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Abstract

Distributional hypothesis lies in the root of most existing
word representation models by inferring word meaning from
its external contexts. However, distributional models cannot
handle rare and morphologically complex words very well
and fail to identify some fine-grained linguistic regularity as
they are ignoring the word forms. On the contrary, morphol-
ogy points out that words are built from some basic units, i.e.,
morphemes. Therefore, the meaning and function of such rare
words can be inferred from the words sharing the same mor-
phemes, and many syntactic relations can be directly iden-
tified based on the word forms. However, the limitation of
morphology is that it cannot infer the relationship between
two words that do not share any morphemes. Considering
the advantages and limitations of both approaches, we pro-
pose two novel models to build better word representations
by modeling both external contexts and internal morphemes
in a jointly predictive way, called BEING and SEING. These
two models can also be extended to learn phrase represen-
tations according to the distributed morphology theory. We
evaluate the proposed models on similarity tasks and analogy
tasks. The results demonstrate that the proposed models can
outperform state-of-the-art models significantly on both word
and phrase representation learning.

Introduction

Representing words as dense, real-valued vectors in a rela-
tively low-dimensional space, called distributed word rep-
resentations, has attracted a huge spike of interest in re-
cent years. These vectors have been widely used in var-
ious natural language processing tasks, e.g., named en-
tity recognition (Collobert et al. 2011), question answer-
ing (Zhou et al. 2015), and parsing (Socher et al. 2011).
Building such representations follows the well-known lin-
guistic principle—Distributional Hypothesis (Harris 1954;
Firth 1957), which states that words occurring in similar
contexts tend to have similar meanings.

However, reliable distributional vectors can be learned
only for words that occur in plenty external contexts in
the corpus. Therefore, the rare words, e.g., morphologically
complex words or new words, are often poorly represented.
Even for the frequent words, distributional hypothesis may
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meet its own difficulty in identifying fine-grained linguistic
regularity. For example, there are some words that are very
difficult to differentiate from external contexts, like “buy”
and “sell”. This may further make distributional semantic
models difficult to answer the similarity question, such as
which word is more close to “buy”, “buys” or “sells”?

In fact, this question is not difficult to answer if we
take the internal structures of words into account. This in-
volves another important research field in linguistics, Mor-
phology. It studies how words are built from morphemes,
the smallest grammatical (or meaningful) unit in a lan-
guage, such as root, prefix, and suffix. In morphology, there
also exists an underlying distributional principle of seman-
tics, which states that words contain the same morphemes
may convey similar meaning or function (Williams 1981;
Bybee 1985). Therefore, one can infer the meaning of word
“breakable” by its root “break” and suffix “able”, and ac-
complish the analogy task “breakable to break as doable to
do” simply based on their word forms. However, the limi-
tation of morphology is that it cannot infer the relationship
between two words that do not share any morphemes, like
“dog” and “husky”, even though they might be related.

In short, distributional hypothesis infers the word mean-
ing from its external context, while morphology infers the
word meaning from its internal forms. Both have their own
advantages and limitations. It is natural to seek a way to in-
tegrate these two sources to obtain better word representa-
tions.

In this work, we propose two simple and general models
to integrate both external contexts and internal morphemes
to learn better word representations, called BEING and SE-
ING. The proposed models are built on the basis of Contin-
uous Bag-of-Words (CBOW) model and Skip-Gram (SG)
model (Mikolov et al. 2013a) due to the efficiency con-
cern. In a nutshell, we view the two sources, i.e., inter-
nal morphemes and external contexts, equivalently in in-
ferring word representations, and model them in a gen-
eral predictive way. Comparing with the word representa-
tion models which rely on context information alone, e.g.,
word2vec and GloVe, our models can capture the rela-
tionships among morphologically related words, rather than
treating each word as an independent entity. As a result,
the proposed models can alleviate the sparsity problem and
learn the rare words much better. Comparing with those
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compositional models which also leverage morphological
and context information (Luong, Socher, and Manning 2013;
Botha and Blunsom 2014), our simple predictive models can
avoid the errors accumulated in the sophisticated usage of
the morphological information.

Moreover, according to the theory of distributed morphol-
ogy (Halle and Marantz 1993), there is no divide between
the construction of complex words and complex phrases.
Based on this idea, our models can be easily extended to the
learning of phrase representations, by viewing constituting
words in a phrase as its morphemes.

