5 the prediction is incorrect, i.e. it should be
‘R’ (the green character in the reference) instead of ‘L’, it
leads to an incorrect prediction at t = 7. In this way, an
LSTM is more likely to generate an unbalanced sequence
deteriorating in quality as the target sequence is generated.

A statistical analysis on the real prediction results from an
LSTM was performed in order to motivate the work reported
here. The analysis supports our hypothesis, and found that
on test examples longer than 10 characters, the precision of
predictions for the first two characters was higher than 77%,
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while for the last two it was only about 65% (see Exper-
iments Section). Therefore this shortcoming may limit the
potential of an RNN, especially for long sequences.

To address the above shortcoming, in this paper, we pro-
pose a simple yet efficient approach. Its basic idea relies
on the agreement between two target-specific directional
LSTM models: one generates target sequences from left-
to-right as usual, while the other generates from right-to-
left. Specifically, we first jointly train both directional LSTM
models; and then for testing we try to search for target se-
quences which have support from both of the models. In
this way, it is expected that the final outputs contain both
good prefixes and good suffixes. Since the joint search prob-
lem has been shown to be NP-hard, its exact solution is in-
tractable, and we have therefore developed two approximate
alternatives which are simple yet efficient. Even though the
proposed search techniques consider only a tiny subset of
the entire search space, our empirical results show them to
be almost optimal in terms of sequence-level losses.

This paper makes the following contributions:

• It, for the first time, points out and formally analyzes a
fundamental shortcoming, affecting recurrent neural net-
works in sequence-to-sequence learning.

• It proposes an efficient approximation of the joint search
problem, and demonstrates empirically that it can achieve
close to optimal performance. This approach is general
enough to be applied to any deep recurrent neural net-
works.

• On both machine transliteration and grapheme-to-
phoneme transduction tasks, the proposed approach con-
sistently and substantially outperformed six state-of-the-
art systems and particularly it advances the best reported
error rates by a margin (up to 9% relative gains) on
grapheme-to-phoneme task.

Although this paper focuses on machine transliteration
and grapheme-to-phoneme tasks for reasons of simplicity,
our work has the potential to be applied to any sequence-
to-sequence learning tasks including machine translation, in
which the generation of long sequences is challenging.

Revisiting the Generic LSTM

Suppose x denotes a general (either source or target) se-
quence of characters, its tth character (at time step t) is xt

and its length is |x|. In particular, a source sequence is de-
noted by f while a target sequence is denoted by e. θ denotes
the overall model parameter of recurrent neural networks:
θsuperscript denotes a component parameter of θ depending
on superscript, and it is either a bias vector (if superscript
includes b) or a matrix; θ(xt) is a vector representing em-
bedding of xt, which is either a source character or a target
character; I(θ,xt) denotes the index of xt in the source or
target vocabulary specified by x. Note that in the rest of this
paper, the subscript is reserved as the time step in a sequence
for easier reading.

Model Definition

The sequence to sequence learning model by RNNs is de-
fined as follows (Graves 2013):

P(e | f ; θ) =
∏
t

P(et | ht(e); θ)

=
∏
t

g
(
θlp

(
ht(e)

))[
I(θ, et)

] (1)

where g is a softmax function, p is an operator over a vector
dependent on specific instances of RNNs, vec[I] is a real
number representing the Ith component of vector vec, and
a vector ht(x) = �(xt, ht−1(x); θ) is the recurrent hidden
state of sequence x at time step t with base cases: h−1(f) =
0 and h−1(e) = h|f |−1(f).

