
Complementing Semantic Roles with Temporally-Anchored
Spatial Knowledge: Crowdsourced Annotations and Experiments

Alakananda Vempala and Eduardo Blanco
Human Intelligence and Language Technologies Lab

University of North Texas
Denton, TX 76203

AlakanandaVempala@my.unt.edu, eduardo.blanco@unt.edu

Abstract

This paper presents a framework to infer spatial knowl-
edge from semantic role representations. We infer
whether entities are or are not located somewhere, and
temporally anchor this spatial information. A large
crowdsourcing effort on top of OntoNotes shows that
these temporally-anchored spatial inferences are ubiq-
uitous and intuitive to humans. Experimental results
show that inferences can be performed automatically
and semantic features yield performance improvements.

1 Introduction
Extracting meaning from text has received considerable at-
tention in the last decade. In particular, semantic role la-
beling has become popular, including both corpora devel-
opment and automatic role labelers. Semantic roles capture
semantic links between predicates and their arguments; they
capture who did what to whom, how, when and where.

There are several corpora with semantic role annota-
tions. FrameNet (Baker, Fillmore, and Lowe 1998) an-
notates frame elements (semantic roles) defined in seman-
tic frames, which are triggered by lexical units. Prop-
Bank (Palmer, Gildea, and Kingsbury 2005) and NomBank
(Meyers et al. 2004) annotate semantic roles for verbal and
nominal predicates respectively. More recently, OntoNotes
(Hovy et al. 2006) includes PropBank-style semantic roles.
Semantic role labelers trained with PropBank have matured
in the last decade (Carreras and Màrquez 2005; Zhou and
Xu 2015), with state-of-the-art F-measures around 0.81.

While semantic roles encode useful information, there is
much more meaning in all but the simplest statements. Con-
sider the sentence John drove to San Francisco for a doctor’s
appointment and the semantic roles annotated in OntoNotes
(Figure 1, solid arrows). On top of these valuable roles, one
can infer that John had LOCATION San Francisco for a rela-
tively short period of time after drove (more precisely, dur-
ing the doctor’s appointment), but probably not long after,
long before or during drove. This additional knowledge is
intuitive to humans, even though it is disregarded by exist-
ing tools and highly ambiguous: if John drove home to San
Francisco after a vacation in Colorado, it is reasonable to be-
lieve that he had LOCATION San Francisco well after drove,
Copyright c© 2016, Association for the Advancement of Artificial
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Figure 1: Semantic roles in OntoNotes (solid arrows) and
additional spatial knowledge (dashed arrow).

i.e., he did not leave San Francisco shortly after drove took
place because he lives in San Francisco.

This paper presents a framework to infer temporally-
anchored spatial knowledge from semantic roles. The main
contributions are: (1) analysis of missing spatial knowl-
edge in OntoNotes; (2) crowdsourced annotations on top of
OntoNotes;1 (3) experimental results detailing results with
gold-standard and predicted linguistic annotations, and us-
ing lexical, syntactic and semantic features.

2 Semantic Roles and Additional Spatial

Knowledge

We represent a semantic relation R between x and y as R(x,
y). R(x, y) can be read “x has R y”, e.g., AGENT(bought,
Bill ) can be read “bought has AGENT Bill.” Semantic roles
are relations R(x, y) such that (1) x is a predicate and
(2) y is an argument of x. In this paper, we work on top
of OntoNotes semantic roles, which only account for verbal
predicates, i.e., for all semantic roles R(x, y), x is a verb.

We use the term additional spatial knowledge to refer to
relations LOCATION(x, y) such that (1) x is not a predicate
or (2) x is a predicate and y is not an argument of x. In other
words, additional spatial knowledge is spatial meaning not
captured with semantic roles. As we shall see, the frame-
work presented here not only infers plain LOCATION(x, y),
but also temporally anchors this additional knowledge.

1Available at http://hilt.cse.unt.edu/

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2652



Captain Simons likely died
ARGM-ADV

ARG0

ARGM-MNR

on impact versus perhaps freezing

ARGM-ADV
ARG2

ARGM-LOC

to
death

in
the Alps

Figure 2: Semantic roles in OntoNotes (solid arrows) and additional spatial knowledge of type (1b) (dashed arrow).

