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Abstract

We advance the state of the art in biomolecular interaction ex-
traction with three contributions: (i) We show that deep, Ab-
stract Meaning Representations (AMR) significantly improve
the accuracy of a biomolecular interaction extraction system
when compared to a baseline that relies solely on surface-
and syntax-based features; (ii) In contrast with previous ap-
proaches that infer relations on a sentence-by-sentence basis,
we expand our framework to enable consistent predictions
over sets of sentences (documents); (iii) We further modify
and expand a graph kernel learning framework to enable con-
current exploitation of automatically induced AMR (seman-
tic) and dependency structure (syntactic) representations. Our
experiments show that our approach yields interaction ex-
traction systems that are more robust in environments where
there is a significant mismatch between training and test con-
ditions.

1 Introduction

Recent advances in genomics and proteomics have signif-
icantly accelerated the rate of uncovering and accumulat-
ing new biomedical knowledge. Most of this knowledge
is available only via scientific publications, which neces-
sitates the development of automated and semi-automated
tools for extracting useful biomedical information from un-
structured text. In particular, there has been a significant
body of research on identifying biological entities (proteins,
genes, chemical compounds) and interactions between those
entities from bio-medical papers (Krallinger et al. 2008;
Hakenberg et al. 2008; Tikk et al. 2010; Bunescu et al.
2005). Despite the recent progress, current methods for
biomedical knowledge extraction suffer from a number of
important shortcomings. First of all, existing methods rely
heavily on shallow analysis techniques that severely limit
their scope. For instance, most existing approaches focus
on whether there is an interaction between a pair of pro-
teins while ignoring the interaction types (Airola et al. 2008;
Mooney and Bunescu 2005), whereas other more advanced
approaches cover only a small subset of all possible inter-
action types (Hunter et al. 2008; McDonald et al. 2005;
Demir et al. 2010). Second, most existing methods focus on

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

single-sentence extraction, which makes them very suscep-
tible to noise. And finally, owing to the enormous diversity
of research topics in biomedical literature and the high cost
of data annotation, there is often significant mismatch be-
tween training and testing corpora, which reflects poorly on
generalization ability of existing methods (Tikk et al. 2010).

In this paper, we present a novel algorithm for extract-
ing biomolecular interactions from unstructured text that
addresses the above challenges. Contrary to the previous
works, the extraction task considered here is less restricted
and spans a much more diverse corpus of biomedical arti-
cles. These more realistic settings present some important
technical problems for which we provide explicit solutions.

Our specific contributions are as follows:
• We propose a graph-kernel based algorithm for extracting

biomolecular interactions from Abstract Meaning Repre-
sentation, or AMR. To the best of our knowledge, this
is the first attempt of using deep semantic parsing for
biomedical knowledge extraction task.

• We provide a multi-sentence generalization of the algo-
rithm by defining Graph Distribution Kernels (GDK),
which enables us to perform document-level extraction.

• We suggest a hybrid extraction method that utilizes both
AMRs and syntactic parses given by Stanford Depen-
dency Graphs (SDGs). Toward this goal, we develop a
linear algebraic formulation for learning vector space em-
bedding of edge labels in AMRs and SDGs to define sim-
ilarity measures between AMRs and SDGs.
We conduct an exhaustive empirical evaluation of the pro-

posed extraction system on 45+ research articles on can-
cer (approximately 3k sentences), containing approximately
20,000 positive-negative labeled biomolecular interactions1.
Our results indicate that the joint extraction method that
leverages both AMRs and SDGs parses significantly im-
proves the extraction accuracy, and is more robust to mis-
match between training and test conditions.

2 Problem Statement

Consider the sentence “As a result, mutant Ras proteins ac-
cumulate with elevated GTP-bound proportion”, which de-

1The code and the data are available at https://github.com/
sgarg87/big mech isi gg
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State
change

inhibit, phosphorylate, signal, activate, transcript,
regulate, apoptose, express, translocate, degrade,
carboxymethylate, depalmitoylate, acetylate,
nitrosylate, farnesylate, methylate, glycosylate,
hydroxylate, ribosylate, sumoylate, ubiquitinate.

Bind bind, heterodimerize, homodimerize, dissociate.

Table 1: Interaction type examples

scribes a “binding” interaction between a protein “Ras” and
a small-molecule “GTP”. We want to extract this interaction.

In our representation, which is motivated by
BioPAX (Demir et al. 2010), an interaction refers to
either i) an entity effecting state change of another entity;
or ii) an entity binding/dissociating with another entity to
form/break a complex while, optionally, also influenced by
a third entity. An entity can be of any type existent in a bio
pathway, such as protein, complex, enzyme, etc, although
here we refer to an entity of all valid types simply as a
protein. The change in state of an entity or binding type is
simply termed as “interaction type” in this work. In some
cases, entities are capable of changing their state on their
own or bind to an instance of its own (self-interaction).
Such special cases are also included. Some examples of
interaction types are shown in Table 1.

Below we describe our approach for extracting above-
defined interactions from natural language parses of sen-
tences in a research document.

3 Extracting Interactions from an AMR

3.1 AMR Biomedical Corpus

Abstract Meaning Representation, or AMR, is a seman-
tic annotation of single/multiple sentences (Banarescu et
al. 2013). In contrast to syntactic parses, in AMR, entities
are identified, typed and their semantic roles are annotated.
AMR maps different syntactic constructs to same concep-
tual term. For instance, “binding”, “bound”, ”bond” corre-
spond to the same concept “bind-01”. Because one AMR
representation subsumes multiple syntactic representations,
we hypothesize that AMRs have higher utility for extracting
biomedical interactions.