For most RNNs (Mikolov et al. 2010), p is an identity
function and �(xt, ht−1; θ) = φ(θx,hθ(xt) + θh,hht−1 +
θb); here φ as an activation function such as a sigmoid
function, tanh, or a rectifier. In particular, for LSTM-based
RNNs (Graves 2013), p is the projection funciton p(ht) =
h1
t (where h1

t is a component of ht, i.e. ht =
〈
h1
t , h

2
t

〉
), and

�(xt, ht−1; θ) =
〈
h1
t , h

2
t

〉
is obtained by following func-

tions:

it = σ(θx,iθ(xt) + θ1,ih1
t−1 + θ2,ih2

t−1 + θb,i)

jt = σ(θx,jθ(xt) + θ1,jh1
t−1 + θ2,jh2

t−1 + θb,j)

h2
t = jt � h2

t−1 + it � tanh(θx,2θ(xt) + θ1,2h1
t−1 + θb,2)

ot = σ(θx,oθ(xt) + θ1,oh1
t−1 + θ2,oh2

t−1 + θb,o)

h1
t = ot � tanh(h2

t )

where σ denotes the sigmoid function and � denotes the
element-wise product over a pair of vectors.

Decoding

Given a source sequence f and parameters θ, decoding can
be formulated as follows:

ê
(
f ; θ,Ω(f)

)
= argmax

e∈Ω(f)

P(e | f ; θ) (2)

where P is given by Equation (1), and Ω(f) is the set of all
possible target sequences f that can be generated using the
target vocabulary. Since the prediciton at time step t (i.e. et)
is dependent on all the previous predictions, it is NP-hard
to optimize the exact solution of Equation (2). Instead, an
approximate solution, beam search, which generates the tar-
get sequence by extending one token each time from left-to-
right, is widely applied (Sutskever, Vinyals, and Le 2014).

Fundamental Shortcoming

Despite their successes on various tasks, RNNs still suffer
from a fundamental shortcoming. Suppose at time step t
when predicting et, there is an incorrect prediciton et′ for
t′ with 0 � t′ < t. In other words, the hidden states ht′′

encode this incorrect information for each t′′ in the range
t′ < t′′ � t; and this can be expected to degrade the qual-
ity of all the predictions made using the noisy ht′′ . Ide-
ally, if the probability of a correct prediction at t′′ is pt′′ ,
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then will ht contain noisy information with a probability of:
1 − ∏

0�t′<t pt′ . As t increases the probability of noise in
the context increases quickly, and therefore it is more diffi-
cult for an RNN to make correct predictions as the sequence
length increases. As a result, generic LSTMs cannot main-
tain the quality of their earlier predictions in their later pre-
dictions, and this is a serious problem especially when the
input sequence is long.

Agreement on Target-bidirectional LSTMs

As explained in the previous section, although the generic
(left-to-right) LSTM struggles when predicting suffixes, for-
tunately, it is very capable at predicting prefixes. On the
other hand, a complementary LSTM which generates tar-
gets from right-to-left, is proficient at predicting suffixes.
Inspired by work in the field of word alignment (Liang et
al. 2006), we propose an agreement model for sequence-
to-sequence learning to overcome the fundamental short-
coming. It encourages the agreement between both target-
directional LSTM models.

Formally, we develop the following joint target-
bidirectional LSTM model:

Pjnt(e | f ;−→θ ,←−θ ) = −→
P(e | f ;−→θ )×←−

P(e | f ;←−θ ) (3)

where
−→
P and

←−
P are the left-to-right and right-to-left LSTM

models respectively, with definitions similar to Equation (1);−→
θ and ←−

θ denote their parameters. This model is called an
agreement model or joint model in this paper, and ←→

θ =〈−→
θ ,

←−
θ
〉

denotes its parameters for simplicity.
The training can be written as the minimization of the fol-

lowing equation2:

min
←→
θ

∑
〈f ,e〉

log
(
Pjnt(e | f ;←→θ )

)
(4)

where the example 〈f , e〉 ranges over a given training set.
To perform the optimization, we employ AdaDelta (Zeiler
2012), a mini-batch stochastic gradient method. The gra-
dient is calculated using back-propogation through time
(Rumelhart, Hinton, and Williams 1986), where the time is
unlimited in our experiments. We employ the MAP strategy
for testing, which is in essence Equation (2) with Pjnt (using
the trained ←→

