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Abstract

Neural language models are a powerful tool to embed words
into semantic vector spaces. However, learning such mod-
els generally relies on the availability of abundant and di-
verse training examples. In highly specialised domains this
requirement may not be met due to difficulties in obtaining
a large corpus, or the limited range of expression in average
use. Such domains may encode prior knowledge about enti-
ties in a knowledge base or ontology. We propose a generative
model which integrates evidence from diverse data sources,
enabling the sharing of semantic information. We achieve
this by generalising the concept of co-occurrence from dis-
tributional semantics to include other relationships between
entities or words, which we model as affine transformations
on the embedding space. We demonstrate the effectiveness
of this approach by outperforming recent models on a link
prediction task and demonstrating its ability to profit from
partially or fully unobserved data training labels. We further
demonstrate the usefulness of learning from different data
sources with overlapping vocabularies.

Introduction1

A deep problem in natural language processing is to model
the semantic relatedness of words, drawing on evidence
from text and spoken language, as well as knowledge graphs
such as ontologies. A successful modelling approach is to
obtain an embedding of words into a metric space such that
semantic relatedness is reflected by closeness in this space.
One paradigm for obtaining this embedding is the neural
language model (Bengio et al. 2003), which traditionally
draws on local co-occurence statistics from sequences of
words (sentences) to obtain an encoding of words as vectors
in a space whose geometry respects linguistic and seman-
tic features. The core concept behind this procedure is the
distributional hypothesis of language; see Sahlgren (2008),
that semantics can be inferred by examining the context of
a word. This relies on the availability of a large corpus of
diverse sentences, such that a word’s typical context can be
accurately estimated.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A preliminary version of this work appeared at the Interna-
tional Workshop on Embeddings and Semantics at SEPLN 2015
(Hyland, Karaletsos, and Rätsch 2015).

In the age of web-scale data, there is abundant training
data available for such models in the case of generic lan-
guage. For specialised language domains this may not be
true. For example, medical text data (Liu et al. 2015) of-
ten contains protected health information, necessitating ac-
cess restrictions and potentially limiting corpus size to that
obtainable from a single institution, resulting in a corpus
with less than tens of millions of sentences, not billions as
in (for example) Google n-grams. In addition to this, spe-
cialised domains expect certain prior knowledge from the
reader. A doctor may never mention that anastrazole is a
aromatase inhibitor (a type of cancer drug), for example,
because they communicate sparsely, assuming the reader
shares their training in this terminology. In such cases, it is
likely that even larger quantities of data are required, but the
sensitive nature of such data makes this difficult to attain.

Fortunately, such specialised disciplines often create ex-
pressive ontologies, in the form of annotated relation-
ships between terms (denoted by underlines). These may
be semantic, such as dog is a type of animal, or derived
from domain-specific knowledge, such as anemia is an
associated disease of leukemia. (This is a relationship found
in the medical ontology system UMLS; see Bodenreider,
2004). We observe that these relationships can be thought
of as additional contexts from which co-occurrence statistics
can be drawn; the set of diseases associated with leukemia
arguably share a common context, even if they may not co-
occur in a sentence (see Figure 1).

We would like to use this structured information to im-
prove the quality of learned embeddings, to use their infor-
mation content to regularize the embedding space in cases
of low data abundance while obtaining an explicit repre-
sentation of these relationships in a vector space. We tackle
this by assuming that each relationship is an operator which
transforms words in a relationship-specific way. Intuitively,
the action of these operators is to distort the shape of the
space, effectively allowing words to have multiple represen-
tations without requiring a full set of parameters for each
possible sense.