We trained an English-to-AMR parser (Pust et al. 2015)
on two manually annotated corpora: i) a corpus of 17k gen-
eral domain sentences including newswire and web text as
published by the Linguistic Data Consortium; and ii) 3.4k
systems biology sentences, including in-domain PubMed-
Central papers and the BEL BioCreative corpus. As part
of building the bio-specific AMR corpus, we extended the
PropBank-based framesets used in AMR by 45 bio-specific
frames such as “phosphorylate-01”, “immunoblot-01” and
extended the list of AMR standard named entities by 15
types such as “enzyme”, “pathway”. It is important to note
that these extensions are not specific to biomolecular inter-
actions, and cover more general cancer biology concepts.

3.2 Extracting Interactions

Fig. 1 depicts a manual AMR annotation of a sentence,
which has two highlighted entity nodes with labels “RAS”

result-01

accumulate-01

ARG2

include-91

Ras enzyme

proportion
ARG3

ARG1

TOP

bind-01

mod
mutate-01

ARG1

GTP small-molecule

ARG1
ARG2

elevate-01

ARG1

ARG2

Ras enzyme

ARG1

Figure 1: AMR of text “As a result, mutant Ras proteins accumu-
late with elevated GTP-bound proportion.”; interaction “Ras binds
to GTP” is extracted from the colored sub-graph.

and “GTP”. These nodes also have entity type annotations,
“enzyme” and “small-molecule” respectively; the concept
node with a node label “bind-01” corresponds to an interac-
tion type “binding” (from the “GTP-bound” in the text). The
interaction “RAS-binds-GTP” is extracted from the high-
lighted subgraph under the “bind” node. In the subgraph,
relationship between the interaction node “bind-01” and the
entity nodes, “Ras” and “GTP”, is defined through two edges
with edge labels “ARG1” and “ARG2” respectively. Addi-
tionally, in the subgraph, we assign roles “interaction-type”,
“protein”, “protein” to the nodes “bind-01”, “Ras”, “GTP”
respectively (roles presented with different colors in the sub-
graph).

Given an AMR graph, as in Fig. 1, we first identify poten-
tial entity nodes (proteins, molecules, etc) and interaction
nodes (bind, activate, etc). Next, we consider all permuta-
tions to generate a set of potential interactions according to
the format defined above. For each candidate interaction, we
extract the corresponding shortest path subgraph. We then
project the subgraph to a tree structure 2 with the interaction
node as root and also possibly the protein nodes (entities in-
volved in the interaction) as leaves.

Our training set consists of tuples {Ga
i , Ii, li}ni=1, where

Ga
i is an AMR subgraph constructed such that it can repre-

sent an extracted candidate interaction Ii with interaction
node as root and proteins nodes as leaves typically; and
l = {0, 1} is a binary label indicating whether this subgraph
contains Ii or not. Given a training set, and a new sample
AMR subgraph Ga

∗ for interaction I∗, we would like to in-
fer whether I∗ is valid or not. We address this problem by
developing a graph-kernel based approach.

3.3 Semantic Embedding Based Graph Kernel

We propose an extension of the contiguous subtree ker-
nel (Zelenko, Aone, and Richardella 2003; Culotta and
Sorensen 2004) for mapping the extracted subgraphs (tree
structure) to an implicit feature space. Originally, this ker-
nel uses an identity function on two node labels when cal-
culating the similarity between those two nodes. We in-
stead propose to use vector space embedding of the node
labels (Clark 2014; Mikolov et al. 2013), and then de-
fine a sparse RBF kernel on the node label vectors. Simi-

2This can be done via so called inverse edge labels; see (Ba-
narescu et al. 2013, section 3).
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lar extensions of convolution kernels have been been sug-
gested previously(Mehdad, Moschitti, and Zanzotto 2010;
Srivastava, Hovy, and Hovy 2013).

Consider two graphs Gi and Gj rooted at nodes Gi.r and
Gj .r, respectively, and let Gi.c and Gj .c be the children
nodes of the corresponding root nodes. Then the kernel be-
tween Gi and Gj is defined as follows:

K(Gi, Gj) =

{
0 if k(i, j) = 0

k(i, j) +Kc(Gi.c, Gj .c) otherwise
,

where k(i, j) ≡ k(Gi.r, Gj .r) is the similarity between the
root nodes, whereas Kc(Gi.c, Gj .c) is the recursive part of
the kernel that measures the similarity of the children sub-
graphs. Furthermore, the similarity between root nodes x
and y is defined as follows:

k(x, y) = kw(x, y)
2(kw(x, y)

2 + ke(x, y) + kr(x, y))

kw(x, y) = exp((wT
xwy − 1)/β)((wT

xwy − α)/(1− α))+

ke(x, y) = I(ex = ey), kr(x, y) = I(rx = ry) .
(1)

Here (·)+ denotes the positive part; I(·) is the indicator func-
tion; wx,wy are unit vector embeddings of node labels 3;
ex, ey represent edge labels (label of an edge from a node’s
parent to it is the node’s edge label); rx, ry are roles of
nodes (such as protein, catalyst, concept, interaction-type);
α is a threshold parameter on the cosine similarity (wT

xwy)
to control sparsity (Gneiting 2002); and β is the bandwidth.