θ parameters) plugged in.
Note that our directional LSTM is different from the ideas

in many works, for example, (Sundermeyer et al. 2014;
Bahdanau, Cho, and Bengio 2015; Rao et al. 2015; Yao and
Zweig 2015), where directions are specified by the source
side instead of the target side as in our approach. There-
fore, their bidirectional LSTMs will still suffer from the
shortcoming mentioned before. Anyway, source-side bidi-
rectional method has been proved to be a basic and practical
technique, and it can be easily employed in our models for
potential improvements. But we skip it instead to highlight
the novelty of our model in this paper.

2It might be better to constrain the embedding parameters
across the two directional models as in (Tamura, Watanabe, and
Sumita 2014), and this remains future work.

In addition, our agreement model employs a pair of
LSTMs and thus it is in some sense an ensemble. How-
ever, there are major differences between our idea and the
neural network ensembles reported in the literature to date.
Firstly, the decoding for each LSTM in an ensemble of
LSTMs is straightforward to implement in the standard man-
ner, whereas the decoding for our agreement model with dif-
ferent directional LSTMs is challenging, as will be shown in
the next section. Secondly, our idea is orthogonal to an en-
semble, since the left-to-right and right-to-left LSTMs of our
agreement model can themselves be an ensemble of LSTMs,
and in fact this approach was taken in the experiments re-
ported here.

Approximations of Joint Search

Challenges in Joint Search

The exact inference for an agreement model is usually in-
tractable, even in the cases where the individual models can
be factorized locally. On an agreement task using HMMs,
(Liang et al. 2006) applies an approximate inference method
which depends on the tractable calculation of the marginal
probability. Unfortunately, this approximate method can not
be used in our case, because our individual model (the
LSTM) is globally dependent and therefore such marginal
calculations are not possible (tractable).

Bidirectional search (Kaindl and Kainz 1997) for joint
search is also impracticable for our agreement model. The
reason being that the generation processes proceed in dif-
ferent directions; the agreement model generates partial se-
quences either in a left-to-right or in a right-to-left manner
during the search. It is impossible to calculate both left-to-
right and right-to-left model scores simultaneously for each
partial sequence due to the essence of RNNs.

We propose two simple approximate methods for joint
search, which explore a smaller space than that of beam
search. Their basic idea is aggresive pruning followed by
exhaustive search: we first aggresively prune the entire ex-
ponential search space and then obtain the 1-best result via
exhaustive search over the pruned space with respect to the
agreement model. Critical to the success of this approach is
that the aggressive pruning must not eliminate the promis-
ing hypothesis from the search space prior to the exhaustive
search phase.

Joint k-best Approximation

Suppose Ll2r and Lr2l are two top-k target sequence sets
from the generic left-to-right and right-to-left LSTM mod-
els, respectively. Then we construct the first search space S1

as the union of these two sets:
S1 = Ll2r ∪ Lr2l

In this way, exhaustively re-scoring S1 with the agreement
model has complexity O(k). One advantage of this method
is that the search space is at most twice the size of that of
its component LSTM models, and since the k-best size for
generic LSTMs is typically very small, this method is com-
putationally light. To make this explicit, in all the experi-
ments reported here, the k-best size was 12, and the addi-
tional rescoring time was negligible.
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Polynomial Approximation

Observing that both the prefixes of sequences in Ll2r and
the suffixes of sequences in Lr2l are of high quality, we con-
struct the second search space S2 as follows:

S2 =
{
e[: t] ◦ e′[t′ :]

∣∣∣ e ∈ Ll2r, e
′ ∈ Lr2l,

0 � t � |e|, 0 � t′ � |e′|
}

where ◦ is a string concatenation operator, [: t] is a prefix
operator that yields the first t characters of a string, and [t :]
is a suffix operator that yields the last t characters. Exhaus-
tively rescoring over this space has complexity O(k2N2),
where N is length of the longest target sequence3. In our im-
plementation, the speed for rescoring over this space was ap-
proximately 0.1 seconds per sentence, thanks to efficient use
of a GPU. We can see that the search space of this method in-
cludes that of the first method as a proper subset (S2 ⊃ S1),
and thus this method can be expected to lead to higher 1-best
agreement model scores than the previous method.

