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Abstract

Understanding verbs is essential for many natural language
tasks. To this end, large-scale lexical resources such as
FrameNet have been manually constructed to annotate the
semantics of verbs (frames) and their arguments (frame ele-
ments or FEs) in example sentences. Our goal is to “seman-
tically conceptualize” example sentences by connecting FEs
to knowledge base (KB) concepts. For example, connecting
Employer FE to company concept in the KB enables the
understanding that any (unseen) company can also be FE
examples. However, a naive adoption of existing KB con-
ceptualization technique, focusing on scenarios of conceptu-
alizing a few terms, cannot 1) scale to many FE instances
(average of 29.7 instances for all FEs) and 2) leverage interde-
pendence between instances and concepts. We thus propose
a scalable k-truss clustering and a Markov Random Field
(MRF) model leveraging interdependence between concept-
instance, concept-concept, and instance-instance pairs. Our
extensive analysis with real-life data validates that our ap-
proach improves not only the quality of the identified concepts
for FrameNet, but also that of applications such as selectional
preference.

1 Introduction
Overview Understanding verbs is critical to understanding
text. For example, the verb “employ” is associated with two
different semantic classes described as the USING and the
EMPLOYING frames:

• USING: [The few states]Agent [employed]LU [chemical
weapons]Instrument.

• EMPLOYING: [Hong Kong manufacturers]Employer [employ]LU
[2m workers]Employee [in China]Place.

FrameNet (Fillmore, Johnson, and Petruck 2003) is a lex-
ical resource that describes semantic frames, by annotating
verbs1 (i.e., lexical units or LUs) and their arguments (i.e.,
frame elements or FEs) that evoke frames. Table 1 shows all
of the FE instances for the EMPLOYING frame in FrameNet.
This resource is critical for human understanding of verbs and
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1Although FrameNet annotated verbs, nouns, adjectives, and
adverbs as lexical units, this paper focuses on verbs.

for training applications such as semantic parser (Das, Mar-
tins, and Smith 2012) or question answering systems (Pizzato
and Mollá 2008). Yet, as shown in Table 1, the instances in
FrameNet, being just small samples for the FEs, are often
insufficient for supporting machine understanding.

We thus focus on “semantically conceptualizing” FE in-
stances. Take the EMPLOYER FE for example. Our goal is to
infer that any instance of company concept is equally plausi-
ble as sample companies mentioned in FrameNet. A closely
related well-known task is “selectional preference” of com-
puting “plausibility” scores for arbitrary instances (Resnik
1996). That is, our task is to find selectional preferences based
on concepts of a knowledge base (KB). With such concep-
tualization, we can infer that “Shell hires 100 workers” is
plausible as Shell is an instance of company concept in the
KB.

Related work To enable this inference on unobserved sen-
tences, existing work uses WordNet concept (Tonelli et al.
2012) or topic modeling (Ritter, Mausam, and Etzioni 2010)
to relate the unobserved instances to the observed instances.
For example, WordNet concepts identified for FEs (Tonelli et
al. 2012) can infer plausibility of the unobserved instances if
they belong to the same concept from the observed instances.
However, WordNet concepts, being restricted to about 2,000
concepts linked with Wikipedia pages (Bryl et al. 2012), are
often too coarse for our purpose. For example, the WordNet
concept container, enumerating generic containers includ-
ing envelope or wastebasket, is too general for Container
FE, as it inaccurately predicts wastebasket as a plausibility
score of a cooking utensil. More desirably, we may consider
using a knowledge base that materializes concepts of finer
granularity, e.g., cooking container for COOKING CREATION
frame. In addition, a desirable KB should cover sufficient
instances for each concept. To argue that WordNet is limited
in terms of coverage, we analyzed English Gigaword Fifth
Edition (LDC2011T07) consisting of 180 million sentences
from English news. In this corpus, WordNet covers only 33%
of instances as shown in Table 2. In contrast, automatically
harvested KBs such as Probase covers many instances in-
cluding named entities (e.g., Microsoft and British Airways),
which are not covered by WordNet.