The recursive part of the kernel, Kc, is defined as follows:

Kc(Gi.c, Gj .c) =
∑

i,j:l(i)=l(j)

λl(i)
∑

s=1,··· ,l(i)
K(Gi[i[s]], Gj [j[s]])

∏
s=1,··· ,l(i)

k(Gi[i[s]].r, Gj [j[s]].r),

where i, j are contiguous children subsequences under the
respective root nodes Gi.r, Gj .r; λ ∈ (0, 1) is a tuning pa-
rameter; and l(i) is the length of sequence i = i1, · · · , il;
Gi[i[s]] is a sub-tree rooted at i[s] index child node of Gi.r.
Here, we propose to sort children of a node based on the cor-
responding edge labels. This helps in distinguishing between
two mirror image trees.

This extension is a valid kernel function (Zelenko, Aone,
and Richardella, Theorem 3, p. 1090). Next, we generalize
the dynamic programming approach of Zelenko, Aone, and
Richardella for efficient calculation of this extended kernel.

Dynamic programming for computing convolution
graph kernel In the convolution kernel presented above,
the main computational cost is due to comparison of chil-
dren sub-sequences. Since different children sub-sequences
of a given root node partially overlap with each other, one
can use dynamic programming to avoid redundant compu-
tations, thus reducing the cost. Toward this goal, we use the
following decomposition of the kernel Kc :

Kc(Gi.c, Gj .c) =
∑
p,q

Cp,q ,

3Learned using word2vec software (Mikolov et al. 2013) on
over one million PubMed articles.

where Cp,q refers to the similarity between sub-sequences
starting at indices p, q respectively in Gi.c and Gj .c.

To calculate Cp,q via dynamic programming, let us intro-
duce

Lp,q = max
l

( l∏
s=0

k(Gi[i[p+ s]].r, Gj [j[q + s]].r) �= 0

)
.

Furthermore, let us denote kp,q = k(Gi[i[p]].r, Gj [j[q]].r),
and Kp,q = K(Gi[i[p]], Gj [j[q]]). We then evaluate Cp,q in
a recursive manner using the following equations.

Lp,q =

{
0 if kp,q = 0

Lp+1,q+1 + 1 otherwise
(2)

Cp,q=

{
0 if kp,q = 0
λ(1−λL(p,q))

1−λ Kp,qkp,q + λCp+1,q+1 otherwise
(3)

Lm+1,n+1 = 0, Lm+1,n = 0, Lm,n+1 = 0

Cm+1,n+1 = 0, Cm+1,n = 0, Cm,n+1 = 0 ,
(4)

where m,n are number of children under the root nodes
Gi.r and Gj .r respectively.

Note that for graphs with cycles, the above dynamic pro-
gram can be transformed into a linear program.

There are a couple of practical considerations during the
kernel computations. First of all, the kernel depends on two
tunable parameters λ and α. Intuitively, decreasing λ dis-
counts the contributions of longer child sub-sequences. The
parameter α, on the other hand, controls the tradeoff be-
tween computational cost and accuracy. Based on some prior
tuning we found that our results are not very sensitive to the
parameters. In the experiments below we set λ = 0.99 and
α = 0.4. Also, consistent with previous studies, we nor-
malize the graph kernel (e.g., kernel similarity K(Gi, Gj) is
divided by the normalization term

√
K(Gi, Gi)K(Gj , Gj))

to increase accuracy.

4 Graph Distribution Kernel- GDK

Often an interaction is mentioned more than once in the
same research paper, which justifies a document-level ex-
traction, where one combines evidence from multiple sen-
tences. The prevailing approach to document-level extrac-
tion is to first perform inference at sentence level, and then
combine those inferences using some type of an aggregation
function for a final document-level inference (Skounakis
and Craven 2003; Bunescu et al. 2006). For instance, in
(Bunescu et al. 2006), the inference with the maximum score
is chosen. We term this baseline approach as “Maximum
Score Inference”, or MSI. Here we advocate a different ap-
proach, where one uses the evidences from multiple sen-
tences jointly, for a collective inference.

Let us assume an interaction Im is supported by km sen-
tences, and let {Gm1, · · · , Gmkm

} be the set of relevant
AMR subgraphs extracted from those sentences. We can
view the elements of this set as samples from some distribu-
tion over the graphs, which, with a slight abuse of notation,
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we denote as Gm. Consider now interactions I1, · · · , Ip, and
let G1, · · · ,Gp be graph distributions representing these in-
teractions.

The graph distribution kernel (GDK), K(Gi,Gj), for a pair
Gi,Gj is defined as follows:

K(Gi,Gj) = exp(−Dmm(Gi,Gj)); Dmm(Gi,Gj) =

ki∑
r,s=1

K(Gir, Gis)

k2i
+

kj∑
r,s=1

K(Gjr, Gjs)

k2j
− 2

ki,kj∑
r,s=1

K(Gir, Gjs)

kikj

Here Dmm is the Maximum Mean Discrepancy (MMD), a
valid l2 norm, between a pair of distributions Gi,Gj (Gret-
ton et al. 2012); K(., .) is the graph kernel defined in Sec-
tion 3.3 (though, not restricted to this specific kernel). As the
term suggests, maximum mean discrepancy represents the
discrepancy between the mean of graph kernel features (fea-
tures implied by kernels) in samples of distributions Gi and
Gj . Now, since Dmm is the l2 norm on the mean feature vec-
tors, K(Gp,Gq) is a valid kernel function.