Both approximate methods explore only a tiny subset of
the exponential space Ω(f), and thus they may introduce
search errors, that is, there are some sequences beyond our
pruned search space S, whose agreement model scores are
higher than those of our 1-best sequence. Therefore, one
might argue that their performance is limited due to these
search errors, which are known to undermine linear models
on many sequence-to-sequence learning tasks (Collins and
Roark 2004; Huang, Fayong, and Guo 2012; Liu and Huang
2014). However, our empirical analysis later on examines
the extent of this problem and will show that even an opti-
mal (i.e. search error free) method, was not able to achieve
significantly better performance than either of our approxi-
mate methods.

Experiments

Experimental Methodology

We evaluated our approach on machine transliteration and
grapheme-to-phoneme conversion tasks. For the machine
transliteration task, we conducted both Japanese-to-English
(JP-EN) and English-to-Japanese (EN-JP) directional sub-
tasks. The transliteration training, development and test sets
were taken from Wikipedia inter-language link titles4: the
training data consisted of 59000 sequence pairs composed
of 313378 Japanese katakana characters and 445254 English
characters; the development and test data were manually
cleaned and each of them consisted of 1000 sequence pairs.
For grapheme-to-phoneme (GM-PM) conversion, the stan-
dard CMUdict5 data sets were used: the original training set
was randomly split into our training set (about 110000 se-
quence pairs) and development set (2000 pairs); the original
test set consisting of about 12000 pairs was used for test-
ing. On evaluation, we use ACC and FSCORE for machine

3One can also design some methods to filter some undesirable
concatenations safely, for example, those leading to too long or too
short sequences. This will make rescoring much faster.

4www.dumps.wikimedia.org
5http://www.speech.cs.cmu.edu/cgi-bin/cmudict

transliteration and WER and PER for grapheme-to-phoneme,
following (Zhang et al. 2012; Kubo et al. 2014). Note that
ACC and WER are sequence-level metrics, while FSCORE
and PER are non-sequence-level.

Six baseline systems, were used and are listed below. The
first 4 used open source implementations, and the last 2 were
re-implemented:
• Moses: a machine translation system (Koehn et al. 2007)

used with default settings except the monotonic decoding
as in (Finch and Sumita 2008); the reported results are the
best from five independent runs of MERT.

• DirecTL+: a feature-rich linear model trained and run
with default settings (Jiampojamarn, Cherry, and Kondrak
2008)6.

• Sequitur G2P: a joint n-gram model trained and run with
default settings (Bisani and Ney 2008).

• NMT: a neural translation model (Bahdanau, Cho, and
Bengio 2015), RNN with Gated Recurrent Units (GRU),
with default settings except the word embedding dimen-
sion of 500.

• GLSTM: a single generic LSTM and that was re-
implemented with Theano (Bergstra et al. 2010) follow-
ing (Sutskever, Vinyals, and Le 2014).

• ELSTM: an ensemble of several GLSTMs with the same
direction.

In implementation of GLSTM, we reverse the source se-
quences for encoding as (Sutskever, Vinyals, and Le 2014).
In our experiments, we found one layer LSTM works well.
A possible reason might be our limited vocabulary in both
tasks.

Our proposed bidirectional (agreement) LSTM models
are denoted:
• BLSTM: a single left-to-right (l2r) LSTM and a single

right-to-left (r2l) LSTM.
• BELSTM: ensembles of LSTMs in both directions.
In addition we use the following notation: nl2r or nr2l de-
notes the number of left-to-right or right-to-left LSTMs in
the ensembles of the ELSTM and BELSTM. For example,
BELSTM (5l2r+5r2l) denotes ensembles of five l2r and five
r2l LSTMs in the BELSTM.