Proposed method To overcome concept and instance spar-
sity of manually-built KB, we utilize on Probase (Wu et al.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2638



Table 1: Examples of FE instances in the Employing frame from FrameNet examples.
Frame FE Instances

EMPLOYING

Employer
british airways, factory, plant, police, housekeeper, bank, firm, executive, company, industry, airline, institute, manufacturer, defendant, woman,
paul, mason, man, sister, he, we, i, she, you

Employee
person, worker, man, staff, specialist, you, gardener, someone, woman, consultant, actor, winning, contractor, stave, architect, graduate, builder,
wife, artist, detective, tradesman, westwood, plaintiff, clark, labourers, outside agency, diver, officer, mark thatcher, vet, her, team

Position cleaner, guide, assistant, manager, agent, gardener, aircrew

Table 2: The coverage of FrameNet, WordNet, and Probase.
Nouns of several dependents such as nsubj, dobj, pobj, and
iobj of the sentences from Gigagword corpus were used for
this coverage test.

FrameNet WordNet Probase

Coverage 25% 33% 75%

2012)2, which contains millions of fine-grained concepts au-
tomatically harvested from billions of web documents. This
gives us the following two benefits observed in prior research:
• Fine-grained conceptualization covers 3 million con-

cepts observed on the Web.

• More than 75% instances of a raw corpus (Table 2) were
already observed in Probase, and its instance coverage
can grow indefinitely by automatic harvesting from a
larger corpus.

A naive baseline would be adopting existing conceptual-
ization techniques on FE instances (Song et al. 2011). Bayes
builds on naive Bayes model for finding concepts with the
highest posterior for the instances. CL+Bayes extends this
model to cluster before conceptualization to address: 1) het-
erogeneity of concept, e.g., Employer can be both company
and person, and 2) ambiguity of instance, e.g., apple. How-
ever, CL+Bayes targets the scenario of conceptualizing a
few words, e.g., a multi-word query, and cannot 1) scale for
FE instances (average of 29.7 example instances for all FEs
in FrameNet) and 2) leverage the interdependence between
concept-instance, concept-concept, instance-instance pairs.

In contrast, we propose a new model addressing these
challenges. First, while existing clustering builds on clique
finding, which is NP-hard and sensitive to missing obser-
vations, we propose an efficient clustering that is robust to
some missing observations. Second, we extend a Bayesian
model with one-way directed graph between concept and
instance, P (e|c), to model the interdependence between
concept-concept, instance-instance, and concept-instance.

Our experimental evaluations show the accuracy of both
conceptualization and selectional preference using real-life
datasets.

2 Preliminary
In this section, we introduce two lexical knowledge bases,
FrameNet and Probase (Wu et al. 2012).

2Dataset publicly available at http://probase.msra.cn/dataset.
aspx

2.1 FrameNet
FrameNet (Fillmore, Johnson, and Petruck 2003)3 is a
database of frame semantics (Fillmore 1982). It defines lexi-
cal units (LUs) as the pairing of words with their meanings
(frames). In our running examples, employ belongs to two
frames: USING and EMPLOYING. In each frame, the verb
employ has its frame elements (FEs), which can be direct syn-
tactic dependents. The USING frame, for example, contains
two FEs, Agent and Instrument, whose relationships
are described in example sentences. FrameNet contains more
than 190,000 annotated sentences covering about 12,000 LUs
and 10,000 FEs.

2.2 Probase
Probase (Wu et al. 2012) is a probabilistic lexical knowl-
edge base of isA relationships that are extracted from billions
of web documents using syntactic patterns such as Hearst
patterns (Hearst 1992). For example, from “... mobile com-
pany such as a microsoft ...”, we derive the isA relationship
microsoft isA mobile company.