The intended effect on the underlying (untransformed)
embedding is twofold: to encourage a solution which is more
sensitive to the domain than would be achieved using only
unstructured information and to use heterogeneous sources
of information to compensate for sparsity of data. In addition
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Figure 1: We unify structured and unstructured data sources
by considering functional (e.g. hyponymic) relationships to
be a form of co-occurrence, and considering sentence co-
occurrence to be another type of functional relationship.
Thus, our model is source-agnostic and uses true (S,R, T )
triples as evidence to obtain an embedding of entities and
relationships.

to this, since relationship operators can act on any part of the
space, by learning these functions we can apply them to any
word regardless of its source, allowing for link prediction on
new entities in a knowledge base.

While we do not attempt to model higher-order lan-
guage structure such as grammar and syntax, we consider
a generative model in which the distance between terms
in the embedded space describes the probability of their
co-occurrence under a given relationship. Through this, we
learn the joint distribution of all pairs in all relationships,
and can ask questions such as ‘What is the probability of
anemia appearing in a sentence with imatinib2?’, or ‘What
is the probability that anemia is a disease associated with
leukemia?’ This introduces flexibility for subsequent analy-
ses that require a generative approach.

This paper is laid out as follows: In Related Work, we
describe relevant prior work concerning embedding words
and relationships and place our contributions in context. In
Modelling, we describe in detail the probabilistic model and
our inference and learning strategy, including a link to code.
In Experiments, we show an array of experimental results
to quantitatively demonstrate different aspects of the model
on datasets using WordNet and Wikipedia sources in su-
pervised, semi-supervised and unsupervised settings, before
summarising our findings in the Discussion section.

Related Work

The task of finding continuous representation for elements
of language has been explored in great detail in recent and
less-recent years. Bengio et al. (2003) described a neural

2Imatinib is a tyrosine-kinase inhibitor used in the treatment of
chronic myelogenous leukemia.

architecture to predict the next word in a sequence, using
distributed representations to overcome the curse of dimen-
sionality. Since then, much work has been devoted to ob-
taining, understanding, and applying these distributed lan-
guage representations. One such model is word2vec of
Mikolov et al. (2013), which more explicitly relies on the
distributional hypothesis of semantics by attempting to pre-
dict the surrounding context of a word, either as a set of
neighbouring words (the skip-gram model) or as an av-
erage of its environment (continuous bag of words). We
note later in the model section that the idealised version
of skip-gram word2vec is a special case of our model
with one relationship; appears in a sentence with. In prac-
tice, word2vec uses a distinct objective function, replacing
the full softmax with an approximation intended to avoid
computing a normalising factor. We retain a probabilistic
interpretation by approximating gradients of the partition
function, allowing us to follow the true model gradient while
maintaining tractability. Furthermore, learning a joint distri-
bution facilitates imputation and generation of data, dealing
with missing data and making predictions using the model
itself. We note that a generative approach to language was
also explored by Andreas and Ghahramani (2013), but does
not concern relationships.

Relational data can also be used to learn distributed rep-
resentations of entities in knowledge graphs, entities which
may correspond to or can be mapped to words. A gen-
eral approach is to implicitly embed the graph structure
through vertex embeddings and rules (or transformations)
for traversing it. Bordes et al. (2011) scored the similarity
of entities under a given relationship by their distance after
transformation using pairs of relationship-specific matrices.
Socher et al. (2013) describe a neural network architecture
with a more complex scoring function, noting that the previ-
ous method does not allow for interactions between entities.
The TransE model of Bordes et al. (2013) (and extensions
such as Wang et al. (2014b), Fan et al. (2014), and Lin et al.
(2015)) represents relationships as translations, motivated
by the tree representation of hierarchical relationships, and
observations that linear composition of entities appears to
preserve semantic meaning (Mikolov et al. 2013). These ap-
proaches are uniquely concerned with relational data how-
ever, and do not consider distributional semantics from free
text. Faruqui et al. (2015) and Johansson and Nieto Piña
(2015) describe methods to modify pre-existing word em-
beddings to align them with evidence derived from a knowl-
edge base, although their models do not learn representa-
tions de novo.