For fair comparison, the stopping iteration for all systems
was selected using the development set for all systems ex-
cept Moses (which has its own termination criteria). For all
of the re-implemented models, the number of word embed-
ding units and hidden units were set to 500 to match the
configuration using in the NTM. We use the adadelta for
training both GLSTM and proposed systems: the decay rate
ρ and constant ε were set as 0.95 and 10−6 as suggested by
(Zeiler 2012), and minibatch sizes were 16 and 64 for ma-
chine transliteration and GM-PM tasks, respectively.

Evaluation of the Joint Search Strategies

Suppose the parameters of our agreement model ←→θ are fixed
after training, e is the reference sequence of f , S denotes the
search space (either S1 or S2) of our approximate methods,

6We tried various different settings but the default settings
proved to be the most effective.
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(a) joint k-best approximation (b) polynomial approximation

Figure 2: Potential estimations based on the distribution of GT (red ‘x’) and LT (blue ‘+’) for joint k-best (a) and polynomial
(b) approximations along sequences with different length. The number of GT indicates the search errors.

and ê
(
f ;

←→
θ ,Ω

)
, defined as in Equation (2), is the best target

sequence of f in the search space Ω ∈ {S1,S2,Ω(f)}.
If Pjnt(e | f ;←→θ ) == Pjnt

(
ê(f ;

←→
θ ,S) | f ;←→θ ), then our approxi-

mate search has resulted in the reference, as desired 7. Oth-
erwise, we have the following possible outcomes:

• GT: if Pjnt(e | f ;←→θ ) > Pjnt
(
ê(f ;

←→
θ ,S) | f ;←→θ ), our approximate

search is insufficient, since Pjnt(e | f ;←→θ ) might be equal
to Pjnt

(
ê(f ;

←→
θ ,Ω(f)) | f ;←→θ ), which is the upper bound of

Pjnt
(
ê(f ;

←→
θ ,S) | f ;←→θ ) and the globally optimal probability.

Therefore, this case is concerned with search errors.

• LT: if Pjnt(e | f ;←→θ ) < Pjnt
(
ê(f ;

←→
θ ,S) | f ;←→θ ), then Pjnt(e | f ;←→θ )

is definitely less than Pjnt
(
ê(f ;

←→
θ ,Ω(f)) | f ;←→θ ). In other

words, even if we have the optimal joint search method, it
still cannot find the correct sequence as the reference. The
quality of the model rather than the search is the issue in
this case.

Using this as a basis, we designed a scheme to evaluate
the potential of our search methods as follows: we randomly
select examples from the development set and compare the
model scores of the references and the 1-best results from
the approximate search methods; then analyze the distribu-
tions of the two cases GT and LT, where our model fails.
In addition, to alleviate the dependency on ←→

θ , we tried 100
parameter sets optimized by our training algorithm starting
from different initializations8.

Figure 2 shows that the distribution of GT and LT with re-
spect to source sequence length for both approximate search
methods. It is clear that joint k-best approximation suffers
from some search errors shown on the graph as GT (a red
‘x’), many of which were eliminated by using polynomial
approximation method. Fortunately, the cases of LT (plot-
ted with a blue ‘+’) far outnumber the GT cases, and only
0.2% of all cases were GT, even for joint k-best approxima-
tion. This 0.2% represents all this is possible to gained by

7It is possible for e and ê to have the same score, even though
they are not equal, but this is very unlikely in our experiment.

8These parameters were from independently training the joint
model with 10 different initializations, as it is too costly to train
with 100 initializations.