Probase contains isA relationships among 3 million con-
cepts and 40 million instances. Furthermore, each isA rela-
tionship is associated with a variety of probabilities, weights
and scores, including the typicality scores:
• P (c|e) denotes how typical is concept c for instance e (i.e.,

instance typicality score). It is computed as:

P (c|e) =
n(e, c)∑
c n(e, c)

(1)

where n(e, c) is the frequency observed from e isA c in the
corpus. Typically, P (c|e) gives higher scores to general
concepts than specific concepts. For example, we have
P (food|pasta) = 0.177 > P (italian food|pasta) =
0.014 in Probase.

• P (e|c), denotes how typical is instance e for concept c
(i.e., concept typicality score). It is computed as:

P (e|c) =
n(e, c)∑
e n(e, c)

(2)

P (e|c) typically gives higher scores to specific con-
cepts than general concepts. For example, we have
P (pasta|italian food) = 0.184 > P (pasta|food) =
0.013 in Probase.

3 Existing Conceptualizations
In this section, we introduce existing methods of conceptu-
alizing terms into Probase concepts and then discuss their
limitations.

3We used the FrameNet 1.5 dataset.
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3.1 Problem Statement
Conceptualization is to identify representative concepts
associated with the given instances. More formally, let
E = {e1, e2, . . . , en} be the given instances, and let C =
{c1, c2, . . . , cm} be the concepts from a knowledge base. The
goal of conceptualization is to estimate a representative score
of c ∈ C for E.

3.2 Conceptualization Baselines
Probase, with its isA relationships and probabilities, enables
the conceptualization of words and phrases. In other words,
Probase maps a set of words and phrases to their concepts.
We review several conceptualization mechanisms below.

Baseline I: Bayes Consider the following instances for
the Employer FE in the EMPLOYING frame: Eempr =
{british airways, factory, plant, police, housekeeper}. Good
representative concepts in Probase would be company, orga-
nization, manufacturer, worker and occupation. .

The Bayes method (Song et al. 2011) performs conceptu-
alization by finding the concept that has the largest posterior
probability using a naive Bayes model for the given instances.
Formally, Bayes finds the representative concepts as follows:

P (c|E) =
P (E|c)P (c)

P (E)
∝ P (c)

∏
e∈E

P (e|c) (3)

where P (c) is proportional to the observed frequency of
concept c in the corpus.

Baseline II: CL+Bayes CL+Bayes extends Bayes to
cluster before conceptualization to address: 1) heterogeneity
of concept, e.g., EMPLOYER conceptualizes to company and
person, where Bayes identifies too general a concept cover-
ing both, e.g., object, and 2) ambiguity of instance, such as
“plant” for which Bayes conceptualizes to both company and
organism (Fig. 1a).

To address the above problems, CL+Bayes (Song et al.
2011) first abstracts this problem as a bipartite graph where
nodes represent instances and concepts, and edges represent
isA relationships. More specifically, G = ((U, V ), A) is a
weighted bipartite graph where U is a set of instances, V is
a set of concepts, and A is a set of edges. An edge a(e ∈
U, c ∈ V ) ∈ A indicates c is a concept of an instance e. They
set the edge weight of a(e, c) to the concept typicality score
for instance, P (e|c). Fig. 1(a) shows the constructed graph
for our running example Eempr.

Given the graph, CL+Bayes then clusters semantically-
close instances before conceptualization. This process is
shown in Fig. 1(b). Term e and concept c is connected by
an edge weighted by typicality P (e|c). Given G, CL+Bayes
finds the densest k-disjoint cliques (Ames 2012) that maxi-
mize edge weights. The instances connected in a clique are
treated as a cluster.

Each cluster is then conceptualized by Eq. 3. In our running
example, CL+Bayes first divide Eempr into three clusters
of instances: {british airways, factory}, {plant}, and {police,
housekeeper}. Since worker and occupation are supported by
instances such as police and housekeeper in Fig. 1(b), these
two concepts form a dense cluster supported by multiple

plant policefactory

organismproducerorganization manufacturer bandcompany

housekeeper
british
airways

worker occupation

(a) A bipartite graph G containing instances (white),
concepts (gray), and edges between them

plant policefactory

organismproducerorganization manufacturer bandcompany

housekeeper
british
airways

worker occupation

(b) G clustered by CL+Bayes.