We evaluate our models on both word representations and
phrase representations. For word representation learning, we
evaluate the learned representations on two tasks, word sim-
ilarity and word analogy. The results show that the proposed
models outperform not only the widely-used state-of-the-art
methods, but also other models which used morphological
information. For phrase representation learning, we evalu-
ated our models on the phrase analogy task introduced in
(Mikolov et al. 2013b). The results show that our models
significantly outperform all the baselines.

Related Work

Distributional Hypothesis

Representing words as continuous vectors in a low-
dimensional space can go back decades ago (Hinton, Mc-
Clelland, and Rumelhart 1986). Building such representa-
tions follows the distributional hypothesis, stating that words
in similar contexts have similar meanings. Based on this
hypothesis, various methods have been developed in the
NLP community, including clustering (Brown et al. 1992),
matrix factorization (Deerwester et al. 1990; Pennington,
Socher, and Manning 2014), probabilistic models (Blei, Ng,
and Jordan 2003), and neural networks (Bengio et al. 2003;
Collobert and Weston 2008). Inspired by the success in neu-
ral network language modeling, there has been a flurry of
subsequent work, which explored various neural network
structures and optimization methods to learn word repre-
sentations, including (Collobert and Weston 2008; Mikolov
et al. 2013a; Mnih and Kavukcuoglu 2013; Mikolov et al.
2013b). Among these methods, the state-of-the-art meth-
ods are continuous bag-of-words model (CBOW) and Skip-
Gram (SG) model introduced by Mikolov et al. (2013a), be-
cause of their simplicity, efficiency, and scalability.

Morphology

There is another line of research attempts to leverage sub-
word units information for better word representations.

Alexandrescu and Kirchhoff (2006) proposed a factored
neural language model. In that model, each word is viewed
as a vector of fixed number of features like stems, morpho-
logical tags, and capitalization. Collobert et al. (2011) tried
to enhance their word vectors using extra character-level fea-
tures such as capitalization and part-of-speech (POS).

Some work tries to uncover morphological composition-
ality. Lazaridou et al. (2013) explored compositional Dis-
tributional Semantic Models (cDSMs) with different com-
positional methods to derive the representations of morpho-

logically complex words. However, their models can only
combine a stem with an affix. Luong, Socher, and Man-
ning (2013) proposed a context-sensitive morphological Re-
cursive Neural Network (csmRNN) to model morphological
structure of words in the neural language model training ap-
proach proposed by (Collobert et al. 2011). Botha and Blun-
som (2014) integrated compositional morphological repre-
sentations into a log-bilinear language model (CLBL++).
Generally, these works make use of the morphological in-
formation in a sophisticated way in order to build a neu-
ral language model. However, several recent works have
shown that simple and straightforward models can acquire
better word representations (Mikolov et al. 2013a; Penning-
ton, Socher, and Manning 2014).

To the best of our knowledge, the most closest work
to ours are (Qiu et al. 2014; Chen et al. 2015). Qiu et
al. (2014) enhanced CBOW with the contexts’ morphemes,
named MorphemeCBOW. Chen et al. (2015) adopted similar
models to learn Chinese character and word representations.
However, they did not capture the interaction between the
words and their morphemes. On the contrary, our proposed
models directly capture such interaction in a predictive way.

Our Models

In this section, we will introduce two simple and general
model integrating both external and internal information.
Without loss of generality, we will take word representation
learning for an example to introduce our models. Besides,
we also show how these models can be employed to learn
phrase representations.

Notation

We first list the notations used in this paper. Let
C={w1, . . . , wN} denote a corpus of N word sequence over
the word vocabulary W . The external contexts for word
wi∈W (i.e., i-th word in corpus) are the words surround-
ing it in an l-sized window (ci−l, . . . , ci−1, ci+1, . . . , ci+l),
where cj ∈ C, j ∈ [i− l, i+ l]. The internal morphemes for
word wi are denoted by (m

(1)
i , . . . ,m

(s(wi))
i ), where s(wi)

is the number of morphemes for wi. Each word w ∈ W ,
context c ∈ C, and morpheme m ∈ M are associated with
vectors #‰w ∈ R

d, #‰c ∈ R
d, and #‰m ∈ R

d respectively, where
d is the representation dimensionality. In this paper, #‰x de-
notes the vector of the variable x unless otherwise specified.
The entries in the vectors are parameters to be learned.