Approximations ACC FSCORE
joint k-best 33.3 85.1
polynomial 33.4 85.1

vanilla 32.7 84.9

Table 1: Performance of both search methods over the
vanilla method using BLSTM (l2r+r2l) on the JP-EN test
set. For the vanilla method, its rescoring space is fixed as the
kbest list from left-to-right LSTM.

improving the search technique, and therefore both approxi-
mate methods can be said to be “almost optimal”.

The above scheme relates to sequence-level losses like
ACC, but it can not give an indication of the effect on non
sequence-level losses. Empirically however, our approxi-
mate search methods appeared to be effective when per-
formance was measured using non-sequence-level losses
(FSCORE). The reason may be that non-sequence-level
losses are usually positively correlated to sequence-level
losses.

Main Results

Table 1 shows the performance of the approximate search
methods on the JP-EN test set, and their comparisons with
a vanilla approximate method, which defines the rescoring
space as the kbest list from left-to-right LSTM model. We
can see that both (i.e. joint k-best and polynomial ) meth-
ods achieve some improvements over the vanilla method. In
addition, both proposed methods perform almost identically
in terms of ACC and FSCORE. This result is not surprising,
because both of them are near optimal (as illustrated in the
previous section). Therefore, in the remainder of the exper-
iments, we only report the results using the joint k-best ap-
proximate search.

Table 2 shows the results on the test sets of all three
tasks: JP-EN, EN-JP and GM-PM. Firstly, we can see that
the undirectional neural networks (NMT and GLSTM) have
lower performance than the strongest non-neural network
baselines (Sequitur G2P), even when they achieve compara-
ble performance on EN-JP. Our agreement model BLSTM
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Systems Detailed Model JP-EN EN-JP GM-PM
ACC↑ FSCORE↑ ACC↑ FSCORE↑ WER↓ PER↓

Moses log-linear 29.8 83.3 37.1 80.8 31.0 7.0
DirecTL+ feature-rich linear 11.1 75.1 31.7 79.9 33.0 8.1

Sequitur G2P joint n-gram 34.6 84.6 39.8 81.6 25.0 6.0
NMT GRU RNN 29.2 82.8 40.0 81.2 29.4 7.9

GLSTM (l2r) LSTM 28.3 83.0 40.1 81.0 29.6 8.0
BLSTM (l2r+r2l) LSTMs 33.3 85.1 43.8 85.0 23.8 5.8
ELSTM 5 LSTMs 34.2 85.4 44.5 86.0 22.1 5.3

BELSTM (5l2r+5r2l) LSTMs 36.3 86.0 45.3 86.3 21.2 5.0

Table 2: The comparison on machine transliteration (JP-EN and EN-JP) and grapheme-to-phoneme (GM-PM) tasks. ↑ denotes
the higher is the better, while ↓ the lower the better.

Model ACC FSCORE
(Wu et al. 2014) non-nn 23.4 5.5

(Yao and Zweig 2015) nn 23.6 5.5
(Rao et al. 2015) hybrid 21.3 -

This paper nn 21.2 5.0

Table 3: Comparison with the best reported results from dif-
ferent models on GM-PM task. ‘-’ denotes no result was re-
ported in the corresponding paper. ‘nn’ denotes a neural net-
work model, ‘non-nn’ denotes a non-neural network model,
and ‘hybrid’ denotes a linear combination between neural
network and non-neural network models.

shows substantial gains over both the GLSTM and NMT on
all three tasks. More specifically, the gain was up to 5.8 per-
centage points in terms of a sequence-level loss (WER) and
up to 4.0 percentage points in terms of a non-sequence-level
loss (FSCORE). Moreover, BLSTM showed comparable per-
formance relative to Sequitur G2P on both JP-EN and GM-
PM, and was markedly better on the EN-JP task.

Secondly, the BELSTM which used ensembles of five
LSTMs in both directions consistently achieved the best per-
formance on all the three tasks, and outperformed Sequitur
G2P by up to absolute gains of 5.5 points and 18% relative
gains. In addition, BELSTM outperformed the ELSTM by
a substantial margin on all tasks, showing that our bidirec-
tional agreement is effective in improving the performance
of the unidirectional ELSTM on which it is based.