Similar in spirit to our work is Weston et al. (2013), where
entities belonging to a structured database are identified in
unstructured (free) text in order to obtain embeddings useful
for relation prediction. However, they learn separate scoring
functions for each data source. This approach is also em-
ployed by Fried and Duh (2014), Xu et al. (2014), Yu and
Dredze (2014), and Wang et al. (2014a). In these cases, sepa-
rate objectives are used to incorporate different data sources,
combining (in the case of Xu et al. (2014)) the skip-gram
objective from Mikolov et al. (2013) and the TransE ob-
jective of Bordes et al. (2013). Our method uses a single
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energy function over the joint space of word pairs with rela-
tionships, combining the ‘distributional objective’ with that
of relational data by considering free-text co-occurrences as
another type of relationship.

We have mentioned several approaches to integrating
graphs into embedding procedures. While these graphs have
been derived from knowledge bases or ontologies, other
forms of graphs have also been exploited in related efforts,
for example using constituency trees to obtain sentence-level
embeddings (Tai, Socher, and Manning 2015).

The motivation for our work is similar in spirit to mul-
titask and transfer learning (for instance, Caruana (1997),
Evgeniou and Pontil (2004), or Widmer and Rätsch (2012)).
In transfer learning one takes advantage of data related to a
similar, typically supervised, learning task with the aim of
improving the accuracy of a specific learning task. In our
case, we have the unsupervised learning task of embedding
words and relationships into a vector space and would like
to use data from another task to improve the learned em-
beddings, here word co-occurrence relationships. This may
be understood as a case of unsupervised transfer learning,
which we tackle using a principled generative model.

Finally, we note that a recent extension of word2vec to
full sentences (Jernite, Rush, and Sontag 2015) using a fast
generative model exceeds the scope of our model in terms
of sentence modeling, but does not explicitly model latent
relationships or tackle transfer learning from heterogeneous
data sources.

Probabilistic Modelling of Words and

Relationships

We consider a probability distribution over triplets (S,R, T )
where S is the source word of the (possibly directional) re-
lationship R and T is the target word. Note that while we re-
fer to ‘words’, S and T could represent any entity between
which a relationship may hold without altering our math-
ematical formulation, and so could refer to multiple-word
entities (such as UMLS Concept Unique Identifiers) or even
non-lexical objects. Without loss of generality, we proceed
to refer to them as words. Following Mikolov et al. (2013),
we learn two representations for each word: cs represents
word s when it appears as a source, and vt for word t ap-
pearing as a target.3 Relationships act by altering cs through
their action on the vector space (cs �→ GRcs). By allowing
GR to be an arbitrary affine transformation, we combine the
bilinear form of Socher et al. (2013) with translation opera-
tors of Bordes et al. (2013).

The joint model is given by a Boltzmann probability den-

3Goldberg and Levy (2014) provide a motivation for using two
representations for each word. We can extend this by observing that
words with similar v representations share a paradigmatic relation-
ship in that they may be exchangeable in sentences, but do not tend
to co-occur. Conversely, words s and t with cs ≈ vt have a syn-
tagmatic relationship and tend to co-occur (e.g. Sahlgren (2008)).
Thus, we seek to enforce syntagmatic relationships and through
transitivity obtain paradigmatic relationships of v vectors.

sity function,

P (S,R, T |Θ) = 1
Z(Θ)e

−E(S,R,T |Θ)

= e−E(S,R,T |Θ)
∑

s,r,t e
−E(s,r,t|Θ) (1)

Here, the partition function is the normalisation factor
over the joint posterior space captured by the model pa-
rameters Z(Θ) =

∑
s,r,t e

−E(s,r,t|Θ). The parameters Θ
in this case are the representations of all words (both
as sources and targets) and relationship matrices; Θ =

{ci, Gr,vj , }r∈relationships
i,j∈vocabulary. If we choose an energy function

E(S,R, T |Θ) = −vT ·GRcS (2)
we observe that the |R| = 1, GR = I case recovers the orig-
inal softmax objective described in Mikolov et al. (2013),
so the idealised word2vec model is a special case of our
model.