We note that MMD metric has attracted a considerable
attention in the machine learning community recently (Gret-
ton et al. 2012; Kim and Pineau 2013; Pan, Kwok, and Yang
2008; Borgwardt et al. 2006). For our purpose, we prefer
using this divergence metric over others (such as KL-D di-
vergence) for the following reasons: i) Dmm(., .) is a “ker-
nel trick” based formulation, nicely fitting with our settings
since we do not have explicit features representation of the
graphs but only kernel density on the graph samples. Same
is true for KL-D estimation with kernel density method. ii)
Empirical estimate of Dmm(., .) is a valid l2 norm distance.
Therefore, it is straightforward to derive the graph distribu-
tion kernel K(Gi,Gj) from Dmm(Gi,Gj) using a function
such as RBF. This is not true for divergence metrics such
as KL-D, Renyi (Sutherland et al. 2012); iii) It is suitable
for compactly supported distributions (small number of sam-
ples) whereas methods, such as k-nearest neighbor estima-
tion of KL-D, are not suitable if the number of samples in a
distribution is too small (Wang, Kulkarni, and Verdú 2009);
iv) We have seen the most consistent results in our extraction
experiments using this metric as opposed to the others.

For the above mentioned reasons, here we focus on MMD
as our primary metric for computing similarities between
graph distributions. The proposed GDK framework, how-
ever, is very general and not limited to a specific metric.
Next, we briefly describe two other metrics that can be used
with GDK.

GDK with Kullback-Leibler divergence While MMD
represents maximum discrepancy between the mean features
of two distributions, the Kullback-Leibler divergence (KL-
D) is a more comprehensive (and fundamental) measure
of distance between two distributions4. For defining kernel
KKL in terms of KL-D, however, we have two challenges.
First of all, KL-D is not a symmetric function. This prob-
lem can be addressed by using a symmetric version of the

4Recall that the KL divergence between distributions p and q is
defined as DKL(p||q) = Ep(x)[log

p(x)
q(x)

]

distance in the RBF kernel,

KKL(Gi,Gj) = exp(−[DKL(Gi||Gj) +DKL(Gj ||Gi)])

where DKL(Gi||Gj) is the KL distance of the distribution
Gi w.r.t. the distribution Gj . And second, even the symmet-
ric combination of the divergences is not a valid Euclidian
distance. Hence, KKL is not guaranteed to be a positive
semi-definite function. This issue can be dealt in a practi-
cal manner as nicely discussed in (Sutherland et al. 2012).
Namely, having computed the Gram matrix using KKL, we
can project it onto a positive semi-definite one by using lin-
ear algebraic techniques, e.g., by discarding negative eigen-
values from the spectrum.

Since we do not know the true divergence, we ap-
proximate it with its empirical estimate from the data,
DKL(Gi||Gj) ≈ D̂KL(Gi||Gj). While there are different
approaches for estimating divergences from samples (Wang,
Kulkarni, and Verdú 2009), here we use kernel density esti-
mator as shown below:

D̂KL(Gi||Gj) =
1

ki

ki∑
r=1

log
1
ki

∑ki

s=1 K(Gir, Gis)

1
kj

∑kj

s=1 K(Gir, Gjs)

GDK with cross kernels Another simple way to evalu-
ate similarity between two distributions is to take the mean
of cross-kernel similarities between the corresponding two
sample sets:

K(Gi,Gj) =

ki,kj∑
r,s=1

K(Gir, Gjs)

kikj

Note that this metric looks quite similar to the MMD. As
demonstrated in our experiments, however, MMD does bet-
ter, presumably because it accounts for the mean kernel sim-
ilarity between samples of the same distribution.

Having defined the graph distribution kernel-GDK, K(., .),
our revised training set consists of tuples {Gi, Ii, li}ni=1 with
Ga

i1, · · · , Ga
iki

sample sub-graphs in Gi. For inferring an in-
teraction I∗, we evaluate GDK between a test distribution
G∗ and the train distributions {G1, · · · ,Gn}, from their cor-
responding sample sets. Then, one can apply any “kernel
trick” based classifier.

5 Cross Representation Similarity

In the previous section, we proposed a novel algorithm
for document-level extraction of interactions from AMRs.
Looking forward, we will see in our experiments (Section 6)
that AMRs yield better extraction accuracy compared to
SDGs. This result suggests that using deep semantic features
is very useful for the extraction task. On the other hand, the
accuracy of semantic (AMR) parsing is not as good as the
accuracy of shallow parsers like SDGs (Pust et al. 2015;
Flanigan et al. 2014; Wang, Berant, and Liang 2015; An-
dreas, Vlachos, and Clark 2013; Chen and Manning 2014).
Thus, one can ask whether the joint use of semantic (AMRs)
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Abstract Meaning Representation
(a / activate-01

:ARG0 (s / protein :name (n1 / name :op1 "RAS"))
:ARG1 (s / protein :name (n2 / name :op1 "B-RAF"))

Stanford Typed Dependency
nsubj(activates-2, RAS-1)
root(ROOT-0, activates-2)
acomp(activates-2, B-RAF-3)

Figure 2: AMR and SDG parses of “RAS activates B-RAF.”

and syntactic (SDGs) parses can improve extraction accu-
racy further.