Furthermore it is clear that the gains of the BELSTM rela-
tive to the ELSTM on JP-EN were larger than those on both
EN-JP and GM-PM. We believe the explanation is likely to
be that the relative length of target sequences with respect
to the source sequences on JP-EN is much larger than those
on EN-JP and GM-PM, and our agreement model is able
to draw greater advantage from the relatively longer target
sequences. The relative length of the target for JP-EN was
1.43, whereas the relative lengths for EN-JP and GM-PM
were only 0.70 and 0.85 respectively.

We also compare our results with the best reported ones
on GM-PM task to date9, and these results are summa-

9We can not present the similar comparison on machine translit-
eration tasks, since there are no previous publications conducting
experiments on the same datasets as ours.

Systems Prefix Suffix
GLSTM(l2r) 77% 65%
GLSTM(r2l) 76% 74%

BLSTM 80% 74%
ELSTM(5l2r) 82% 73%
ELSTM(5r2l) 82% 77%

BELSTM 82% 78%

Table 4: Precision of prefixes (the first two characters) and
suffixes (the last two characters) on long sequences longer
than 10 characters from the JP-EN test set.

rized in Table 3. To the best of our knowledge, our re-
sults outperform the best reported results from both non-
neural network and neural network methods with a rela-
tive gains of up to 9%. Additionally, our end-to-end neu-
ral network method is slightly better than a hybrid method
(Rao et al. 2015), which is a linear combination of WFST
(Novak, Minematsu, and Hirose 2012) and neural network
models10. One of the our benefits over (Rao et al. 2015;
Yao and Zweig 2015) is that it does not need any external
modules such as WFST or Aligner, and this makes ours more
flexible.

Analysis on JP-EN

One of the main weaknesses of RNNs is their unbalanced
outputs which have high quality prefixes but low quality suf-
fixes, as discussed earlier. Table 4 shows that the difference
in precision is 12% for GLSTM (l2r) between prefixes and
suffixes. This gap narrowed using the BLSTM, which out-
performed the GLSTM (l2r) on both prefix and suffix (with
the largest difference on the suffix) and outperformed the
GLSTM (r2l) on the prefix. A similar effect was observed
with the BELSTM, which generated the better, more bal-
anced outputs compared to ELSTM(5l2r) and ELSTM(5r2l)
models.

Our agreement model worked well for long sequences,
and this is shown in Table 5. The BLSTM obtained large
gains over GLSTM(l2r) and GLSTM(r2l), (the gains were

10We believe that the linear combination of ours and non-neural
network methods will lead to more improvements, but this is be-
yond the scope of this paper.
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Systems ACC FSCORE
GLSTM(l2r) 17.3 82.2
GLSTM(r2l) 18.5 83.5

BLSTM 25.0 85.3
ELSTM(5l2r) 24.4 86.8
ELSTM(5r2l) 28.6 87.0

BELSTM 28.6 88.2

Table 5: Performance comparison on long sequences (> 10
tokens) on the JP-EN test set.

Systems ACC FSCORE
GLSTM(l2r) 28.3 83.4
GLSTM(r2l) 29.7 83.6
ELSTM(2r2l) 31.2 84.2

BLSTM(l2r+r2l) 33.3 85.1
ELSTM(5l2r) 34.2 85.4
ELSTM(5r2l) 34.0 85.2
ELSTM(10l2r) 34.5 85.6

BELSTM(5l2r+5r2l) 36.3 86.0
BELSTM(10l2r+10r2l) 36.5 86.2

Table 6: Ensemble Uni- and Bidirectional LSTMs compared
on the JP-EN test set.

up to 7.7 and 3.1 in terms of ACC and FSCORE, respec-
tively). Furthermore, the BELSTM obtained gains of 1.2
points in terms of FSCORE over the ELSTM(5r2l), but gave
no improvements in terms of ACC. This is to be expected,
since for long sequences it is hard to generate targets that
exactly match the references and thus it is more difficult to
improve ACC.