2.1 Semantic Roles in OntoNotes

OntoNotes is a large corpus with 1,302,342 tokens and
63,918 sentences from several genres including newswire,
broadcast news and conversations, magazines and the web.2
It includes POS tags, word senses, parse trees, speaker in-
formation, named entities, semantic roles and coreference.

OntoNotes semantic roles follow PropBank framesets. It
uses a set of numbered arguments (ARG0–ARG5) whose
meanings are verb-dependent, and argument modifiers
which share a common meaning across verbs (ARGM-LOC,
ARGM-TMP, ARGM-MNR, ARGM-PRP, ARGM-CAU, etc.).
For a detailed description of the semantic roles used in
OntoNotes, we refer the reader to the LDC catalog3 and
PropBank (Palmer, Gildea, and Kingsbury 2005).

Throughout this paper, semantic roles are drawn with
solid arrows. To improve readability, we often rename num-
bered arguments, e.g., AGENT instead of ARG0 in Figure 1.

2.2 Additional Spatial Knowledge

OntoNotes semantic roles only capture a portion of all spa-
tial knowledge. They capture locations of verbal predicates
with (1) ARGM-LOC for all verbs, and (2) numbered argu-
ments for a few verbs, e.g., the start and end point of go.01
are encoded with ARG3 and ARG4.

There are 2 types of additional relations LOCATION(x, y):
(1) those whose arguments x and y are semantic roles of
some verb, and (2) those whose arguments x and y are not
semantic roles of any verb. Type (1) can be further divided
into type (1a) if x and y are roles of the same verb, and type
(1b) if x and y are roles of different verbs.

Figure 1 exemplifies an inference of type (1a): drove has
AGENT John and LOCATION San Francisco, the additional
spatial knowledge between John and San Francisco is in-
ferred between roles of the same verb. Figure 2 presents an
inference of type (1b): died has ARG0 Captain Simons and
freezing has ARGM-LOC in the Alps, the additional relation
LOCATION(Captain Simons, in the Alps) links roles of dif-
ferent verbs: ARG0 of died and ARGM-LOC of freezing.

The following statement exemplifies type (2): [Palm
Beach estate owners]AGENT drive [Bentleys and other lux-
ury cars]THEME. Semantic roles indicate the AGENT and
THEME of drive; additional spatial knowledge includes LO-
CATION(Bentleys and other luxury cars, Palm Beach ). Note
that the AGENT is estate owners, and that Palm Beach indi-
cates their location—it is not an argument of drive.

2We use the CoNLL-2011 Shared Task distribution (Pradhan et
al. 2011), available at http://conll.cemantix.org/2011/.

3https://catalog.ldc.upenn. edu/LDC2013T19

foreach sentence s do
foreach semantic role ARGM-LOC(yverb, y) ∈ s do

foreach semantic role ARGi(xverb, x) ∈ s do
if is valid(x, y) then

generate potential relation LOCATION(x, y)
end

end

end

end

Algorithm 1: Procedure to generate all potential additional
spatial knowledge targeted in this paper.

3 Corpus Creation

Annotating all additional spatial knowledge in OntoNotes
is outside the scope of this paper. We focus on additional
relations LOCATION(x, y) of type (1) (Section 2.2) such that
ARGi(xverb, x) and ARGM-LOC(yverb, y) exist, i.e., x is a
numbered role (ARG0–ARG5) of some verb xverb and y is
ARGM-LOC of some verb yverb (xverb and yverb need not be
the same). We also enforce that:

1. x and y belong to the same sentence and do not overlap;

2. the head of x is a noun and one of these named entity
types: fac, gpe, loc, or org;4 and

3. the head of y is a noun subsumed by physical entity in
WordNet, or one of these named entity types: person,
org, work of art, fac, norp, product or event.

These restrictions are designed to reduce the annotation
effort and automatically generate the least amount of invalid
potential additional spatial knowledge. For example, loca-
tions that have as head an adverb (here, there, etc.) are
unlikely to grant inferences. Similarly, it is almost surely
the case that neither x nor y can be a named entity such as
date, percent or cardinal. All potential additional spa-
tial knowledge targeted in this paper is generated with Al-
gorithm 1; is valid(x, y) enforces the above restrictions. The
number of potential LOCATION relations generated is 1,732.

