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Abstract

We present the first probabilistic model to capture all lev-
els of the Minsky Frame structure, with the goal of corpus-
based induction of scenario definitions. Our model unifies
prior efforts in discourse-level modeling with that of Fill-
more’s related notion of frame, as captured in sentence-level,
FrameNet semantic parses; as part of this, we resurrect the
coupling among Minsky’s frames, Schank’s scripts and Fill-
more’s frames, as originally laid out by those authors. Em-
pirically, our approach yields improved scenario representa-
tions, reflected quantitatively in lower surprisal and more co-
herent latent scenarios.

Introduction

Frames or scripts describe prototypically complex situations
in terms of certain events, actions, actors and other pieces of
information we expect to be involved. These theories posit
that for many situations we encounter, there is a template
with a number of slots that need to be filled in order to un-
derstand the situation. For example, we partially describe
a BOMBING situation with a Detonation action, along
with those involved, e.g., BOMBERs and VICTIMs.

Corpus statistics can be used to induce approximate, prob-
abilistic versions of these templates using verb cooccur-
rences and automatically generated syntactic dependency
parses (Cheung, Poon, and Vanderwende 2013; Bamman,
O’Connor, and Smith 2013; Chambers 2013, i.a.). These
parses can serve as a limited proxy for sentence meaning,
owing to information conveyed via the syntax/semantics in-
terface. They do not however fully (explicitly) represent a
semantic analysis (Rudinger and Van Durme 2014).

Fillmore’s notion of frame semantics ties a notion akin to
Minsky’s frames to individual lexical items (Fillmore 1976;
1982). Word meaning is defined in terms of the roles words
play in situations they typically invoke, and in how they in-
teract with other lexical items.

In the following we present a probabilistic model which
unifies discourse-level Minskian frames with Fillmore’s
frame semantics. Despite the historical and intellectual
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connections between these theories, previous empirical ef-
forts have focused on just one or the other: this model is
the first to make the connection explicit. We show how
current efforts in discourse modeling, and semantic frame
induction and identification can be combined in a single
model to capture what classic AI theory posited. Quan-
titatively, by using a frame-semantic parser pre-trained on
FrameNet (Baker, Fillmore, and Lowe 1998), we show that
incorporating frame information provides both a better fit to
held-out data and improved coherence (Mimno et al. 2011).
Our unified probabilistic model provides a principled math-
ematical way of restating Minsky’s argument for the four
frame levels, and our results show that our model is a legiti-
mate way to capture what Minsky proposed.

Frames Background

Classic Theories

Minsky, along with a number of contemporaries, believed
in schematizing common situations and experiences into
“chunks”, or frames. These frames contain world knowl-
edge that would allow artificial intelligence systems to en-
counter various occurrences and react appropriately. For
Minsky, frames were data structures, with slots, to “[rep-
resent] a stereotyped situation.” Some slots and conditions
could have default values; entities (references to an “object”
in the world) and pointers to other frames could fill slots.

Minsky (1974) outlined four different “levels” of frames:

Surface Syntactic Frames “Mainly verb and noun struc-
tures. Prepositional and word-order indicator conven-
tions.”

Surface Semantic Frames “Action-centered meanings of
words. Qualifiers and relations concerning participants,
instruments, trajectories and strategies, goals, conse-
quences and side-effects.”

Thematic Frames “Scenarios concerned with topics, ac-
tivities, portraits, setting.”

Narrative Frames “Skeleton forms for typical stories, ex-
planations, and arguments. Conventions about foci, pro-
tagonists, plot forms, development, etc., designed to help
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Clinton and Congress agreed on a plan. He said Clinton would try the same tactic again.

nsubj

Party1

nsubj

Party2

prep on

Obligation

nsubj

Agent

dobj

Goal

NEGOTIATOR METHOD

PASSING LEGISLATION POLITICSNEGOTIATION

Narrative Frame

Figure 1: An interpretation of Minsky’s four frame levels on two newswire sentences. The syntactic (below) and surface
semantic (above) frames provide the lowest-level intrasentential analyses of this abbreviated document (Latin font). The NE-
GOTIATION template (thematic frame) fills two of its slots, NEGOTIATOR and METHOD, intersententially, with “Clinton” and
“tactic,” using predicate and dependency information from some combination of the syntactic and surface semantic frames.
Here, “Clinton” is highlighted twice stressing that thematic frames may both produce and rely on information across sentences.
The narrative frame invokes the NEGOTIATION thematic frame, though related themes PASSING LEGISLATION and POLITICS
may appear elsewhere in the document. Our model follows this interpretation. (Adapted from the automatically labeled version
of NYT ENG 19980330.0346 in Ferraro et al. (2014).)

a listener construct a new, instantiated Thematic Frame
in his own mind.”