To ensure a more fair comparison, the number of individ-
ual LSTMs in both the ensemble and our agreement model
were identical in the experiments. As shown in Table 6, al-
though the BLSTM(r2l+l2r) explores a much smaller search
space than the ELSTM(2r2l), it substantially outperformed
it. As the number of total number of LSTMs used was in-
creased to ten, the BELSTM(5l2r+5r2l) still obtained sub-
stantial gains over the ELSTM(10l2r). Incorporating more
directional LSTMs in the BELSTM(10l2r+10r2l) further in-
creased the performance of the BELSTM.

Related Work

Target-bidirectional decoding techniques were pioneered in
statistical machine translation. For example, (Watanabe and
Sumita 2002; Finch and Sumita 2009; Zhang et al. 2013)
proposed these techniques for traditional SMT models in-
stead of neural network models as ours. In particular, target-
directional neural network models were also employed in
(Devlin et al. 2014). However, their approach was concerned
with feedforward networks, which can not make full use of
contextual information. Furthermore, their models were im-
plemented using features (i.e. submodels) to augment tra-
ditional methods (for example, a hierarchical phrase-based
translation model) in contrast to the end-to-end neural net-
work model for sequence-to-sequence learning in our pro-
posal.

Our work is closely related to the work of (Liang et
al. 2006) in the field of word alignment. However, we use
the agreement RNNS that exploit the global context as op-
posed to the local HMM models; furthermore, the pro-
posed approach combines left and right generation direc-
tions on the target side instead of source and target direc-
tions. In (Tamura, Watanabe, and Sumita 2014) a form of
agreement for globally dependent RNN models was pro-
posed for word alignment. Similar to the proposed method
their models are trained jointly. Their approach differs from
method in the directions used for agreement, and moreover
their method does not consider decoding with the agreement
model, which is a very challenging problem as discussed be-
fore in this paper.

Recurrent neural networks have become very popular for
many sequence-to-sequence learning tasks. For example,
(Watanabe and Sumita 2015) and (Dyer et al. 2015) em-
ployed RNNs and LSTMs for constituent and dependency
parsing, where parse trees are generated as sequences of
shift-reduce actions. For machine translation, (Sutskever,
Vinyals, and Le 2014) introduced neural network based on
LSTMs and (Bahdanau, Cho, and Bengio 2015) proposed an
effective attention mechanism under the RNN framework.
All of these works have advanced the state-of-the-art RNNs
by notable improvements of a basic technique; one key ben-
efit of proposed method is that it does not vertically extend
these methods, but can be generally applied on top of them
all.

Particularly, (Yao and Zweig 2015) and (Rao et al. 2015)
also employed the LSTM models for the grapheme-to-
phoneme conversion task. However, our model is directly
oriented to the fundamental issue of recurrent neural net-
work rather than a specific task itself. In addition, one of our
advantages is that our model is very flexible: it is indepen-
dent on any external toolkits such as the alignment toolkit in
(Yao and Zweig 2015) or WFST in (Rao et al. 2015). Any-
way, our model can be easily applied on top of them for
potential improvements.

Conclusions
When generating the target in a unidirectional process for
RNNs, the precision falls off with distance from the start of
the sequence, and the generation of long sequences there-
fore becomes an issue. We propose an agreement model on
target-bidirectional LSTMs that symmetrize the generative
process. The exact search for this agreement model is NP-
hard, and therefore we developed two approximate search
alternatives, and analyze their behavior empirically, finding
them to be near optimal. Extensive experiments showed our
approach to be very promising, delivering substantial gains
over a range of strong baselines on both machine translit-
eration and grapheme-to-phoneme conversion. Furthermore,
our method has achieved the best reported results to date, on
a standard grapheme-to-phoneme conversion dataset.
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