Continuous Bag of External and Internal Gram
Model

The architecture of the first proposed model is shown in Fig-
ure 1. In this model, a target word is predicted by its sur-
rounding context, as well as the morphemes it contains. To
illustrate it, we take a word sequence “. . . glass is breakable,
take care . . .” for an example. For the target word “break-
able”, the external context words (“glass”, “is”, “take”, and
“care”) are used to predict it. Such prediction task captures
the distributional hypothesis, since words with similar con-
text tend to have similar vectors. Besides, the morphemes for
word “breakable” (i.e., “break” and “able”) are also used to
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Figure 1: The framework for BEING model.

predict it. This prediction task captures the morphological
relation, since words sharing the same morphemes tend to
have similar vectors. We call this model the Continuous Bag
of External and INternal Gram (BEING) model.

Formally, given a corpus C, the goal of BEING model is
to maximize the following objective function:

L =

N∑
i=1

(
log p(wi|Pc

i ) + log p(wi|Pm
i )

)

where Pc
i and Pm

i denote the projection of wi’s external
contexts and internal morphemes, respectively.

We use softmax function to define the probabilities
p(wi|Pc

i ) and p(wi|Pm
i ) as follows:

p(wi|Pc
i ) =

exp( # ‰wi · #  ‰Pc
i )∑

w∈W exp( #‰w · #  ‰Pc
i )

p(wi|Pm
i ) =

exp( # ‰wi · #    ‰Pm
i )∑

w∈W exp( #‰w · #    ‰Pm
i )

where
#  ‰Pc
i and

#    ‰Pm
i denote the projected vectors of wi’s ex-

ternal contexts and internal morphemes, respectively. They
are defined as:

#  ‰Pc
i = hc(

#    ‰ci−l, . . . ,
#     ‰ci−1,

#     ‰ci+1, . . . ,
#    ‰ci+l )

#    ‰Pm
i = hm

( #      ‰

m
(1)
i , . . . ,

#               ‰

m
(s(wi))
i

)
where hc(·) and hm(·) can be sum, average, concatenate or
max pooling of context vectors. In this paper, we use average
for both of them, as that in word2vec tool.

We adopt the negative sampling technique (Mikolov et al.
2013b) to learn the model, due to the high computational
complexity of the original objective function. The nega-
tive sampling actually defines an alternate training objective
function as follows:

L =

N∑
i=1

(
log σ( # ‰wi · #  ‰Pc

i ) + k·Ew̃∼PW̃
log σ(− #‰

w̃ · #  ‰Pc
i )

+ log σ( # ‰wi · #    ‰Pm
i ) + k·Ew̃∼PW̃

log σ(− #‰
w̃ · #    ‰Pm

i )
)
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Figure 2: The framework for SEING model.

where σ(x) = 1/(1+exp(−x)), k is the number of negative
samples, w̃ denotes the sampled negative word (i.e., random
sampled word which is not relevant with current contexts),
and PW̃ denotes the distribution of negative word samples.
The noise distribution is set the same as that of (Mikolov
et al. 2013a), pW̃ (w) ∝ #(w)0.75, where #(w) means the
number of word w appearing in corpus C.

Continuous Skip External and Internal Gram
Model

We also extend the Skip-Gram model to integrate both ex-
ternal contexts and internal morphemes, as shown in Fig-
ure 2. We name it the Continuous Skip External and INternal
Gram (SEING) model. In this model, the target word is
used to predict its surrounding external context words, as
well as the morphemes it contains. For the word sequence
“. . . glass is breakable, take care . . .”, the center word
“breakable” needs to predict not only external context words
(“glass”, “is”, “take”, and “care”), but also its morphemes
(i.e., “break” and “able”).

Formally, the goal of SEING model is to maximize the
following objective function:

L =

N∑
i=1

( i+l∑
j=i−l
j �=i

log p(cj |wi) +

s(wi)∑
z=1

log p(m
(z)
i |wi)

)

where p(cj |wi) and p(m
(z)
i |wi) are defined by softmax func-

tion as follows:

p(cj |wi) =
exp( #‰cj · # ‰wi)∑
c∈C exp( #‰c · # ‰wi)

p(m
(z)
i |wi) =

exp(
#      ‰

m
(z)
i · # ‰wi)∑

m∈M exp( #‰m · # ‰wi)

We also adopt negative sampling to learn this model. As
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a result, it defines an alternate objective function as follows:

L=
N∑
i=1

( i+l∑
j=i−l
j �=i

(
log σ( #‰cj · # ‰wi) + k·Ec̃∼PC̃

log σ(− #‰
c̃ · # ‰wi)

)

+

s(wi)∑
z=1

(
log σ(

#      ‰

m
(z)
i · # ‰wi)+k·Em̃∼PM̃

logσ(− #‰
m̃· # ‰wi)

))

where c̃ and m̃ denote the sampled negative context and
morpheme, respectively; PC̃ and PM̃ denote the noise dis-
tribution of contexts and morphemes, respectively.