There are some intuitive observations that justify the joint
approach: i) shallow syntactic parses may be sufficient for
correctly extracting a subset of interactions; ii) semantic
parsers might make mistakes that are avoidable in syntac-
tic ones. For instance, in machine translation based semantic
parsers (Pust et al. 2015; Andreas, Vlachos, and Clark 2013),
hallucinating phrasal translations may introduce an interac-
tion/protein in a parse that is non-existent in true semantics;
iii) over fit of syntactic/semantic parsers can vary from each
other in a test corpus depending upon the data used in their
independent trainings.

In this setting, in each evidence sentence, a candidate in-
teraction Ii is represented by a tuple Σi = {Ga

i , G
s
i} of

sub-graphs Ga
i and Gs

i which are constructed from AMR
and SDG parses of a sentence respectively. Our problem is
to classify the interaction jointly on features of both sub-
graphs. This can be further extended for the use of multi-
ple evidence sentences. We now argue that the graph-kernel
framework outlined above can be applied to this setting as
well, with some modifications.

Let Σi and Σj be two sets of points. To apply the frame-
work above, we need a valid kernel K(Σi,Σj) defined on
the joint space. One way of defining this kernel would be
using similarity measures between AMRs and SDGs sepa-
rately, and then combining them e.g., via linear combination.
However, here we advocate a different approach, where we
flatten the joint representation. Each candidate interaction
is represented as a set of two points in the same space. This
projection is a valid operation as long as we have a similarity
measure between Ga

i and Gs
i (correlation between the two

original dimensions). This is rather problematic since AMRs
and SDGs have non-overlapping edge labels (although the
space of node labels of both representations coincide). To
address this issue, for inducing this similarity measure, we
next develop our approach for edge-label vector space em-
bedding.

Let us understand what we mean by vector space embed-
ding of edge-labels. In Fig. 2, we have an AMR and a SDG
parse of “RAS activates B-RAF”. “ARG0” in the AMR and
“nsubj” in SDG are conveying that “RAS” is a catalyst of the
interaction “activation”; “ARG1” and “acomp” are meaning
that “B-RAF” is activated. In this sentence, “ARG0” and
“nsubj” are playing the same role though their higher dimen-
sional roles, across a diversity set of sentences, would vary.
Along these lines, we propose to embed these high dimen-
sional roles in a vector space, termed as “edge label vec-

tors”.

5.1 Consistency Equations for Edge Vectors

We now describe our unsupervised algorithm that learns
vector space embedding of edge labels. The algorithm works
by imposing linear consistency conditions on the word vec-
tor embeddings of node labels. While we describe the algo-
rithm using AMRs, it is directly applicable to SDGs as well.

Linear algebraic formulation In our formulation, we first
learn subspace embedding of edge labels (edge label matri-
ces) and then transform it into vectors by flattening. Let us
see the AMR in Fig. 2 again. We already have word vec-
tors embedding for terms “activate”, “RAS”, “B-RAF”, de-
noted as wactivate, wras, wbraf respectively; a word vector
wi ∈ R

m×1. Let embedding for edge labels “ARG0” and
“ARG1” be Aarg0, Aarg1; Ai ∈ R

m×m. In this AMR, we
define following linear algebraic equations.

wactivate = AT
arg0wras,wactivate = AT

arg1wbraf

AT
arg0wras = AT

arg1wbraf

The edge label matrices AT
arg0, AT

arg1 are linear transfor-
mations on the word vectors wras, wbraf , establishing lin-
ear consistencies between the word vectors along the edges.
One can define such a set of equations in each parent-
children nodes sub-graph in a given set of manually an-
notated AMRs (and so applies to SDGs independent of
AMRs). Along these lines, for a pair of edge labels i, j in
AMRs, we have generalized equations as below.

Y i = XiAi, Y j = XjAj , Z
ij
i Ai = Zij

j Aj

Here Ai,Aj are edge labels matrices. Considering ni oc-
currences of edge labels i, we correspondingly have word
vectors from the ni child node labels stacked as rows in ma-
trix Xi ∈ R

ni×m; and Y i ∈ R
ni×m from the parent node

labels. There would be a subset of instances, nij <= ni, nj

where edge labels i and j has same parent node (occur-
rence of pairwise relationship between i and j). This gives
Zij

i ∈ R
nij×m and Zij

j ∈ R
nij×m, subsets of word vec-

tors in Xi and Xj respectively (along rows). Along these
lines, neighborhood of edge label i is defined to be: N (i) :
j ∈ N (i) s.t. nij > 0. From the above pairwise linear con-
sistencies, we derive linear dependencies of an Ai with its
neighbors Aj : j ∈ N (i), while also applying least square
approximation.

XT
i Y i +

∑
j∈N (i)

Zij
i

T
Zij

j Aj = (XT
i Xi+

∑
j∈N (i)

Zij
i

T
Zij

i )Ai

Exploiting the block structure in the linear program, we
propose an algorithm that is a variant of “Gauss-Seidel”
method (Demmel 1997; Niethammer, De Pillis, and Varga
1984).