This energy function is problematic however, as it can be
trivially minimised by making the norms of all vectors tend
to infinity. While the partition function provides a global reg-
ularizer, we find that it is not sufficient to avoid norm growth
during training. We therefore use as our energy function the
negative cosine similarity, which does not suffer this weak-
ness;4

E(S,R, T |Θ) = − vT ·GRcS
‖vT ‖‖GRcS‖ (3)

This is also a natural choice, as cosine similarity is the stan-
dard method for evaluating word vector similarities. Energy
minimisation is therefore equal to finding an embedding in
which the angle between related entities is minimised in an
appropriately transformed relational space. It would be sim-
ple to define a more complex energy function (using perhaps
splines) by choosing a different functional representation for
R, but we focus in this work on the affine case.

Inference and Learning We estimate our parameters Θ
from data using stochastic maximum likelihood on the joint
probability distribution. The maximum likelihood estimator
is:

Θ∗ = argmax P (D|Θ) = argmax
N∏
n

P ((S,R, T )n|Θ)

(4)
Considering the log-likelihood at a single training exam-

ple (S,R, T ) and taking the derivative with respect to pa-
rameters, we obtain:

∂ logP (S,R, T |Θ)

∂Θi
=

∂

∂Θi
[−E(S,R, T |Θ)]

− ∂

∂Θi

[
log

∑
s,r,t

e−E(S,R,T |Θ)

]

(5)
4We also considered an alternate, more symmetric energy func-

tion using the Frobenius norm of G;

E(S,R, T |Θ) = − vT ·GRcS
‖vT ‖‖GR‖F ‖cS‖

However, we found no clear empirical advantage to this choice.
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Given a smooth energy function the first term is easily
obtained, but the second term is problematic. This term,
derived from the partition function Z(Θ), is intractable to
evaluate in practice owing to its double sum over the size
of the vocabulary (potentially O(105)). In order to circum-
vent this intractability we resort to techniques used to train
Restricted Boltzmann Machines and use stochastic maxi-
mum likelihood, also known as persistent contrastive diver-
gence (PCD); (Tieleman 2008). In contrastive divergence,
the gradient of the partition function is estimated using sam-
ples drawn from the model distribution seeded at the current
training example (Hinton 2002). However, many rounds of
sampling may be required to obtain good samples. PCD re-
tains a persistent Markov chain of model samples across gra-
dient evaluations, assuming that the underlying distribution
changes slowly enough to allow the Markov chain chain to
mix. We use Gibbs sampling by iteratively using the condi-
tional distributions of all variables (S, R, and T , see below)
to obtain model samples.

In particular, we draw S, R and T from the conditional
probability distributions:

P (S|r, t; Θ) =
e−E(S,r,t|Θ)∑
s′ e

−E(s′,r,t|Θ)

P (R|s, t; Θ) =
e−E(s,R,t|Θ)∑
r′ e

−E(s,r′,t|Θ)

P (T |s, r; Θ) =
e−E(s,r,T |Θ)∑
t′ e

−E(s,r,t′|Θ)

(6)

Thereby, we can estimate the gradient of Z(Θ) at the cost of
these evaluations, which are linear in the size of the vocabu-
lary.

Using this, following the objective from (5) further sim-
plifies to a contrastive objective given a batch of B data sam-
ples and M model samples (each model sample obtained
from an independent, persistent Markov chain):

∂P (D|Θ)

∂Θi
� 1

M

M∑
m=1

[
∂E((S,R, T )m|Θ)

∂Θi

]

− 1

B

B∑
b=1

[
∂E((S,R, T )b|Θ)

∂Θi

] (7)

Interestingly, the model can gracefully deal with missing
elements in observed triplets (for instance missing observed
relationships). Learning is achieved by considering the par-
tially observed triple as a superposition of all possible com-
pletions of that triple, each weighted by its conditional prob-
ability given the observed elements, using (6). This produces
a gradient which is a weighted sum.