3.1 Crowdsourcing Annotations

Once potential relations LOCATION(x, y) are generated with
Algorithm 1, they must be validated. After pilot in-house
annotations, it became clear that it is suboptimal to (1) ask
whether x is located at y, and (2) force annotators to answer
YES, NO or UNKNOWN. First, unlike objects such as bridges
and houses, most entities change their location frequently;

4For a description and examples of these named entity types,
refer to (Weischedel and Brunstein 2005).
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certYES probYES certNO probNO UNK INV Maj. Label
# % # % # % # % # % # % # %

Day Before 481 27.77 200 11.54 589 34.00 145 8.37 94 5.42 223 12.87 1311 75.69
During 1066 61.54 61 3.52 293 16.91 44 2.54 56 3.23 212 12.24 1424 82.21
Day After 647 37.35 191 11.02 436 25.17 141 8.14 99 5.71 218 12.58 1293 74.65
All 2194 42.22 452 8.69 1318 25.36 330 6.35 249 4.79 653 12.56 4028 77.52

Table 1: Label counts per temporal anchor, and number of questions with a majority label in the crowdsourced annotations.

considering temporally anchored spatial knowledge is intu-
itive. Second, while there is often evidence that something is
(or is not) located somewhere, it is difficult to fully commit.

Based on these observations, we first generate three ques-
tions for each potential LOCATION(x, y):

1. Is x located at y the day before yverb?
2. Is x located at y during yverb?
3. Is x located at y the day after yverb?

Then, we allow annotators to answer from six labels inspired
by previous work (Saurı́ and Pustejovsky 2012):

• certYES: I am certain that the answer is yes.
• probYES: The answer is probably yes, but I am not sure.
• certNO: I am certain that the answer is no.
• probNO: The answer is probably no, but I am not sure.
• UNK: There is not enough information to answer.
• INV: The question is invalid.

Annotations were gathered using Amazon Mechanical
Turk. We created Human Intelligence Tasks (HITs) consist-
ing of the three questions regarding a potential additional
LOCATION(x, y). The only information available to anno-
tators was the sentence from which the additional LOCA-
TION(x, y) was generated, they did not see semantic role in-
formation, the previous or next sentence, etc. Following pre-
vious work (Callison-Burch and Dredze 2010), we recruited
annotators with previous approval rate ≥ 90% and past ap-
proved HIT count over 5,000. We also discarded submis-
sions that took unusually short time compared to other sub-
missions, and work done by annotators who always chose
the same label. Workers received $0.03 per HIT. We re-
quested 5 annotations per HIT. 150 annotators participated
in the task, on average they annotated 57.33 HITs (minimum
number of HITs per annotator: 1, maximum: 1,409). We as-
signed the final answer to each question by calculating the
majority label among all annotations.

3.2 Annotation Analysis

Columns 2–13 in Table 1 summarize the counts for each
label. Overall, 42.22% of questions are answered with
certYES and 25.36% with certNO, i.e. 67.58% of po-
tential additional spatial knowledge can be inferred with
certainty (annotators are sure that x is or is not located at
y). Percentages for probYES and probNO are substantially
lower, 8.69% and 6.35% respectively. It is worth noting
that 61.54% of questions for during temporal anchor are
answered with certYES. This is due to the fact that some
events (almost always) require their participants to be at the
LOCATION of the event during the event, e.g., participants

Pearson % of annotators that agree
≥ 5 ≥ 4 ≥ 3 ≥ 2

Day Before 0.80 2.9 15.3 54.9 98.4
During 0.87 12.4 35.1 68.4 98.6
Day After 0.79 3.4 16.3 52.5 98.5
All 0.83 6.2 22.2 58.6 98.5

Table 2: Pearson correlations between crowdsourced and
control annotations, and percentage of instances for which
at least 5, 4, 3 and 2 annotators agree (out of 5 annotators).

Top 20 most certain verbs
leave explode begin march stand bear teach discuss arrest dis-
cover carry receive raise bury establish appear live die base open

Top 20 least ambiguous verbs
hear hire begin lead bear locate march conduct call receive bury
provide attack retire lock draw teach base execute stop

Table 3: Top 20 most certain verbs (i.e., with the most
certYES and certNO annotations) and top 20 least ambigu-
ous verbs (i.e., with highest inter-annotator agreements).

in meetings. The last column in Table 1 indicates the per-
centage of questions for which a majority label exists. The
percentage is larger for during questions (82.21%), as they
are easier to annotate, and 77.52% overall.