Algorithm 1 (a) Initialize:

A
(0)
i = (XT

i Xi)
−1XT

i Y i.
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(b) Iteratively update A
(t+1)
i until convergence:

A
(t+1)
i = B[XT

i Y i +
∑

j∈N (i)

Zij
i

T
Zij

j A
(t)
j ]

B = [XT
i Xi +

∑
j∈N (i)

Zij
i

T
Zij

i ]
−1

(c) Set the inverse edge label matrices:

Aiinv
= A−1

i .

Theorem 6.2 in (Demmel 1997)[p. 287, chapter 6] states that
the Gauss-Seidel method converges if the linear transforma-
tion matrix in a linear program is strictly row diagonal domi-
nant (Niethammer, De Pillis, and Varga 1984). In our formu-
lation, diagonal blocks dominate the non-diagonal ones row-
wise. Thus, Algorithm 1 should converge to an optimum.

Using Algorithm 1, we learned edge label matrices in
AMRs and SDGs independently on corresponding AMRs
and SDGs annotations from 2500 bio-sentences (high accu-
racy auto-parse for SDGs). Convergence was fast for both
AMRs and SDGs (log error drops from 10.14 to 10.02 for
AMRs, and from 30 to approx. 10 for SDGs).

Next, we flatten an edge label matrix Ai ∈ R
m×m to a

corresponding edge label vector 5 ei ∈ R
m2×1, and then

redefine ke(x, y) in (1) using the sparse RBF kernel.

ke(x, y) = exp
(
(eTx ey − 1)/β

) (
(eTx ey − α)/(1− α)

)
+

This redefinition enables to define kernel similarity between
AMRs and SDGs. One can either use our original formula-
tion where a single AMR/SDG sub-graph is classified us-
ing training sub-graphs from both AMRs and SDGs, and
then the inference with maximum score-MSI (Bunescu et
al. 2006) is chosen. Another option, preferable, is to con-
sider the set {Ga

i , G
s
i} as samples of a graph distribution

Gi representing an interaction Ii. Generalizing it further, Gi

has samples set {Ga
i1, · · · , Ga

ika
i
, Gs

i1, · · · , Gs
iks

i
}, contain-

ing kai , ksi number of sub-graphs in AMRs and SDGs re-
spectively from multiple sentences in a document, all for
classifying Ii. With this graph distribution representation,
we can apply our GDK from Section 4 and then infer using
a “kernel trick” based classifier. This final formulation gives
the best results in our experiments discussed next.

6 Experimental Evaluation

We evaluated the proposed algorithm on two data sets.
PubMed45: This dataset has 400 manual and 3k auto

parses of AMRs (and 3.4k auto parses of SDGs)6; AMRs
auto-parses are from 45 PubMed articles on cancer. From
the 3.4k AMRs, we extract 25k subgraphs representing 20k
interactions (valid/invalid); same applies to SDGs. This is
our primary data for the evaluation.

5alternatives for kernel directly on the matrices instead of the
flattening can be more accurate, that we plan to explore in the future

6not the same 2.5k sentences used in learning edge label vectors

We found that for both AMR and SGD based methods, a
part of the extraction error can be attributed to poor recogni-
tion of named entities. To minimize this effect, and to isolate
errors that are specific to the extraction methods themselves,
we follow the footsteps of the previous studies, and take a
filtered subset of the interactions (approx. 10k out of 20k).
We refer to this data subset as “PubMed45” and the super
set as “PubMed45-ERN” (for entity recognition noise).

AIMed: This is a publicly available dataset7, which con-
tains about 2000 sentences from 225 abstracts. In contrast to
PubMed45, this dataset is very limited as it describes only
whether a given pair of proteins interact or not, without spec-
ifying the interaction type. Nevertheless, we find it useful to
include this dataset in our evaluation since it enables us to
compare our results with other reported methods.

Evaluation settings In a typical evaluation scenario, val-
idation is performed by random sub-sampling of labeled
interactions (at sentence level) for a test subset, and using
the rest as a training set. This sentence-level validation ap-
proach is not always appropriate for extracting protein in-
teractions (Tikk et al. 2010), since interactions from a sin-
gle/multiple sentences in a document can be correlated. Such
correlations can lead to information leakage between train-
ing and test sets (artificial match, not encountered in real
settings). For instance, in (Mooney and Bunescu 2005), the
reported F1 score from the random validation in the AIMed
data is approx. 0.5. Our algorithm, even using SDGs, gives
0.66 F1 score in those settings. However, the performance
drops significantly when an independent test document is
processed. Therefore, for a realistic evaluation, we divide
data sets at documents level into approx. 10 subsets such that
there is minimal match between a subset, chosen as test set,
and the rest of sub sets used for training a kernel classifier.
In the PubMed45 data sets, the 45 articles are clustered into
11 subsets by clustering PubMed-Ids (training data also in-
cludes gold annotations). In AIMed, abstracts are clustered
into 10 subsets on abstract-ids. In each of 25 independent
test runs (5 for AIMed data) on a single test subset, 80%
interactions are randomly sub sampled from the test subset
and same percent from the train data.

For the classification, we use the LIBSVM implemen-
tation of Kernel Support Vector Machines (Chang and
Lin 2011) with the sklearn python wrapper 8. Specifi-
cally, we used settings { probability = True, C = 1,
class weight = auto}. In our data, we have a class “swap”
in addition to the two binary classes (“valid”, “invalid”). The
“swap” class means that an interaction is invalid as such but
swapping of entity roles in the interaction makes it valid. For
the analysis purpose however, we focus on F1 scores only for
the positive class, i.e. class “valid”.