In the fully-observed case (which we sometimes call su-
pervised in an abuse of terminology), the weighting is sim-
ply a spike on the observed state. Similarly, the model can
predict missing values as a simple inference step. These
properties make having a joint distribution very attractive in
practical use, offsetting the conceptual difficulty of training.
In our experiments, we exploit these properties to do prin-
cipled semi-supervised and unsupervised learning with par-

tially observed or unobserved relationships without needing
an external noise distribution or further assumptions.

Implementation We provide the algorithm in Python
(https://github.com/corcra/bf2). Since most of its runtime
takes place in vector operations, we are developing a GPU-
optimised version. We use Adam (Kingma and Ba 2015)
to adapt learning rates and improve numerical stability. We
used the recommended hyperparameters from this paper;
λ = 1 − 10−8, ε = 1 − 10−8, β1 = 0.9, β2 = 0.999. Un-
less otherwise stated, hyperparameters specific to our model
were: dimension d = 100, batch size of B = 100, learning
rate for all parameter types of α = 0.001, and three rounds
of Gibbs sampling to obtain model samples.

Experiments

We will proceed to explore the model in five settings. First,
an entity vector embedding problem on WordNet which con-
sists of fully observed triplets of words and relationships.
In the second case we demonstrate the power of the semi-
supervised extension of the algorithm on the same task. We
then show that a) adding relationship data can lead to better
embeddings and b) that adding unstructured text can lead to
better relationship predictions. Finally, we demonstrate that
the algorithm can also identify latent relationships that lead
to better word embeddings.

Data As structured data, we use the WordNet dataset de-
scribed by Socher et al. (2013), available at http://stanford.
io/1IENOYH. This contains 38,588 words and 11 types of
relationships. Training data consists of true triples such as
(feeling, has instance, pride).

We derived an additional version of this dataset by strip-
ping sense IDs from the words, which reduced the vo-
cabulary to 33,330 words. We note that this procedure
likely makes prediction on this data more difficult, as ev-
ery word receives only one representation. We did this in
order to produce an aligned vocabulary with our unstruc-
tured data source, taken to be English Wikipedia (https://
dumps.wikimedia.org/, August 2014). We extracted text us-
ing WikiExtractor (http://bit.ly/1Imz1WJ). We greed-
ily identified WordNet 2-grams in the Wikipedia text. Two
words were considered in a sentence context if they ap-
peared within a five word window. Only pairs for which both
words appeared in the WordNet vocabulary were included.
We drew from a pool of 112,581 training triples in WordNet
with 11 relationships, and 8,206,304 triples from Wikipedia
(heavily sub-sampled, see experiments). To check that our
choice to strip sense IDs was valid, we also created a version
of the Wikipedia dataset where each word was tagged with
its most common sense from the WordNet training corpus.
We found that this did not significantly impact our results,
so we chose to continue with the sense-stripped version, pre-
ferring to collapse some WordNet identities over assigning
possibly-incorrect senses to words in Wikipedia.