Figure 1: Overview of conceptualization baselines.

common instances. In contrast, band is pruned out, or cannot
be a member of clique, as supported only by a single instance.

By clustering, CL+Bayes can solve the two limita-
tions of Bayes discussed above: 1) heterogeneity: we clus-
ter semantically-close instances such as {british airways,
factory}, {plant} and {police, housekeeper}; 2) ambiguity:
we prune out unrelated concepts such as band that will be 0
in probability after clustering.

After clustering, we apply Bayes on each cluster (Eq. 3).

3.3 Limitations
We observe the following limitations for applying this base-
line to our target problem:

• L1: Strict clustering. Finding the densest k-disjoint
clique problem is provably NP-hard (Ames 2012) and also
sensitive to some missing observation. Having synony-
mous concepts (manufacturer and producer) often leads
observations of isA relationship of instances to divide
between the two (Fig. 1b). Meanwhile, having a single
missing observation between a concept and an instance
breaks a clique and affects the clustering.

• L2: Independence Relationships. CL+Bayes uses one-
way directed graph from concept to instance, P (e|c).
Meanwhile, other neighborhood relationships such as
concept-concept, instance-instance, instance to concept
pairs are not considered.

We thus address these limitations by clustering methods
and probability estimation model in Sec. 4.

4 FrameNet Conceptualization
This section proposes a new conceptualization Truss+MRF
to overcome the two limitations of the existing work. For
L1, Sec. 4.1 first proposes a concept synonym smoothing to
reduce missing observations and then proposes an efficient
and effective clustering method. For L2, Sec. 4.2 constructs
an undirected probabilistic graph and proposes a new con-
cept probability estimation model to consider relationships
between features on the undirected probabilistic graph.
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Figure 2: k-Truss when k = 3

4.1 Clustering: Truss
Concept synonym smoothing To overcome L1, Bayes
implements a classic Laplace smoothing (Lidstone 1920) of
adding a small score to missing edges.

P (e|c) =
P (e|c) + 1

|U | + |V | (4)

where |U | is the number of instances and |V | is the number
of concepts in Probase.

Unlike this concept-agnostic smoothing, we propose con-
cept synonym smoothing to reduce missing observations.
We obtain concept synsets from (Li et al. 2013) grouping
synonymous Probase concepts into a cluster by k-Medoids
clustering algorithm based on the shared instances (instance
membership). An example of such concept cluster would be
{job, occupation, professional, worker}, sharing many com-
mon instances. We aggregate observations for all concepts
with the same semantics using this concept cluster.

However, although this concept synonym smoothing re-
duces missing observations, the graph may still have missing
observations.

Relaxation of cluster We then propose an efficient approx-
imation of cliques for clustering, with polynomial complexity
of O(n3), which is also more robust to missing observations.

Our algorithm, Truss, finds k-truss, a relaxation of a clique,
motivated by a natural observation of social cohesion (Cohen
2008) that two nodes connected by an edge should also share
many common neighbors. In a k-truss, an edge is legitimate
only if supported by at least k-2 common neighbors of two
end vertices. Formally, a k-truss is a one-component subgraph
such that each edge is supported by at least k-2 common
neighbors. For example, the 3-trusses of a graph include all
edges contained in at least one triangle (Fig. 2). With this
property of k-truss, incomplete subgraphs including several
missing edges can be identified.

Since G is a bipartite graph between instance and concept
(Fig. 1a), we cannot apply k-trusses on G immediately. We
thus take a two-phase approach. First, we enrich G into G∗
by creating a link between concepts based on the k-truss
intuition. Second, we then identify k heterogeneous concept
clusters by running a k-truss algorithm on G∗.