Figure 1 illustrates an interpretation of these four levels on
newswire automatically tagged with syntactic and semantic
frames, and example thematic and narrative frames.

These hierarchical levels require attention to different as-
pects of language; as one changes levels, details highly rel-
evant to one may become “displaced” by more appropriate
aspects of another. Information important for the syntactic
level may be relevant to, e.g., the thematic or narrative level
through an abstracted or “coarsened” version. We assume
the lower-level syntactic and surface semantic frames are lo-
calized analyses, restricted to sentences, while the higher-
level thematic and narrative frames allow for a global analy-
sis, aggregating information across sentences.

While many people are familiar with Schank and Abel-
son (1977)’s formulations of scripts, the connection between
frames and scripts is at times forgotten:

... a frame is a general name for a class of knowl-
edge organizing techniques that guide and enable un-
derstanding. Two types of frames that are necessary
are SCRIPTS and PLANS. Scripts and plans are used
to understand and generate stories and actions – Schank
(1975).

Schankian scripts are thus a distinct sub-type of Minskian
frames. Broadly, scripts introduce a mechanism for order-
ing events within frames. For simplicity our model does not
encode order, though it provides a framework for future ef-
forts to incorporate ordering, perhaps utilizing some prior
ordering efforts. We discuss this later on.

Fillmore’s case grammar and frame semantics (Fillmore
1967; 1976; 1982) posit that word meaning is defined in
terms of the roles they play in situations they typically in-
voke, and then in how they interact with other lexical items.
We can think of Fillmore as being ‘Minsky over words,’

where Fillmore’s ideas can be realized within the broader
development of frames during the 1970s:

[frames are] certain schemata or frameworks of con-
cepts or terms which link together as a system, which
impose structure or coherence on some aspect of hu-
man experience, and which may contain elements
which are simultaneously parts of other such frame-
works. – Fillmore (1975).

The FrameNet Project (Baker, Fillmore, and Lowe 1998) is
an ongoing effort to implement Fillmore’s frames.

Contemporary Efforts

There have been various styles of models in the spirit of this
work, though none capture all four levels of the Minsky hi-
erarchy. The most similar are the three concurrent Bayesian
template models (Bamman, O’Connor, and Smith 2013;
Chambers 2013; Cheung, Poon, and Vanderwende 2013).
Like this work, the former two view documents as collec-
tions of prespecified entities and mentions. They similarly
incorporate narrative, thematic and syntactic levels, as doc-
uments are modeled as mixtures over templates relying on
syntactic information. Subsequent work from Bamman and
colleagues has refined event participant descriptions or as-
cribing temporal attributes to atomic events, rather than ex-
ploring hierarchical event substructure, as we do (Bamman,
Underwood, and Smith 2014; Bamman and Smith 2014).
None of these efforts have incorporated separate semantic
and syntactic Minskian frames.

Cheung, Poon, and Vanderwende (2013) model ordering
of syntactic clauses, grouping predicates into latent events,
and a predicate’s arguments to event slots. A latent “frame”
assignment stratifies templates more coherently across the
clauses and throughout the document. In the Minskian ter-
minology used here, they have two layers of thematic frame,
but, as above, no layer of semantic frame.
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A number of other efforts in learning semantic frames
consider syntactic information, though there has not been a
presentation incorporating both narrative and thematic com-
ponents (Titov and Klementiev 2011; Materna 2013; Modi,
Titov, and Klementiev 2012; Lorenzo and Cerisara 2012;
Bejan 2008; Modi and Titov 2014). Temporal scripts have
been learned with graph algorithms (Regneri, Koller, and
Pinkal 2010), Bayesian model merging (Orr et al. 2014),
and permutation priors (Frermann, Titov, and Pinkal 2014),
i.a.. These incorporate a rich narrative level, though without
thematic frames: the narrative level deals directly with the
semantic or syntactic frames.

While other efforts have focused on both generative and
discriminative models for less-than-supervised frame induc-
tion (Minkov and Zettlemoyer 2012; Huang and Riloff 2013;
Patwardhan and Riloff 2009, i.a.), of particular note are
those incorporating event “triggers,” reminiscent of Rosen-
feld’s trigger language models (Rosenfeld 1994; 1996; Van
Durme and Lall 2009). Some of those efforts have identified
which verbs trigger events (Chen et al. 2011, working be-
tween the syntactic and semantic levels), while others have
focused on discourse relation (Maslennikov and Chua 2007,
working between the narrative and syntactic levels).