Optimization

Following the optimization scheme used in (Mikolov et al.
2013b), we use stochastic gradient descent (SGD) for op-
timization, and adopt the same linear learning rate schedule
described in (Mikolov et al. 2013a). Gradients are calculated
via back-propagation algorithm. Both word and morpheme
vectors are initialized randomly using the same scheme as in
Word2Vec and GloVe.

Phrase Representation

The basic principle of distributed morphology is that both
phrases and words are assembled by the single generative
engine (the syntax). This means that there is no difference
between the construction of words and phrases. Therefore,
we can easily apply our models to phrase representations
through viewing constituting words in a phrase as its mor-
phemes.

More specifically, in phrase representation learning, the
objective function of BEING is defined as follows:

L =

N∑
i=1

(
log σ( #‰gi· #  ‰Pc

i )+k·Eg̃∼PG̃
log σ(− #‰

g̃ · #  ‰Pc
i )

+ log σ( #‰gi· #   ‰Pw
i ) + k·Eg̃∼PG̃

log σ(− #‰
g̃ · #   ‰Pw

i )
)

where #‰gi denotes the vector of target phrase gi, g̃ denotes the
sampled negative phrase,

#  ‰Pc
i and

#   ‰Pw
i denote the projection

vectors of gi’s external contexts and internal words respec-
tively, and PG̃ denotes the distribution of negative phrase
samples.

The objective function of SEING in phrase representation
learning is defined as follows:

L=
N∑
i=1

( i+l∑
j=i−l
j �=i

(
log σ( #‰cj · #‰gi)+k·Ec̃∼PC̃

log σ(−#‰
c̃ · #‰gi)

)

+

s(gi)∑
z=1

(
log σ(

#     ‰

w
(z)
i · #‰gi)+k·Ew̃∼PW̃

log σ(− #‰
w̃· #‰gi)

))

where cj and w
(z)
i denote external context and internal word

of phrase gi, s(gi) is the number of words that gi contains, c̃
and w̃ denote the sampled negative external context and in-
ternal word respectively, PC̃ and PW̃ denote the noise distri-
bution of external contexts and internal words, respectively.

Experiments

Experimental Settings

We choose the Wikipedia April 2010 dump1 (Shaoul and
Westbury 2010), which has been widely used by (Huang
et al. 2012; Luong, Socher, and Manning 2013; Neelakan-
tan et al. 2014), as the corpus to train all the models2. The
corpus contains 3,035,070 articles and about 1 billion to-
kens. In preprocessing, we lowercase the corpus, remove
pure digit words and non-English characters. During train-
ing, the words occurring less than 20 times are ignored, re-
sulting in a vocabulary of 388,723 words. We obtain mor-
phemes for words in the vocabulary by an unsupervised
morphological segmentation toolkit, named Morfessor
(Creutz and Lagus 2007), which was also used in (Luong,
Socher, and Manning 2013; Botha and Blunsom 2014; Qiu
et al. 2014). Following the practice in (Mikolov et al. 2013b;
Pennington, Socher, and Manning 2014), we set context
window size as 10 and use 10 negative samples.

We compare our models3 with two classes of baselines:

• Models also using morphological information including
csmRNN (Luong, Socher, and Manning 2013), Morphe-
meCBOW (Qiu et al. 2014), and CLBL++ (Botha and
Blunsom 2014).

• State-of-the-art word representation models including
CBOW, SG (Mikolov et al. 2013a), and GloVe (Penning-
ton, Socher, and Manning 2014).

For csmRNN, we use the word vectors provided by the
authors, including HSMN+csmRNN and C&W+csmRNN4

that use the HSMN and C&W vectors as the initialization.
For MorphemeCBOW and CLBL++, we just take the results
reported in (Botha and Blunsom 2014; Qiu et al. 2014) since
they do not release the code or word vectors. For CBOW,
SG5, and GloVe6, we use the tools released by the authors.
They are trained on the same corpus with the same setting
as our models for fair comparison.