For the first phase, we connect two concepts ci and cj
if they have many common instance neighbors. We denote
instance neighbors of concept c as N I(c) such that common
instance neighbors are denoted as N I(ci)∩N I(ci). Formally,
an edge a(ci, cj) is inserted when |N I(c1)∩N I(c2)| ≥ kI−
2 where N I(c) is the set of instance neighbors linked to the

Algorithm 1: Truss (G∗)
input :A graph G∗ consisting of a set of instances U = {e1, · · · , en}, a set

of concepts V = {c1, · · · , cm}, and a set of edges
A = {a1, · · · , al}

1 while isChanged() do
2 for each edge a(ci, cj) ∈ A do
3 if (|NC(ci) ∩ NC(cj)| < kC − 2) then
4 remove a(ci, cj);

plant policefactory

organismorganization bandcompany

housekeeper
british
airways

{manufacturer, 
producer}

{worker, occupation}

(a) G after clustering concept synonyms.

plant policefactory

organismorganization bandcompany

housekeeper
british
airways

{manufacturer, 
producer}

{worker, occupation}

(b) G clustered by Truss+MRF.

Figure 3: Overview of our conceptualization graph.

edge. For example, from Fig. 3(a) when kI = 4, {company}
and {organization} are linked to each other because they have
two common instance neighbors (i.e., |N I(c1)∩N I(c2)| ≥ 2.
In addition, concept vertices c, whose N I(c) is less than
kI − 2, are removed to eliminate ambiguous concepts (e.g.,
organism and band) supported by few instances.

For the second phase, Alg. 1 describes how to extract k-
trusses for concept nodes from G∗. First, an edge a(ci, cj) is
removed when |NC(c1) ∩NC(c2)| ≤ kC − 2 where NC(c)
is the set of concept neighbors. After this process, we identify
connected components of concept nodes. Each such concept
component (and connected instances) form a cluster, which
will be conceptualized into KB concepts.

From our running example, we identify two clusters (i.e.,
trusses) as shown in Fig. 3(b): {british airways, factory,
plant, company, organization, manufacturer, producer} and
{police, housekeeper, worker, occupation}. Each concept in
clusters is supported by at least two instance neighbors (when
kI = kC = 4). Otherwise, the remaining concepts, which are
not supported by at least two instance neighbors, are removed
(e.g., organism and band).

4.2 Posterior Probability Estimation using
Markov Random Field: MRF

To overcome L2, we use an MRF model (undirected graphical
model) to model neighborhood relationships such as concept-
instance, concept-concepts, instance-instance pairs. For this
purpose, an undirected probabilistic graph is constructed
for each cluster. We first propose a new edge weighting on
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Table 3: Examples of top-4 concepts ranked by P (c|e),
P (e|c), and ours (i.e., w(a(e, c)) in Eq. 5), respectively.

Instance Score Top-4 concepts

airplane

P (c|e) vehicle, technology, place, aircraft

P (e|c) transportation vehicle, bulk-carrying vehicle, mobile
source, real time system

ours vehicle, aircraft, transportation vehicle, mobile source

coca-cola
P (c|e) company, brand, corporation, client

P (e|c) soft drink, global brand, marketer, corporate giant

ours corporation, soft drink, company, global brand

each graph to consider two-way direction between instance
and concept, and then connect the variables to each other
for modeling full-dependencies. Finally, we propose a new
probability estimation model for concepts from this graph.

Constructing MRFs Inspired by (Wang, Wang, and Hu
2014), we first overcome L2 by weighting an edge between
instance e ∈ U and concept c ∈ V , as the combination of
P (c|e) and P (e|c) (i.e., two directions between concept and
instance). Specifically, we multiply P (c|e) and P (e|c) to
represent a roundtrip random walk probability between e and
c. Formally, for an edge a(e, c), the edge weight, w(a(e, c)),
is computed by multiplying concept and instance typicality:

w(a(e, c)) =

{
1 c = e

P (c|e) × P (e|c) c �= e
(5)

c = e represents the case when the example indicates al-
ready the most appropriate concept. For example, in Table 1,
“company” is both an appropriate concept and also an ob-
served instance for Employer FE. In this case, we avoid
conceptualizing it to business with high P (c|e)× P (e|c).