Multiple efforts have formulated global (document-level)
and local (sentence-level) constraints for supervised graphi-
cal models. Reichart and Barzilay (2012)’s factor graph with
global and local potentials presents an extensive narrative
level that incorporates both thematic and syntactic levels, but
excludes the semantic. Both Liao and Grishman (2010) and
Li, Ji, and Huang (2013) encode the thematic, semantic and
syntactic levels, but no narrative level.

The Penn Discourse Treebank (Prasad et al. 2008, PDTB)
provides both explicit and implicit discourse and causal-
ity annotations atop original syntactic annotations of the
WSJ portion of the Penn Treebank. As PDTB annota-
tions are both cross-sentential and intrasentential discourse
relations, we can view the PDTB as a type of thematic
frame. Although with some additional effort Minsky’s sur-
face semantic frames could be incorporated—e.g., by align-
ing PDTB with shallow semantic annotations, such as from
PropBank—the narrative level is missing.

Unlabeled Induction with Frames

A contribution of our work is to rekindle the joint notion of
a “frame” shared among Minsky, Fillmore and Schank, and
position it within state-of-the-art probabilistic modeling. We
combine high-performing tools in NLP with a large collec-
tion of documents in order to induce a probabilistic version
of what Minsky, broadly, called scenario definitions.

Our model, detailed formally in Figure 3 and informally
in Figure 1, captures the “ingredients” of a frame struc-
ture at all frame levels posited by Minsky (1974): Sur-
face Syntactic (syntactic dependencies), Surface Semantic
(FrameNet semantic parses), Thematic (templates), and Nar-
rative (document-level mixtures over templates). Prior work
has either conflated multiple levels together, or otherwise
ignored levels entirely: inclusion of these levels as distinct
model components is novel to this work.

Entity: Clinton
template 〈LATENT〉
slot 〈LATENT〉

Mention #1 Mention #2

· · ·
frame AgreeOnAction Attempt

role Party1-
Agent-Attempt

AgreeOnAction
verb/pred. agree would-try
dep. arc nsubj-agree nsubj-would-try

Entity: tactic
template 〈LATENT〉
slot 〈LATENT〉

Mention #1

· · ·
frame Attempt
role Goal-Attempt
verb/pred. would-try
dep. arc dobj-would-try

...

Figure 2: A view of the observed semantic and syntactic
levels, as well as the latent thematic level, on the example
document in Figure 1. Notice how entities do not have to
be animate. The highlighted variables (t, s, f, r, v and a)
correspond to those in Figure 3.

Available Observations

Following recent efforts we assume that both coreference
resolution and a syntactic analysis have been performed
on our documents as part of corpus processing. To learn
a model, we assume an automatically produced semantic
frame analysis, such as from FrameNet, too; we treat this
as latent during heldout evaluation.

A document is a bag of entities (coreference chains), with
each entity having one or more mentions. Each entity men-
tion is syntactically governed through a typed dependency
arc (a) to a verb lemma (v). Each verb evokes a surface
semantic frame (f ), which is related to the entity mention
through a frame role (r). Like many other research efforts,
we observe syntax, but assume that syntactic dependencies
should be predicate specific. Beyond linguistic arguments
for this, we, like Chambers (2013), have found results to
be more human interpretable when r and a are typed by
their corresponding frame or verb (Ruppenhofer et al. 2006,
§ 3.2). If a mention is a subject of “attempt,” we set its arc a
to nsubj-attempt, rather than just nsubj.

We observe at most the syntactic and semantic levels. The
thematic and narrative levels are latent and are handled by
our generative model. Figure 2 demonstrates this on a por-
tion of the Figure 1 document.

Generative Story

Our observations and latent assignments are discrete; we
place conjugate Dirichlet priors with symmetric hyperpa-
rameters on each. See Figure 3 for a formal diagram and
variable gloss table. The narrative frame of a document d is
represented as a mixture over the set of templates T (Min-
sky’s thematic frames), τd ∼ Dir (ϑ).
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DEM

ϑ τd
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rdem adem

T
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T
φtβ

i ∈ F
νi ω

T · S
ρt,sψ

j ∈ R

δj α

(a) Shaded nodes are always observed, while double-edged nodes
may or may not be; all others are latent. Solid-edged nodes such as
tde have collapsed priors (dashed edges, e.g.: τd) with optimized
hyperparameters (dotted edges, e.g.: ϑ).