In order to ensure quality, we manually annotated 10%
of questions in each genre, and calculated Pearson correla-
tions with the majority label after mapping labels as follows:
certYES: 2, probYES: 1, certNO: −2, probNO: −1, UNK:
0, INV: 0. Overall correlation is 0.83 (Table 2), and during
questions show a higher correlation of 0.87. Correlations per
genre (not shown) are between high 0.70s and mid 0.80s,
i.e., all genres achieved high agreements. We also calcu-
lated the raw inter-annotator agreements (Table 2). At least
3 annotators agreed (perfect label match) in 58.6% of ques-
tions and at least 2 annotators in 98.5%. Note that Pearson
correlation is a better indicator of agreement, since not all
label mismatches are the same, e.g., certYES vs. probYES
and certYES vs. certNO. Also, a majority label may exists
even if only 2 annotators agree (last column Table 1), e.g.,
{probYES, UNK, INV, probYES, certYES}.

Finally, Table 3 indicates the top 20 most certain verbs,
i.e., with the highest ratio of certYES and certNO labels,
and the top 20 least ambiguous verbs, i.e., with the overall
highest inter-annotator agreements.
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Last
Friday,

officer Payne found
AGENT

TIME

THEME

LOCATION

the missing AK-47 at a warehouse owned
THEME AGENT

by Mr. Walker

x y yverb Day Before During Day After
officer Payne warehouse found probYES certYES probNO
the missing AK-47 warehouse found certYES certYES certNO
Mr. Walker warehouse found UNK UNK UNK

Figure 3: Semantic roles in OntoNotes (solid arrows) and additional spatial knowledge annotations (dashed arrows).

Type No. Name Description
0 temporal tag are we predicting the LOC(x, y) a day before, during or a day after yverb?

Lexical 1–4 first word, POS tag first word and POS tag in x and y
5–8 last word, POS tag last word and POS tag in x and y

Syntactic 9, 10 syntactic node syntactic node of x and y
11 common subsumer syntactic node subsuming x and y

Semantic

12–15 predicate, POS tag word surface form and POS tag of xverb and yverb

16 same predicate whether xverb and yverb are the same token
17 ARGM-LOC count number of ARGM-LOC semantic roles in the sentence
18 ARGM-TMP count number of ARGM-TMP semantic roles in the sentence

19, 20 NE type named entity types of head of x and y, if any

Table 4: Lexical, syntactic and semantic features to infer potential additional relation LOCATION(x, y).

3.3 Annotation Examples

Figure 3 presents a sample sentence with the semantic role
annotations in OntoNotes (solid arrows) and all potential ad-
ditional spatial knowledge generated (dashed arrows) along
with the annotations. This sentence has 4 semantic roles
for verb found (TIME: Last Friday, AGENT: officer Payne,
THEME: the missing AK-47, and LOCATION: warehouse),
and 2 semantic roles for verb owned (THEME: warehouse,
and AGENT: Mr. Walker).

Annotators were asked to determine whether officer
Payne, the missing AK-47 and Mr. Walker are (or are not)
located at the warehouse the day before, during and the
day after found. Annotators interpreted that officer Payne
was (1) certainly located at the warehouse during event
found (certYES), (2) probably located there the day before
(probYES), (3) and probably not located there the day af-
ter (probNO). In other words, they understood that a search
took place at the warehouse, the search (probably) lasted a
few days, officer Payne was at the warehouse daily until he
found the missing AK-47, and then he (probably) didn’t go
back the day after. Regarding the missing AK-47, they anno-
tated that the AK-47 was certainly located at the warehouse
the day before and during found, but not the day after (pre-
sumably, it was processed as evidence and moved away from
the warehouse). Regarding Mr. Walker, they annotated that
there is not enough evidence (UNK) to determine whether he
was at the warehouse—property owners need not be located
at their properties at any point of time.