Otherwise (i.e., c �= e), with this edge score, we can give
low scores to concepts that are either too general or too spe-
cific. Table 3 contrasts the examples of the concepts ranked
by P (c|e), P (e|c), and P (c|e) × P (e|c), respectively. In
particular, for instance airplane, P (c|e) conceptualizes to
technology and place that are too general, and P (e|c) concep-
tualizes to bulk-carrying vehicle and real time system that are
too specific. On the other hand, P (c|e)×P (e|c) leads to more
appropriate concepts such as vehicle, aircraft, transportation,
and mobile source than P (c|e) and P (e|c).

After weighting edges, we add missing edges between
concept-instance, instance-instance, and concept-concept
pairs for considering full-dependence. More specifically,
three edge types are defined as: concept-instance, a(e, c),
instance-instance, a(ei, ej), and concept-concept, a(ci, cj).

The weight of a missing concept-instance edge, w(a(e, c)),
is computed as the average of instance neighbor similarity
and the edge weights between c and the instance neighbors
of e (Bliss et al. 2014) as:

w(a(e, c)) =

∑
ei∈nI (e) (w(a(e, ej)) × w(a(ei, c)))

|nI(e)| (6)

where |nI(e)| is the number of the instance neighbors of e in
the same cluster. The weight of a missing instance-instance
edge, w(a(ei, ej)), and a concept-concept edge, w(a(ci, cj)),

are computed as cosine similarity of their concept or instance
vectors (Adamic and Adar 2001):

w(a(ei, ej)) =

∑nI (e)
m=0 w(a(ei, cm)) × w(a(ej , cm))√
w(a(ei, cm))2 × √

w(a(ej , cm))2
(7)

w(a(ci, cj)) =

∑nI (e)
m=0 w(a(em, ci)) × w(a(em, cj))√
w(a(em, ci))2 × √

w(a(em, cj))2
(8)

For probability estimation, the edge weights are normalized
to sum to 1. Thus, the edge weights between two nodes
are used as the probability between them (e.g., P (e, c) =
w(a(e, c)), P (ei, ej) = w(a(ei, ej)), and P (ci, cj) =
w(a(ci, cj))).

Posterior Probability Estimation From each graph for
the cluster t with instances e ∈ U ′ and concepts c ∈ V ′,
we estimate the posterior probability of concept variable c
with considering neighborhoods of the concept. Formally, the
posterior probability, P (c, t), is computed as:

P (c, t) ∝
∏

ci∈V ′
Ψ1(c, ci)

∏
ei,ej∈U′

Ψ2(c, ei, ej) (9)

where Ψ1(·) and Ψ2(·) are potential functions.
Ψ1(c, ci) is defined as P (c, ci) on pairs of c and concept

neighbors ci, which considers concept-concept relationships.
For example, job and occupations are synonymous, and ob-
servations of an instance to these concepts can be aggregated,
to be more robust to missing observations. Ψ2(c, ei, ej) is
defined from 3-cliques having two instances and one concept.
A 3-clique of multiple instance has been considered as an ef-
fective approximation of disambiguated unit cluster (Bordag
2006), which we simulate as a 3-clique of multiple instances
sharing the common concept c, i.e., Ψ2(c, ei, ej).

For the posterior probability of c, while Bayes only uses
the relationships from concept to instance P (e|c), our model
uses the neighborhood relationships between variables.

Approximation of P (c, t) We approximate P (c, t) (Eq. 9)
to reduce computations for Ψ1(c, ci) and Ψ2(c, ei, ej).

Approximating Ψ1(c, ci): Since there are lots of concepts,
computing P (ci, cj) for every pair is expensive. We have
already clustered concept synonyms at Section 4.1. This
concept clustering reduces the number of concepts (49.5%
concepts are reduced) and obtains the accurate prior prob-
ability by merging observations of concept synonyms, e.g.,
n(police,{job, occupation, professional, worker}). After this
clustering, synonyms are aggregated (Fig. 3a), after which
Ψ1(c, ci) can be dropped.