Variable Meaning Minsky

τd document’s dist. of templates (themes) Narrative
σt dist. of template-specific slots Thematic
φt dist. of template-specific semantic frames Semantic
ρt,s dist. of slot-specific semantic roles Semantic
νi dist. of semantic frame’s syntactic realization Syntactic
δj dist. of semantic role’s syntactic realization Syntactic
td,e template of entity e Thematic
sd,e template-specific slot of entity Thematic

fd,e,m semantic frame governing mention Semantic
rd,e,m mention’s semantic role Semantic
vd,e,m governing predicate of mention Syntactic
ad,e,m predicate-typed dependency of mention Syntactic

(b) Brief meaning gloss of the model’s variables, with the corre-
sponding Minsky frame levels, given a document d, each of its
corefence chains e, and each mention m of e. For simplicity, the
hyperparameters (the dotted nodes in Figure 3a) are omitted.

Figure 3: Our unified probabilistic model.

Each template t, such as representing NEGOTIATION, is
represented by a distribution σt over S unique slots, such
as the NEGOTIATOR, and a distribution φt over F semantic
frames (which will come from FrameNet). Both sets of dis-
tributions have Dirichlet priors, σt ∼ Dir (ξ), φt ∼ Dir (β).

Every semantic frame i has a distribution over verb lem-
mas, νi ∼ Dir (ω), and each slot has a distribution ρt,s over
R frame roles, ρt,s ∼ Dir (ψ). Just as every semantic frame
has a distribution over verb lemmas, every role j has a dis-
tribution over syntactic relations δj ∼ Dir (α).

An entity e is assigned to a single (latent) template td,e
and slot sd,e, where td,e ∼ Cat (τd) and sd,e ∼ Cat

(
σtd,e

)
.

For every mention m of e, the entity template td,e directly
influences the selection of the mention’s frame assignment
fd,e,m ∼ Cat

(
φtd,e

)
, and the slot sd,e directly influences

the frame role rd,e,m ∼ Cat
(
ρsd,e

)
. For instance, in

Figure 2 we could replace Clinton’s 〈LATENT〉 template
and slot values with NEGOTIATION and NEGOTIATOR, re-
spectively. The semantic frames AgreeOnAction and
Attempt would both be attributed to the NEGOTIATION
template, while the corresponding roles would be attributed

to the NEGOTIATION-specific slot NEGOTIATOR.
Finally, the syntactic verb and syntactic relation sur-

face forms are chosen given the frame and role, re-
spectively: vd,e,m ∼ Cat

(
νfd,e,m

)
, and ad,e,m ∼

Cat
(
δrd,e,m

)
. For instance, in Figure 2, “agree” is attributed

to AgreeOnAction and “nsubj-agree” is attributed to the
typed semantic role Party1-AgreeOnAction.

Model Discussion Recall that we observe typed depen-
dencies: for the syntactic subject of the verb “attempt,’ the
dependency is “nsubj-attempt.” However, our model views
these as separate observations without any direct (statisti-
cal) influence between the two. In the past, this typed pred-
icate/dependency coupling has not been modeled directly
(Chambers 2013; Cheung, Poon, and Vanderwende 2013);
it is an open question how to decouple the dependencies and
verb predicates and still model the motivating intuition at
scale. While Lorenzo and Cerisara (2012) use separate dis-
tributions for each verb and Bamman and Smith (2014) use
an exponential family parametrization, we operate at differ-
ent scales: Lorenzo and Cerisara use fewer verb types, while
Bamman and Smith use a significantly reduced relation set.

Inference

We fit the model via Gibbs sampling, collapsing out the pri-
ors on all latent and observed variables and optimizing the
hyperparameters with fixed-point iteration (Wallach 2008).
Posterior inference follows Griffiths and Steyvers (2004).
We derive the complete conditionals of the template vari-
ables, with the respective priors integrated out; the calcula-
tions for slot, frame and role variables are similar.