7http://corpora.informatik.hu-berlin.de
8http://scikit-learn.org/stable/modules/generated/sklearn.svm.
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Methods PubMed45-ERN PubMed45 AIMed

SDG (SLI) 0.25± 0.16 0.32± 0.18 0.27± 0.12
(0.42, 0.29) (0.50, 0.35) (0.54, 0.22)

AMR (SLI) 0.33± 0.16 0.45± 0.25 0.39± 0.05
(0.33, 0.45) (0.58, 0.43) (0.53, 0.33)

SDG (MSI) 0.24± 0.14 0.33± 0.17 0.39± 0.09
(0.39, 0.28) (0.50, 0.34) (0.51, 0.38)

AMR (MSI) 0.32± 0.14 0.45± 0.24 0.51± 0.11
(0.30, 0.45) (0.56, 0.44) (0.49, 0.56)

SDG (GDK) 0.25± 0.16 0.38± 0.15 0.47± 0.08
(0.33, 0.31) (0.32, 0.61) (0.41, 0.58)

AMR (GDK) 0.35± 0.16 0.51± 0.23 0.51± 0.11
(0.31, 0.51) (0.59, 0.49) (0.43, 0.65)

AMR-SDG (MSI) 0.33± 0.18 0.47± 0.24 0.55 ± 0.09
(0.29, 0.54) (0.50, 0.53) (0.46, 0.73)

AMR-SDG (GDK) 0.38 ± 0.16 0.57 ± 0.23 0.52± 0.09
(0.33, 0.55) (0.63, 0.54) (0.43, 0.67)

Data Statistics

Positive ratio 0.07± 0.04 0.19± 0.14 0.37± 0.11
Train-Test Div. 0.014± 0.019 0.041± 0.069 0.005± 0.002

Table 2: F1 score statistics. “SLI” is sentence level inference;
“MSI” refers to maximum score inference at document level;
“GDK” denotes Graph distribution kernel based inference at doc-
ument level. Precision, recall statistics are presented as (mean-
precision, mean-recall) tuples.

6.1 Evaluation Results

We categorize all methods evaluated below as follows: i)
Sentence Level Inference-SLI 9; ii) document level using
Maximum Score Inference-MSI (Bunescu et al. 2006); and
iii) document-level inference on all the subgraphs using our
Graph Distribution Kernel (GDK). In each of the categories,
AMRs, SDGs are used independently, and then jointly. Edge
label vectors are used only when AMRs and SDGs are
jointly used, referred as “AMR-SDG”.

Table 2 shows the F1 score statistics for all the experi-
ments. In addition, the mean of precision and recall values
are presented as (precision, recall) tuples in the same table.
For most of the following discussion, we focus on F1 scores
only to keep the exposition simple.

Before going into detailed discussion of the results, we
make the following two observations. First, we can see that,
in all methods (including our GDK and baselines), we ob-
tain much better accuracy using AMRs compared to SDGs.
This result is remarkable, especially taking into account the
fact that the accuracy of semantic parsing is still significantly
lower when compared to syntactic parsing. And second, ob-
serve that the overall accuracy numbers are considerably
lower for the PubMed45-ERN data, compared to the filtered
data PubMed45.

Let us focus on document-level extraction using MSI. We
do not see much improvement in numbers compared to SLI
for our PubMed45 data. On the other hand, even this simple
MSI technique works for the restricted extraction settings in
the AIMed data. MSI works for AIMed data probably be-
cause there are multiple sub-graph evidences with varying

9Note that even for the sentence level inference, the training/test
division is done on document level.
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Figure 3: Comparison of extraction accuracy (F1 score)

interaction types (root node in subgraphs), even in a sin-
gle sentence, all representing same protein-protein pair in-
teraction. This high number of evidences at document level,
should give a boost in performance even using MSI.

Next, we consider document-level extraction using the
proposed GDK method with the MMD metric. Comparing
against the baseline SLI, we see a significant improvement
for all data sets and in both AMRs and SDGs (although the
improvement in PubMed45-ERN is relatively small). The
effect of the noise in entity recognition can be a possible rea-
son why GDK does not work so well in this data compared
to the other two data sets. Here, we also see that: a) GDK
method performs better than the document level baseline
MSI; and b) AMRs perform better than SDGs with GDK
method also.

Let us now consider the results of extraction using both
AMRs and SDGs jointly. Here we evaluate MSI and GDK,
both using our edge label vectors. Our primary observa-
tion here is that the joint inference using both AMRs and
SDGs improves the extraction accuracy across all datasets.
Furthremore, in both PubMed45 datasets, the proposed
GDK method is a more suitable choice for the joint infer-
ence on AMRs and SDGs. As we can see, comparing to
GDK for AMRs only, F1 points increment from 0.35 to 0.38
for the PubMed45-ERN data, and from 0.51 to 0.57 for the
PubMed45 data. For the AIMed dataset, on the other hand,
the best result (F1 score of 0.55) is obtained when one uses
the baseline MSI for the joint inference on AMRs and SDGs.