Approximating Ψ2(c, ei, ej): We approximate the poten-
tial function Ψ2(c, ei, ej) as:

Ψ2(c, ei, ej) = P (ei, c) × P (ej , c) × P (ei, ej) (10)

This approximation aggregates the probabilities, P (ei, c),
P (ej , c), and P (ei, ej), of the edge weights of 3-cliques to
consider instance-instance and concept-instance pairs.

With this approximation, we finally define the concept
score for the whole given instances E by summation of prob-
abilities (Lioma 2008):

S(c, E) =
∑

(ei,ej ,c)∈t

Ψ2(c, ei, ej) (11)

We rank concepts by descending order of this score.
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Table 4: The 〈Frame, FE〉 pairs used for experiments.
Frame FE

ACTIVITY FINISH Time

APPLY HEAT Container

APPLY HEAT Heating instruments

ARREST Authorities

ATTENDING Agent

BRINGING Area

EMPLOYING Employee

EXPORTING Importing area

HUNTING Hunter

RIDE VEHICLE Vehicle

Table 5: The examples of annotator categories.
Category Frame FE Concept

Very ATTENDING Agent professional
typical APPLY HEAT Container cooking utensil

Typical
APPLY HEAT Container kitchen utensil

RIDE VEHICLE Vehicle mobile source

Related
BRINGING Area geographical feature

RIDE VEHICLE Vehicle machine

Unrelated
HUNTING Hunter book

EMPLOYING Employee movie

5 Experiments
This section validates our conceptualization and selectional
preference approaches using extensive experiments. All ex-
periments were carried out on a machine with a Intel Core i3
CPU processor at 3.07GHz and 4GB of DDR3 memory.

5.1 Conceptualization Evaluation
To validate the proposed conceptualization approach, this
section measures whether it can identify appropriate concepts
for an instance set of FEs. We report our experimental setup
and results.

Setup As conceptualization algorithms, we implement
the following approaches: Bayes, CL+Bayes (Sec. 3.2),
WordNet-based algorithm (Bryl et al. 2012), and Truss+MRF
(Sec. 4).

To run these conceptualization approaches on FrameNet
examples, we extract head words from instances in the
form of phrases by adopting a standard head word tech-
nique (Kawahara et al. 2014). For example, we extract “states”
from [The few states]Employer.

To evaluate these conceptualization results, we use two
human annotators to choose ten 〈frame, FE〉 pairs in Table 4
and to verify the top-N concepts ranked by each algorithm,
because obtaining all the ground-truth concepts from over 2
million concepts for FEs is non-trivial task. We let human
annotators to label the top-30 concepts ranked by each algo-
rithm into four categories: very typical, typical, related, and
unrelated, which have the scores, 1, 2/3, 1/3, and 0, respec-
tively. Table 5 shows examples of the concepts categorized
by the annotators.

With these human annotated scores as ground-truth,
we use the precision and recall of top-N concepts (Lee

et al. 2013): P@N = 1
N

∑N
i=1 scorei and R@N =

# very typical concepts in top-N
#very typical concepts in top-50 of the all algorithms where scorei is the
score of the ith concept.

Results Table 6 compares the precision and recall of
Truss+MRF with those of baselines. Truss+MRF achieves
the highest precision and recall for all N by consistently
achieving precision near 0.8. In human annotation, this score
corresponds to finding mostly “typical” or “very typical” con-
cepts. For example, for Vehicle FE, Truss+MRF extracts the
concepts related to vehicle such as vehicle, mobile source,
airborne vehicle, and transportation vehicle.

In contrast, the precision of CL+Bayes is lower than
Bayes, which is not consistent with (Song et al. 2011). We
find the reason is due to ambiguous instances, such as ap-
ple, often forming a singleton cluster. In our problem of
FE conceptualization with many terms, such ambiguous in-
stances are more likely to appear. Meanwhile, the recall of
WordNet is extremely low, due to sparseness of WordNet con-
cepts (Tonelli et al. 2012), which stops growing for N > 50.