Deriving the Complete Conditionals In general, for a set
of conditionally i.i.d. Categorical variables zi|θ ∼ Cat (θ),
where θ has a Dir (α) prior, the joint probability of all z is
given by the Dirichlet-Multinomial compound distribution
DMC(z|α):

pα(z) =

∫
θ

p(z|θ)pα(θ)dθ (1)

=
Γ (

∑
k αk)

Γ (
∑

k (c(k) + αk))

∏
k

Γ (c(k) + αk)

Γ (αk)
(2)

= DMC(z|α) (3)
where c(k) is the number of zi with value k. This can be
generalized to a gated version: given a collection of i.i.d. M
Dirichlet samples θm ∼ Dir (α) and indicator variables yi,
if zi|yi, θ i.i.d∼ Cat (θyi), then we may consider the collec-
tion [z]y=m — only those zi such that yi = m. Then

pα(z;y) =

M∏
m=1

(
DMC

(
[z]y=m |α

))
(4)

=
M∏

m=1

(
Γ (

∑
k αk)

Γ (
∑

k (c(m, k) + αk))
×

∏
k

Γ (c(m, k) + αk)

Γ (αk)

)
, (5)
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where c(m, k) is the number of zi with value k whose cor-
responding yi = m.

For our unified frames model, the complete condition-
als follow the basic form and derivation given by (Griffiths
and Steyvers 2004). Note that multiple obsevations are at-
tributable to a single latent choice, e.g., for every entity e,
all #(f ∈ e) instances of frame f ∈ e are attributable to the
template choice td,e. Due to this model topology, we appeal
to the general form of the Gamma factorial expansion: for
real x and integral n, Γ(x + n) =

(∏n−1
i=0 (x+ i)

)
Γ(x).

The conditional is then pϑ,β,ξ
(
td,e = t̂|t\(d,e), s, f) =

DMC(t|ϑ)
DMC(t\td,e |ϑ)

× DMC(s|ξ)
DMC(s\td,e |ξ)

× DMC(f |β)
DMC(f\td,e |β)

.

(6)
We can substitute the value of each Dirichlet-multinomial
compound, and applying the Gamma function expansion, ar-
rive at a proportional value

smoothed template usage︷ ︸︸ ︷(
c\td,e(d, t̂) + ϑt̂

)
×

smoothed template-specific slot frequency︷ ︸︸ ︷
c\td,e(t̂, sd,e) + ξsd,e∑

s c
\td,e(t̂, s) + ξs

×
(7)

smoothed per-template frame frequencies︷ ︸︸ ︷∏
f∈e

[∏#(f∈e)−1
l=0 c\td,e(t̂, f) + βf + l

]
∑

f c
\td,e(t̂, f) + βf

Here we use the \td,e notation to indicate the assignment
to td,e removed from the given quantity. The slot sampling
equation is analogous, as are the ones for the frame and role.

Implementation Considerations In practice, the iterative
multiplication in (7) will run into numerical issues if com-
puted directly. Performing operations step-by-step in log-
space is one straightforward solution, though at the cost
of implementation efficiency. We found that we were able
to get a 40% speed-up within our sampling inner-loop by
directly computing the log variant of (6). This involves
computing log Γ(x), for which there are numerous publicly
available implementations. In our publicly available C++
implementation,1 we use GSL.

Experiments

Minsky’s, Schank’s, and Fillmore’s motivations were fo-
cused on matters of classic AI and cognitive science: the
goal was to model human intuitions about everyday affairs
(Minsky 1974; Schank 1975; Fillmore 1975). In our ex-
periments, we address the question of how recent statis-
tical approaches bear on the early proposals to discourse
understanding, and consciously divorce our model from
specific downstream tasks. Our evaluations reflect these
desiderata. While various applications make use of the no-
tion of an event template, such as MUC (Sundheim 1992;
1996) and ACE (Walker et al. 2006), these tasks are defined
by rather limited domains. It is not clear how well these

1https://github.com/fmof/unified-probabilistic-frames

tasks get at the more generalizable background knowledge
of importance to the AI pioneers. Moreover, our goal in this
paper is to demonstrate how we can bring current efforts in
discourse and event modeling closer to Minsky’s proposal.2

Data

In the spirit of past efforts to learn general domain narra-
tive schemas, we use 10K training and 1K held-out NYT
articles sampled uniformly at random from all years of Con-
cretely Annotated Gigaword (Ferraro et al. 2014). As gen-
eral newswire, the NYT tends to contain more entities, be
longer, less to-the-point, and/or more diverse than previous
datasets used for unlabeled template induction.

Processing In our experiments dependency parses and
coreference chains are derived via CORENLP (Manning et
al. 2014), and semantic frame analyses from SEMAFOR (Das
et al. 2010).