Word Similarity

To see whether integrating external contexts and internal
morphemes improves the quality of rare word vectors, we
first evaluate the proposed models on the English rare word
(RW) testset (Luong, Socher, and Manning 2013). It consists
of 2034 word pairs together with human assigned similar-
ity scores, and contains more morphological complex words
than other word similarity testsets. We also evaluate our
models on a variety of well-known standard testsets includ-
ing WordSim-353 (WS-353) (Finkelstein et al. 2002) and
SimLex-999 (SL-999) (Hill, Reichart, and Korhonen 2014).

1http://www.psych.ualberta.ca/∼westburylab/downloads/westb
urylab.wikicorp.download.html

2Morfessor is also trained on this corpus.
3The source code and word vectors can be downloaded at http:

//ofey.me/projects/InsideOut/.
4http://stanford.edu/∼lmthang/morphoNLM/
5https://code.google.com/p/word2vec/
6http://nlp.stanford.edu/projects/glove/
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Table 1: Spearman rank correlation ρ×100 on word similar-
ity tasks. Bold scores are the best within groups of the same
dimensionality.

Model Dim RW WS-353 SL-999
HSMN+csmRNN 50 22.31 64.48 17.29
C&W+csmRNN 50 34.36 58.81 24.0
CLBL++ 50 30 39 ——
MorphemeCBOW 50 32.88 65.19 ——
GloVe 50 30.57 55.48 25.28
CBOW 50 40.65 64.47 30.87
SG 50 39.57 65.30 27.66
BEING 50 45.92 67.57 32.14

SEING 50 42.08 67.85 29.36
GloVe 300 34.13 59.18 32.35
CBOW 300 45.19 67.21 38.82
SG 300 45.55 70.74 36.07
BEING 300 50.41 73.36 44.91

SEING 300 46.86 72.09 38.93

We employ the spearman rank correlation between the hu-
man judgements and the similarity scores based on learned
word vectors as evaluation metric.

Result Table 1 shows the results on three different word
similarity testsets. As we can see that CBOW and SG are
much stronger baselines, comparing with compositional lan-
guage models using morphological information like csm-
RNN and CLBL++. This once again confirms that simple
model directly learning word representations can derive bet-
ter word representations.

Moreover, our models, especially BEING, outperform
these state-of-the-art methods on all three testsets. On WS-
353 and SL-999, the proposed models perform consistently
better than other baselines, showing that they can also learn
better representations for common words. All these results
suggest that modeling both external contexts and internal
morphemes in a jointly predictive way can derive better
word representations.

Word Analogy

Besides the word similarity task, we also evaluate our mod-
els on word analogy task. This task, introduced by (Mikolov
et al. 2013a), is to evaluate the linguistic regularities between
pairs of word vectors. The task consists of questions like
“a is to b as c is to ”, where is missing and must be
inferred from the entire vocabulary. The testset contains 5
types of semantic analogies and 9 types of syntactic analo-
gies7. The semantic analogy contains 8869 questions, typ-
ically about people and place like “Athens is to Greece as
Paris is to France”, while the syntactic analogy contains
10,675 questions, mostly on forms of adjectives or verb
tense, such as “calm is to calmly as quiet to quietly”.

To answer such questions, one needs to find a word vector
#‰x , which is the closest to

#‰

b − #‰a + #‰c according to the cosine

7http://code.google.com/p/word2vec/source/browse/trunk/ques
tions-words.txt

Table 2: Results on the word analogy task. Bold scores are
the best within groups of the same dimension.

Model Dim Semantic Syntactic Total
HSMN+csmRNN 50 5.06 9.36 7.41
C&W+csmRNN 50 9.21 12.34 10.93
GloVe 50 56.6 43.53 49.46
CBOW 50 60.86 50.55 55.23
SG 50 50.27 43.93 46.81
BEING 50 63.67 56.76 59.90

SEING 50 50.92 49.06 49.90
GloVe 300 79.85 61.15 69.64
CBOW 300 79.65 68.54 73.58
SG 300 77.16 65.31 70.69
BEING 300 81.95 73.17 77.15

SEING 300 79.07 70.26 74.26

similarity:

arg max
x∈W,x �=a
x �=b, x �=c

cos(
#‰

b− #‰a+ #‰c , #‰x )

The question is regarded as answered correctly only if x is
exactly the answer word in the evaluation set. We use the
percentage of questions answered correctly as the evaluation
metric for this task.