To get more insights, we now consider (mean-precision,
mean-recall) tuples shown in the Table 2. The general trend
is that the AMRs lead to higher recall compared to the
SDGs. In the PubMed45-ERN data set, this increase in the
recall is at cost of a drop in the precision values. Since the
entity types are noisy in this data set, this drop in the preci-
sion numbers is not completely surprising (note that the F1
scores still increase). With the use of the GDK method in the
same data set, however, the precision drop (SDGs to AMRs)
becomes negligible, while the recall still increases signifi-
cantly. In the data set PubMed45 (the one without noise in
the entity types), both the precision and recall are generally
higher for the AMRs compared to the SDGs. Again, there
is an exception for the GDK approach, for which the recall
decreases slightly. However, the corresponding precision al-
most doubles.
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MMD KL-D CK

SDG 0.25± 0.16 0.21± 0.17 0.26± 0.13
(0.33, 0.31) (0.59, 0.21) (0.29, 0.38)

AMR 0.35± 0.16 0.37± 0.17 0.29± 0.13
(0.31, 0.51) (0.50, 0.41) (0.28, 0.39)

Table 3: Comparison of F1 scores for different divergence met-
rics used with GDK. The evaluation is on PubMed45-ERN dataset.
“KL-D” and “CK” stand for Kullback-Leibler divergence and
Cross Kernels, respectively.

For a more fine-grained comparison between the meth-
ods, we plot F1 score for each individual test set in Fig. 3.
Here, we compare the baselines, “AMR (MSI)”, “SDG
(MSI)” against the “AMR-SDG (GDK)” in our data (and,
“AMR-SDG (MSI)” for “AIMed”). We see a general trend,
across all test subsets, of AMRs being more accurate than
SDGs and the joint use of two improving even upon AMRs.
Though, there are some exceptions where the difference is
marginal between the three. In our cross checking, we find
that such exceptions are when there is relatively more infor-
mation leakage between train-test, i.e. less train-test diver-
gence. We use Maximum Mean Discrepancy-MMD for eval-
uating this train-test divergence (originally used for defining
GDK in Section 4. We find that our GDK technique is more
suitable when MMD > 0.01 (MMD is normalized metric
for a normalized graph kernel).

The results for the GDK method described above are spe-
cific to the MMD metric. We also evaluated GDK using
two other metrics (KL-D and cross kernels), specifically on
“PubMed45-ERN” dataset, as presented in Table 3. Here,
as in Table 2, we also present (mean-precision, mean-recall)
tuples. We can see that MMD and KL-D metrics, both, per-
form equally well for AMR whereas MMD does better in
case of SDG. CK (cross kernels), which is a relatively naive
approach, also performs reasonably well, although for the
AMRs it performs worse compared to MMD and KL-D. For
the precision and recall numbers in the Table 3, we see sim-
ilar trends as reported in Table 2. We observe that the re-
call numbers increase for the AMRs compared to the SDGs
(the metric CK is an exception with negligible increase).
Also, comparing KL-D against MMD, we see the former
favors (significantly) higher precision, albeit at the expense
of lower recall values.

7 Related Work

There have been different lines of work for extracting
protein extractions. Pattern-matching based systems (either
manual or semi-automated) usually yield high precision
but low recall (Hunter et al. 2008; Krallinger et al. 2008;
Hakenberg et al. 2008; Hahn and Surdeanu 2015). Kernel-
based methods based on various convolution kernels have
also been developed for the extraction task (Tikk et al. 2010;
Airola et al. 2008; Mooney and Bunescu 2005). Some ap-
proaches work on string rather than parses (Mooney and
Bunescu 2005). The above mentioned works either rely on
text or its shallow parses, none using semantic parsing for

the extraction task. Also, most works consider only protein-
protein interactions while ignoring interaction types. Some
recent works used distant supervision to obtain a large data
set of protein-protein pairs for their experiments (Mallory et
al. 2015).

Document-level extraction has been explored in the
past (Skounakis and Craven 2003; Bunescu et al. 2006).
These works classify at sentence level and then combine the
inferences whereas we propose to infer jointly on all the sen-
tences at document level.

Previously, the idea of linear relational embedding has
been explored in (Paccanaro and Hinton 2000), where triples
of concepts and relation types between those concepts are
(jointly) embedded in some latent space. Neural networks
have also been employed for joint embedding (Bordes et al.
2014). Here we advocate for a factored embedding where
concepts (node labels) are embedded first using plain text,
and then relations (edge labels) are embedded in a linear
sub-space.

8 Conclusion

In summary, we have developed and validated a method for
extracting biomolecular interactions that, for the first time,
uses deep semantic parses of biomedical text (AMRs). We
have presented a novel algorithm, which relies on Graph
Distribution Kernels (GDK) for document-level extraction
of interactions from a set of AMRs in a document. GDK can
operate on both AMR and SDG parses of sentences jointly.
The rationale behind this hybrid approach is that while nei-
ther parsing is perfect, their combination can yield superior
results. Indeed, our experimental results suggest that the pro-
posed approach outperforms the baselines, especially in the
practically relevant scenario when there is a noticeable mis-
match between the training and test sets.

To facilitate the joint approach, we have proposed a novel
edge vector space embedding method to assess similarity be-
tween different types of parses. We believe this notion of
edge-similarly is quite general and will have applicability
for a wider class of problems involving graph kernels. As
a future work, we intend to validate this framework on a
number of problems such as improving accuracy in AMRs
parsing with SDGs.
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