4 Inferring Spatial Knowledge

We follow a standard supervised machine learning approach.
Out of the 5,196 generated questions (1,732 LOCATION(x,
y) × 3 temporal anchors), those with label INV were

discarded, leaving 4,545 valid instances. We follow the
CoNLL-2011 Shared Task (Pradhan et al. 2011) split into
train, development and test. We trained an SVM model with
RBF kernel using scikit-learn (Pedregosa et al. 2011). The
feature set and parameters C and γ were tuned using 10-fold
cross-validation with the train and development sets, and re-
sults are calculated using the test instances.

4.1 Feature Selection

Selected features (Table 4) are a combination of lexical, syn-
tactic and semantic features extracted from words, POS tags,
parse trees and semantic role representations. Our lexical
and syntactic features are standard in semantic role labeling
(Gildea and Jurafsky 2002) and thus we do not elaborate on
them. We discarded many more well-known lexical and syn-
tactic features that did not yield performance improvements
during cross validation, e.g., path, subcategory, head.

Semantic features are derived from the verb-argument
structures from which the potential additional relation LO-
CATION(x, y) was generated (Algorithm 1). Features 12–15
correspond to the surface form and part-of-speech tag of the
verbs to which x and y attach (i.e., xverb and yverb). Feature
16 indicates whether xverb and yverb are the same, it differ-
entiates between inferences of type (1a) and (1b). Features
17 and 18 are the number of ARGM-LOC and ARGM-TMP
semantic roles in the sentence. Finally, features 19 and 20
are the named entity types, if any, of x and y.

Inspired by our previous work (Blanco and Vempala
2015), we tried additional semantic features, e.g., flags indi-
cating semantic role presence, count for each semantic role
attaching to xverb and yverb, numbered semantic role be-
tween xverb and x, but discarded them because they did not
improve performance during the tuning process.
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System All instances Instances with majority label
DB D DA All DB D DA All
F F F P R F F F F P R F

most frequent per
temporal anchor
baseline

certYES 0.00 0.83 0.62 0.48 1.00 0.65 0.00 0.84 0.61 0.48 1.00 0.65
probYES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
certNO 0.59 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00
probNO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UNK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
All 0.24 0.58 0.28 0.23 0.48 0.31 0.43 0.60 0.27 0.23 0.48 0.31

lexical features

certYES 0.34 0.83 0.57 0.59 0.75 0.66 0.23 0.86 0.61 0.68 0.78 0.73
probYES 0.12 0.00 0.00 0.09 0.06 0.07 0.00 0.00 0.20 0.09 0.08 0.09
certNO 0.58 0.21 0.46 0.48 0.52 0.50 0.75 0.36 0.58 0.65 0.64 0.64
probNO 0.12 0.00 0.09 0.25 0.06 0.09 0.00 0.00 0.00 0.00 0.00 0.00

UNK 0.14 0.00 0.17 0.50 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00
All 0.38 0.61 0.41 0.48 0.52 0.48 0.49 0.69 0.52 0.58 0.63 0.60

lexical + syntactic
features

certYES 0.39 0.82 0.52 0.59 0.72 0.65 0.33 0.85 0.55 0.67 0.75 0.71
probYES 0.08 0.00 0.00 0.06 0.03 0.04 0.00 0.00 0.25 0.12 0.08 0.10
certNO 0.55 0.29 0.45 0.45 0.51 0.48 0.74 0.39 0.62 0.62 0.67 0.64
probNO 0.11 0.00 0.09 0.20 0.06 0.09 0.00 0.00 0.00 0.00 0.00 0.00

UNK 0.27 0.00 0.12 0.27 0.10 0.14 0.00 0.00 0.00 0.00 0.00 0.00
All 0.38 0.62 0.38 0.45 0.51 0.47 0.50 0.69 0.51 0.57 0.63 0.60

lexical + syntactic
+ semantic features

certYES 0.41 0.82 0.62 0.66 0.74 0.69 0.23 0.85 0.67 0.69 0.80 0.74
probYES 0.23 0.00 0.17 0.26 0.14 0.18 0.25 0.00 0.25 0.40 0.17 0.24
certNO 0.57 0.19 0.48 0.46 0.54 0.50 0.75 0.24 0.71 0.66 0.69 0.67
probNO 0.09 0.00 0.24 0.22 0.11 0.15 0.00 0.00 0.00 0.00 0.00 0.00

UNK 0.24 0.00 0.30 0.31 0.16 0.21 0.00 0.00 0.00 0.00 0.00 0.00
All 0.41 0.61 0.48 0.51 0.54 0.52 0.51 0.67 0.60 0.61 0.66 0.63

Table 5: Results obtained with the baseline, and using several combinations of features derived from gold-standard linguistic
annotations. Results are provided per temporal anchor (DB: Day Before, D: During, DA: Day After).