To allay concerns about errant FrameNet annotations, we
apply a high-precision filtering step: we only include a men-
tion if (1) its verb v triggers a frame f , and (2) r, one of f ’s
frame roles, points to some span within the mention. We
observed in development that these filters compensated for
some of the gap in FrameNet and syntactic parsing, albeit by
tying frames closely to syntax.

Evaluation Criteria

We examine the effect of frame semantics on learned tem-
plates. Quantitatively, we ask if frame semantics result in
better (1) model fit (heldout log-likelihood) and (2) coher-
ence (Mimno et al. 2011).

Evaluating held-out log-likelihood makes particular sense
in the context of surprisal (Attneave 1959; Hale 2001;
Levy and Jaeger 2006; Levy 2008). Used successfully to ex-
plain people’s syntactic processing difficulties, the suprisal
of a word w, given prior seen words h and “extra-sentential
context” C (Levy 2011) is as

suprisal (w|h) ∝ − log p(w|h, C). (8)

Surprisal of an entire document d then follows the model’s
topology and factorization over d. Because our models do
not examine sequences of predicate/dependency pairs, the
prior history h is removed from the computation. For this
work, we effectively examine semantic and discourse ap-
proaches to expanding out this extra-sentential context C,
from within a bag-of-words view.

Chang et al. (2009) showed that improvements in topic
model held-out log-likelihood do not always correlate with
human quality scores. In response, Mimno et al. (2011) de-
veloped an automatic coherence measure that does correlate

2Those tasks’ restricted domains mean the evaluated templates
or relations are constrained not only by the domain, but also by
the needs of the “target consumer,” and what he or she deems to
be “relevant.” Nearly 80% of MUC-4 only has one labeled tem-
plate, despite an average of (at least) three templatable events in the
text (Reichart and Barzilay 2012). Further, subleties of evaluation
can drastically affect the overall score and end ranking, introducing
confounding variables into meta-analyses (Chambers 2013, § 5).
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Figure 4: The held-out averaged log-likelihood of our model
versus the baseline.
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Figure 5: Topic coherence at M = 20. For our model (UPF),
given a template, we consider frame and verb coherence –
the latter marginalizes over frames. Higher is better (more
coherent).

(positively) with human quality scores. Despite being devel-
oped for topic models, there is nothing inherent in its defini-
tion that limits its application to just topic models. Given a
list of vocabulary words X , sorted by weight (probability),
the coherence score measures the log-relative document fre-
quencies of the M -highest probability elements of X:

coherence(X,M) =

M∑
m=2

m−1∑
l=1

log
D(X(m), X(l)) + 1

D(X(l))
,

where D(·) is the number of documents that have at least
one occurrence of each of its arguments. We adopt this mea-
sure, as the models examined here produce distributions over
predicates, frames, and other observations.

Baseline

Our baseline model is a simplification of our proposed
model: it does not consider either frame or role informa-
tion. This way, we can examine the effect of incorporat-
ing semantic frames in our unified model. Verbs are drawn
directly from the template selection, and the arcs directly

from the slots.3 We note that this is also one of Chambers
(2013)’s models; it can be viewed as very similar to Bam-
man, O’Connor, and Smith (2013)’s generative model. Our
evaluation methodology—observing semantic frames only
during training—provides a fair comparison between this
baseline model and our own.

Evaluation Results

During heldout evalution only, we treat frames/roles as la-
tent. For consistency, and because the true number of slots-
per-template is unknown, we find a compromise among the
number of slots that others have used previously; we use
eight slots as we vary the number of templates (Chambers
2013; Reichart and Barzilay 2012; Balasubramanian et al.
2013). We compare per-observation log-likelihood (Fig. 4)
on our 1K held-out documents to our baseline; the additional
frame information allows the model to better fit held-out
data, indicating a lower surprisal.

Our second evaluation is Mimno et al.’s topic coherence,
evaluated on both semantic frame and verb distributions. To
compute verb coherence in our model (UPF), we marginal-
ize over frame (and role) assignments. In Figure 5 we show
coherence at top 20. We find that our model (“UPF: Verb”)
generally had higher coherence than the baseline (“Baseline:
Verb”), even as we varied the number of templates and slots.

Conclusion

We have presented a model for probabilistic frame induction
which for the first time explicitly captures all levels laid out
by Minsky (1974). In so doing we have combined the notion
of Fillmore’s frame semantics with a discourse-level notion
of a Minsky frame, or Schankian script. We have shown that
this leads to improved coherence, and a better explanation
of held-out data.
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