WordNet Prediction Task We used our model to solve
the basic prediction task described in Socher et al. (2013). In
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this case, the model must differentiate true and false triples,
where false triples are obtained by corrupting the T entry
in the triple, e.g. (S,R, T ) → (S,R, T̃ ) (where (S,R, T̃ )
doesn’t appear in the training data). The ‘truth’ of a triple
is evaluated by its energy E(S,R, T ), with a relationship-
specific cut-off chosen by maximizing accuracy on a valida-
tion set (this is an equivalent procedure to the task as initially
described). By learning explicit representations of each of
the 38,588 entities in WordNet, our approach most closely
follows the ‘Entity Vector’ task in Socher et al. This is to
be contrasted with the ‘Word Vector’ task, where a represen-
tation is learned for each word, and entity representations
are obtained by averaging their word vectors. We elected
not to perform this task because we are not confident that
composition into phrases through averaging is well-justified.
Using the validation set to select an early stopping point
at 66 epochs, we obtain a test set accuracy of 78.2% with
an AUROC of 85.6%. The ‘Neural Tensor Model’ (NTN)
described in Socher et al. (2013) achieves an accuracy of
around 70% on this task, although we note that the sim-
pler Bilinear model also described in Socher et al. (2013)
achieves 74% and is closer to the energy function we em-
ploy. The improved performance exhibited by this simpler
Bilinear model was also noted by Yang et al. (2015). Other
baselines reported by Socher et al. were a single layer model
without an interaction term, a Hadamard model (Bordes et
al. 2012) and the model of Bordes et al. (2011) which learns
separate left and right relationship operators for each ele-
ment of the triple. These were outperformed by the Bilinear
and NTN models, see Figure 4 in Socher et al. (2013) for
further details. Hence, our model outperforms the two pre-
vious methods by more than 4%.

As a preliminary test of our model, we also considered the
FreeBase task described by Socher et al. (2013). Initial
testing yielded an accuracy of 85.7%, which is comparable
to the result of their best-performing model (NTN) of about
87%. We chose not to further explore this dataset however,
because its entities are mostly proper nouns and thus seemed
unlikely to benefit from additional semantic data.

Semi-supervised Learning for WordNet We next tested
the semi-supervised learning capabilities of our algorithm
(see Inference and Learning). For this we consider the same
task as before, but omit some label information in the train-
ing set and instead use posterior probabilities during the
inference. For this we trained our algorithm with a subset
of the training data (total 112,581 examples) and measured
the accuracy of classifying into true and false relationships
as before. The fully-observed case used only a subset of
fully-observed data (varying amounts as indicated on the
x-axis). For semi-supervised learning, we also used the re-
maining data, but masking the type of the relationship be-
tween pairs. In Figure 2 we report the accuracy for different
labelled/unlabelled fractions of otherwise the same dataset.
We find that the semi-supervised method consistently per-
forms better than the fully observed method for all analysed
training set sizes. In this and the previous experiment, one
Markov chain was used for PCD and a l2 regulariser on GR
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Figure 2: Semi-supervised learning improves learned em-
beddings: We tested the semi-supervised extension of our
approach on the entity relationship learning task described
in Socher et al. (2013) and previous subsection. Following
Socher et al., we predict if a triple (S,R, T ) is true by us-
ing its energy as a score. For this we trained our algorithm
with a subset of the training data (total 112,581 examples).
The fully-supervised version only used the subset of fully la-
belled data (varying amounts as indicated on the x-axis). For
semi-supervised learning, in addition we use the remaining
data but where the type of the relationship between pairs is
unknown. We find that the semi-supervised method consis-
tently performs better than the fully supervised method (see
main text for more details).

parameters with weight 0.01.

Adding Unstructured Data to a Relationship Prediction
Task To test how unstructured text data may improve a
prediction task when structured data is scarce, we aug-
mented a subsampled set of triples from WordNet with
10,000 examples from Wikipedia and varied the weight κ
associated with their gradients during learning. The task is
then to predict whether or not a given triple (S,R, T ) is a
true example from WordNet, as described previously. Fig-
ure 3 shows accuracy on this task as κ and the amount of
structured data vary. To find the improvement associated
with unstructured data, we compared accuracy at κ = 0
with κ = κ∗ (where κ∗ gave the highest accuracy on the
validation set; marked with ∗). We find that including free
text data quite consistently improves the classification accu-
racy, particularly when structured data is scarce.

In this experiment and all following, we used five Markov
chains for PCD and a l2 regulariser on all parameters with
weight 0.001.