5 Experimental Results

Table 5 presents results obtained with a baseline and sev-
eral combinations of features using machine learning. Re-
sults are provided for all instances (Columns 3–8) and for
instances for which a majority label exists (Columns 9–14).
These results where obtained using gold-standard linguis-
tic annotations for both generation of potential additional
knowledge and feature extraction.

Overall, performance is better with instances for which a
majority label exists (overall F-measure 0.63 vs. 0.52). This
is not surprising, as these instances are easier to annotate
manually. General performance trends per label, temporal
anchor, and combinations of features are similar when using
all instances and only instances with a majority label. The
rest of this section describes results using all test instances.

The baseline simply predicts the most likely label for each
question depending on the temporal anchor: certYES for
during and day after and certNO for day before (Table 1).
Overall F-measure is 0.31, but it is worth noting that the
baseline obtains an F-measure of 0.58 for during instances.

The last block in Table 5 presents results using all fea-
tures. Overall F-measure is 0.52, results are again better for
during instances (0.61) than for day before (0.41) and day
after (0.48). Results are higher for certYES and certNO
(0.69 and 0.50 respectively) than for other labels (0.15–
0.21). This is probably because most instances are labeled
with certYES and certNO (Table 1). Better performance
with these labels is desirable because they allow us to infer
where entities are (and are not) located with certainty.

5.1 Feature Ablation

The bottom 3 blocks in Table 5 detail results using (1) lex-
ical, (2) lexical and syntactic, and (3) lexical, syntactic and
semantic features. Lexical features yield better performance
than the baseline (0.48 vs. 0.31 overall F-measure), and in-
cluding syntactic features does not have an impact (0.47).
But considering lexical, syntactic and semantic features im-
proves overall F-measure from 0.48 to 0.52.

Results for during instances are virtually the same with
all feature combinations (lexical: 0.61, lexical and syntactic:
0.62, lexical, syntactic and semantic: 0.61). But results with
all features for day before instances, and especially day after
instances, is better (0.41 vs. 0.38 and 0.48 vs. 0.41).

During instances are the easiest to predict. As a matter
of fact, lexical features alone perform as well as all features,
and only slightly better than the baseline. Regarding labels,
certYES and certNO are easier to predict with all feature
combinations, and other labels (probYES, probNO, UNK) are
the ones that benefit the most from complementing lexical
features with syntactic and semantic features.

5.2 Gold-Standard vs. Predicted Linguistic
Information

The last batch of results (Table 6) presents results us-
ing gold-standard and predicted linguistic annotations (POS
tags, named entities, parse trees and semantic roles). Gold-
standard and predicted annotations are used as present in the
CoNLL-2011 Shared Task release (gold and auto files). All
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DB D DA All
F F F P R F

gold 0.41 0.61 0.48 0.51 0.54 0.52
predicted∩gold 0.45 0.54 0.58 0.60 0.58 0.55
predicted 0.25 0.33 0.29 0.58 0.20 0.29

Table 6: Results obtained with instances derived from (1)
gold-standard annotations, (2) predicted annotations which
are also in gold, and (3) predicted annotations.

experiments in this section are carried out using all features.
Models are always trained with gold annotations, but tested
with test instances generated as described below.

The evaluation presented in the first row (gold) is equiv-
alent to the last row in Table 5: potential additional LOCA-
TION(x, y) relations are generated using gold semantic roles
and features are extracted from gold-standard linguistic an-
notations. The evaluation in the second row (gold ∩ pre-
dicted) generates potential additional LOCATION(x, y) rela-
tions using predicted semantic roles, but then filters over-
generated relations (i.e., those which are not generated from
gold-standard roles). This system extracts features from pre-
dicted linguistic annotations, but as a result of the filtering,
the number of test instances decreases from 444 to 155. The
evaluation in the third row (predicted) generates potential
additional LOCATION(x, y) from predicted semantic roles,
and extracts features from predicted linguistic annotations.