In conclusion, Truss+MRF significantly outperforms
CL+Bayes in both efficiency and effectiveness: Truss+MRF
achieves 608.33 times speed-up ( 4.2 days

9.9 minutes ) and 0.479 im-
provement in precision and 0.184 in recall.

However, the quantitative accuracy analysis was limited
to 10 frames, as labeling process is labor-intensive, as sim-
ilarly decided in (Lee et al. 2013) and (Wang et al. 2015)
conducted similar evaluations restricted to 12 concepts and
six terms, respectively. We thus release our results for all
roles for qualitative evaluation of the results4.

5.2 Pseudo-disambiguation Evaluation
This section evaluates our conceptualization in the end task
of computing selectional preference.

Setup As selectional preference algorithms, we use the fol-
lowing two algorithms: topic model-based algorithm (Ritter,
Mausam, and Etzioni 2010)5 and our concept-based algo-
rithm. To evaluate selectional preference, a widely adopted
task has been a pseudo-disambiguation task use in (Erk 2007;
Ritter, Mausam, and Etzioni 2010) of automatically gen-
erating positive ground-truth using frequent co-occurring
instances from a corpus then negative ground-truth by
pairing with random instances. This evaluation is con-
ducted for two relation-argument pairs (relation, argsub)
and (relation, argobj) where argsub is the subject argument
and argobj is direct object argument of a relation relation
(i.e., verb). For example, for a given sentence “the few states
employed chemical weapons”, argsub is [the few states] and
argobj is [chemical weapons] of a relation employed. As the
corpus, we use the SemEval 2010 (task 10) dataset (Ruppen-
hofer et al. 2010) due to its high quality sentences used for a
gold standard dataset of semantic role labeling.

We report precision and recall:

4The entire results are released at http://karok.postech.ac.kr/
FEconceptualization.zip.

5This algorithm is downloaded from https://github.com/aritter/
LDA-SP
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Table 6: The average P@N and R@N over the FEs in Table 4.

Approach
Top-10 Top-20 Top-30 Top-40 Top-50

P@10 R@10 P@20 R@20 P@30 R@30 P@40 R@40 P@50 R@50
Bayes 0.640 0.091 0.558 0.146 0.516 0.200 0.492 0.275 0.455 0.317

CL+Bayes 0.393 0.074 0.342 0.104 0.341 0.146 0.307 0.172 0.303 0.210
WordNet 0.687 0.033 0.644 0.045 0.631 0.038 0.631 0.038 0.631 0.038

Truss+MRF 0.852 0.121 0.832 0.257 0.810 0.325 0.794 0.361 0.782 0.394

Table 7: Results of pseudo-disambiguation evaluation when
recall is 0.2, 0.3, and 0.6.

Approach
Recall = 0.2 Recall = 0.3 Recall = 0.6

Prec. Recall Prec. Recall Prec. Recall
Topic model 0.66 0.21 0.56 0.29 0.54 0.60

Ours 0.82 0.21 0.74 0.30 0.60 0.61

Precision = # positive instances labeled
# positive instances labeled+# negative instances labeled

and Recall = # positive instances labeled
# total positive instances .

In particular, for each verb, e.g., employ, we first identify
frames of corresponding frame (e.g., EMPLOYING and US-
ING). For computing plausibility score of argobj = weapon
for each FE, we compare its semantic similarity with FE sets
in the same role (using Eq. 11). We identify the frame with a
higher score as a potential match, and label positive (if score
is over threshold) and negative (otherwise).

Results Table 7 reports results for varying thresholds. Note
the accuracy of topic model is significantly lower than pub-
lished results in (Ritter, Mausam, and Etzioni 2010) due to
limited coverage in SemEval task with many named entities,
as also observed in Table 2. In contrast, our algorithm achieve
up to 0.18 in precision at the same recall.
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