Relationship Data for Improved Embeddings In this
case, we assume unstructured text data is restricted, and
vary the quantity of structured data. To evaluate the untrans-
formed embeddings, we use them as the inputs to a super-
vised multi-class classifier. The task for a given (S,R, T )
triple is to predict R given the vector formed by concatenat-
ing cS and vT . We use a random forest classifier trained on
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Figure 3: Unstructured data helps relationship learning:
In addition to training on a set of known relationships, we
use unstructured data from Wikipedia with varying weight
(x-axis) during training. As before, with the goal to predict
if a triple (S,R, T ) is true by using its energy as a score. A
validation set is used to determine the threshold below which
a triple is considered ‘true’. The solid line denotes the av-
erage of three independent experimental runs; shaded areas
show the range of results. The bar plot on the right shows the
difference in accuracy between κ = 0 and κ = κ∗, where κ∗
gave the highest accuracy on a validation set. Significance at
5% (paired t-test) is marked by asterisk. We find then that
unstructured Wikipedia can improve relationship learning in
cases when labelled relationship data is scarce.

the WordNet validation set using five-fold cross-validation.
To avoid testing on the training data (since the embed-

dings are obtained using the WordNet training set), we per-
form this procedure once for each relationship (11 times
- excluding appears in sentence with), each time removing
from the training data all triples containing that relation-
ship. Figure 4 shows the F1 score of the multi-class classi-
fier on the left-out relationship for different combinations of
data set sizes. We see that for most relationships, including
more unstructured data improves the embeddings (measured
by performance on this task). We also trained word2vec
(Mikolov et al. 2013) on a much larger Wikipedia-only
dataset (4,145,372 sentences) and trained a classifier on its
vectors; results are shown as black lines. We see that our
approach yields a consistently higher F1 score, suggesting
that even data about unrelated relationships provides infor-
mation to produce vectors that are semantically richer over-
all.

These results illustrate that embeddings learned from lim-
ited free text data can be improved by additional, unrelated
relationship data.

Unsupervised Learning Of Relationships In our final
experiment, we explore the ability of the model to learn em-
beddings from co-occurrence data alone, without specifying
the relationships it should use. When using the model with
just one relationship (trivially the identity), the model effec-
tively reverts to word2vec. However, if we add a budget
of relationships (in our experiments we use 1, 3, 5, 7, 11),
the model has additional parameters available to learn affine
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Figure 4: Relationship data improves learned em-
beddings: We apply our algorithm on a scarce set of
Wikipedia co-occurences (10k and 50k instances) with
varying amounts of additional, unrelated relationship data
(10k and 50k relations from WordNet). We test the quality
of the embedding by measuring the accuracy on a task
related to nine relationships (has instance, domain region,
subordinate instance of, member holonym, has part,
has part, part of, member meronym, synset domain topic,
type of; relationships similar to, domain topic were omitted
for technical reasons). We used eight of the relationships
together with the Wikipedia data to learn representations
that are then used in a subsequent supervised learning task
to predict the remaining ninth relationship based on the
representations using random forests. Black lines denote
results from word2vec trained on a Wikipedia-only
dataset with 4,145,372 sentences.