Not surprisingly, predicted evaluation is the lowest: while
precision is similar, recall suffers due to missing semantic
roles in the predicted annotations, which unequivocally lead
to potential spatial knowledge not being generated by Algo-
rithm 1. The gold ∩ predicted evaluation may look surpris-
ingly good, but the high F-measure is justified by the fact
that it is restricted to the potential additional LOCATION(x,
y) relations that are generated with both gold-standard and
predicted semantic roles. Intuitively, roles are predicted
more accurately in simpler sentences (shorter, without com-
plex syntax), which in turn are also easier to infer from.

6 Related Work

Tools to extract the PropBank-style semantic roles we in-
fer from have been studied for years (Carreras and Màrquez
2005; Hajič et al. 2009; Lang and Lapata 2010). These
systems only extract semantic links between predicates and
their arguments, not between arguments of predicates. In
contrast, this paper complements semantic role representa-
tions with spatial knowledge for numbered arguments.

There have been several proposals to extract semantic
links not annotated in well-known corpora such as Nom-
bank (Meyers et al. 2004), FrameNet (Baker, Fillmore, and
Lowe 1998) or PropBank (Palmer, Gildea, and Kingsbury
2005). Gerber and Chai (2010) augmented NomBank anno-
tations with additional numbered arguments appearing in the
same or previous sentences; Laparra and Rigau (2013) pre-
sented an improved algorithm for this task. The SemEval-
2010 Task 10: Linking Events and their Participants in Dis-
course (Ruppenhofer et al. 2009) targeted cross-sentence
missing numbered arguments in FrameNet and PropBank.

Blanco and Moldovan (2014) inferred additional argument
modifiers for verbs in PropBank. Unlike the framework
presented in this paper, these previous efforts reveal im-
plicit semantic links involving predicates. None of them
infer semantic links between predicate arguments or target
temporally-anchored spatial knowledge.

We have previously proposed an unsupervised approach
that does not account for temporal anchors or uncer-
tainty to infer semantic relations between predicate argu-
ments (Blanco and Moldovan 2011). We have also presented
preliminary experiments with 200 sentences following the
framework presented here (Blanco and Vempala 2015).

Attaching temporal information to semantic relations is
uncommon. In the context of the TAC KBP temporal slot
filling track (Garrido et al. 2012; Surdeanu 2013), relations
common in information extraction (e.g., SPOUSE, COUN-
TRY OF RESIDENCY) are assigned a temporal interval in-
dicating when they hold. Unlike this line of work, the ap-
proach presented in this paper builds on top of semantic
roles, targets temporally-anchored LOCATION relations, and
accounts for uncertainty (e.g., certYES vs. probYES).

The task of spatial role labeling (Hajič et al. 2009;
Kolomiyets et al. 2013) aims at thoroughly representing spa-
tial information with so-called spatial roles, e.g., trajector,
landmark, spatial and motion indicators, path, direction, dis-
tance, and spatial relations. Unlike us, the task does not
consider temporal anchors or certainty. But as the examples
throughout this paper show, doing so is useful because (1)
spatial information does not hold for good for most entities
and (2) humans sometimes can only state that it is proba-
bly the case that an entity is (or is not) located somewhere.
In contrast to this task, we infer temporally-anchored spatial
knowledge as humans intuitively understand it.

7 Conclusions

Semantic roles in OntoNotes capture semantic links between
a verb and its arguments—they capture who did what to
whom, how, when and where. This paper takes advantage
of OntoNotes semantic roles in order to infer temporally-
anchored spatial knowledge. Namely, we combine semantic
roles within a sentence in order to infer whether entities are
or are not located somewhere, and assign temporal anchors
and certainty labels to this additional knowledge.

A crowdsourcing annotation effort shows that annota-
tions can be done reliably by asking plain English ques-
tions to non-experts. Experimental results show moderate
F-measure using gold-standard linguistic annotations (0.52),
and relatively poor performance (0.29) in a more realistic
scenario, when the additional spatial knowledge is inferred
after extracting semantic roles automatically.

The essential conclusion of this paper is that seman-
tic roles are a reliable semantic layer from which addi-
tional meaning can be inferred. While this paper focuses
on temporally-anchored spatial knowledge, we believe that
many more semantic relations (CAUSE, TIME, etc.) between
arguments of verbs can be inferred using a similar strategy.
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