transformations of the space which can differentiate how
distances and meaning interact for the word embeddings
without fixing this a priori. Our intuition is that we want to
test whether textual context alone has substructure that we
can capture with latent variables. We generate a training set
of one million word co-occurrences from Wikipedia (using
a window size of 5 and restricting to words appearing in the
WordNet dataset, as described earlier), and train different
models for each number of latent relationships. Inspired by
earlier experiments testing the utility of supplanting Word-
Net training data with Wikipedia examples, we decide to
test the ability of a model purely trained on Wikipedia to
learn word and relationship representations which are pre-
dictive of WordNet triplets, without having seen any data
from WordNet. As a baseline we start with |R| = 1 to test
how well word embeddings from context alone can perform,
indicated by the leftmost bar in Figure 5. We then proceed to
train models with more latent relationships. We observe that,
especially for some relationship prediction tasks, including
this flexibility in the model produces a noticeable increase
in F1 score on this task. Since we evaluate the embeddings
alone, this effect must be due to a shift in the content of
these vectors, and cannot be explained by the additional
parameters introduced by the latent relationships. We note
that a consistent explanation for this phenomenon is that
the model discovers contextual subclasses which are indica-
tive of WordNet-type relationships. This observation opens
doors to further explorations of the hypothesis regarding
contextual subclasses and unsupervised relationships learn-
ing from different types of co-occurrence data.
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Figure 5: Unsupervised learning of latent relationships
improves embeddings: We train a fully unsupervised al-
gorithm with 1, 3, 5, 7 and 11 possible latent relationships
on one million Wikipedia sentences. Initialisation is at ran-
dom and without prior knowledge. To test the quality of the
resulting embeddings, we use supervised learning of nine
WordNet relationships with random forests. Depending on
the relationship at hand, the use of multiple latent relation-
ships during training leads to slightly, but consistently bet-
ter accuracies using the computed embeddings for every of
the nine relationships and also on average. Hence, the re-
sulting embeddings using unsupervisedly learned latent re-
lationships can be said to be of higher quality. Once again,
black lines show results using word2vec.

We note that we did not perform an exhaustive search of
the hyperparameter space; better settings may yet exist and
will be sought in future work. Nonetheless, although the ab-
solute improvement in F1 score yielded by this method is
modest, we are encouraged by the model’s ability to exploit
latent variables in this way.

Discussion

We have presented a probabilistic generative model of words
and relationships between them. By estimating the parame-
ters of this model through stochastic gradient descent, we
obtain vector and matrix representations of these words and
relationships respectively. To make learning tractable, we
use persistent contrastive divergence with Gibbs sampling
between entity types (S, R, T ) to approximate gradients of
the partition function. Our model uses an energy function
which contains the idealised word2vec model as a special
case. By augmenting the embedding space and considering
relationships as arbitrary affine transformations, we combine
benefits of previous models. In addition, our formulation as
a generative model is distinct and allows a more flexible use,
especially in the missing data, semi- and unsupervised set-
ting. Motivated by domain-settings in which structured or
unstructured data may be scarce, we illustrated how a model
that combines both data sources can improve the quality of
embeddings, supporting other findings in this direction.

A promising field of exploration for future work is a
more detailed treatment of relationships, perhaps general-
ising from affine transformations to include nonlinear maps.
Our choice of cosine similarity in the energy function can
also be developed, as we note that this function is insensitive
to very small deviations in angle, and may therefore produce
looser clusters of synonyms. Nonlinearity could also be in-

troduced in the energy, using for example splines. Further-
more, we intend to encode the capacity for richer transfer of
structured information from sources such as graphs as prior
knowledge into the model. Our current model can take ad-
vantage of local properties of graphs to that purpose, but has
no explicit encoding for nested and distributed relationships.

A limitation of our model is its conceptual inability to em-
bed whole sentences (which has been tackled by averaging
vectors in other work, but requires deeper investigation). Re-
current or more complex neural language models offer many
avenues to pursue as extensions for our model to tackle this.
A particularly interesting direction to achieve that would be
a combination with work such as (Jernite, Rush, and Sontag
2015), which could in principle be integrated with our model
to include relationships.

The intended future application of this model is ex-
ploratory semantic data analysis in domain-specific pools
of knowledge. We can do so by combining prior knowl-
edge with unstructured information to infer, for example,
new edges in knowledge graphs. A promising such field is
medical language processing, retrospective exploratory data
analysis may boost our understanding of the complex re-
lational mechanisms inherent in multimodal observations,
and specific medical knowledge in the form of (for exam-
ple) the UMLS can be used as a strong regulariser. Indeed,
initial experiments combining clinical text notes with re-
lational data between UMLS concepts from SemMedDB
(Kilicoglu et al. 2012) have demonsrated the utility of
this combined approach to predict the functional relation-
ship between medical concepts, for example, cisplatin
treats diabetes. We are in the process of expanding
this investigation.
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