Result Table 2 shows the results on word analogy task
including semantic, syntactic, and total precision. Firstly, we
can observe that csmRNN performs much poorer than other
models, while CBOW, SG, and GloVe solve the analogy task
pretty well. This is consistent with the explanation of Arora
et al. (2015), that simple loglinear models like Skip Gram or
GloVe can capture linear linguistic regularities. Moreover,
our BEING model performs significantly better than these
state-of-the-art methods.

The results of MorphemeCBOW are absent since the au-
thors reported the word analogy results on enwiki9 cor-
pus8 instead of entire Wikipedia corpus. Therefore, we test
BEING on enwiki9 corpus using the same setting as Mor-
phemeCBOW, and get a total precision of 60.23% on 300-
dimensional representations, while the best precision of
MorphemeCBOW is only 41.96%.

Besides, the results show our models can gain more im-
provement on syntactic subtask than semantic subtask. This
is because morphemes can strengthen the inference on syn-
tactic analogy task, such as “great to greatest as cool to
coolest”.

We also present the precision of syntactic analogies dis-
covered in 300-dimensional vectors of each model in Ta-
ble 3, which is broken down by relation type. Clearly, BE-
ING and SEING perform significantly better than CBOW
and SG on almost all subtasks (except adjective-to-adverb).
For adjectives-to-adverbs relation, it contains lots of words
wrongly segmented by Morfessor. For example, “luckily”
is segmented to “lucki” + “ly”, however its root should be
“lucky”. Our models failed in this subtask, since they cannot
correctly connect the word “luckily” and “lucky” with such

8http://mattmahoney.net/dc/textdata.html
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Table 3: Breakdown of syntactic analogy in each represen-
tation by relation type.

Syntactic Subtask CBOW BEING SG SEING
adjective-to-adverb 31.85 26.51 38.10 37.20
opposite 34.73 45.07 30.79 39.16

comparative 88.14 91.82 79.58 83.93

superlative 61.14 71.30 48.31 61.94

present-participle 67.23 67.42 62.59 66.67

nationality-adjective 90.18 91.56 90.24 90.68

past-tense 66.86 69.17 61.28 64.94

plural 81.91 86.86 82.21 84.53

plural-verbs 65.86 85.86 67.47 81.26

wrong morphemes. In the future, we will tackle this problem
by segmenting words into morphemes via a dictionary, like
root method in MorphemeCBOW.

Phrase Analogy

We also conduct experiments to test our models’ ability on
learning phrase representations. To learn vector representa-
tion for phrases, we first identify phrases (1–4 grams) in the
Wikipedia April 2010 corpus following the idea introduced
by (Mikolov et al. 2013b), and then train our models and
baselines on this new corpus with the same setting as in word
tasks. As a result, we obtain the representations of 799,805
phrases for each model.

We evaluate the quality of the phrase representations us-
ing the phrase analogy task introduced in (Mikolov et al.
2013b). The testset contains 3218 questions like “boston is
to boston bruins as los angeles is to los angeles kings”.

Result Figure 3 shows the results on phrase analogy task
with different dimensions from 50 to 400. The figure shows
that our models, especially SEING model, perform signifi-
cantly better than all the other baselines on all the dimen-
sions. The best result reported earlier was 72% achieved
by 1000-dimensional vectors of skip-gram model trained
on a dataset with about 33 billion words using the hierar-
chical softmax (Mikolov et al. 2013b), while our SEING
model outperforms it using 300-dimensional representations
trained on 1 billion words. This is a promising result, indi-
cating that those models based solely on external contexts
can benefit a lot from internal information.

Discussion

Comprehensively observing the results of word and phrase
tasks, some trends emerge: 1) BEING and CBOW are supe-
rior in the word tasks, while SEING and SG are superior in
the phrase tasks; 2) Compared with their sub-models, BE-
ING gains more in word tasks, while SEING has a better
margin on phrase task. Next, we try to explain these phe-
nomena from the perspective of matrix factorization.

Following the idea introduced in (Levy and Goldberg
2014), CBOW and SG using negative sampling can be seen
as factorizing the terms-by-n-terms and terms-by-terms co-
occurrence matrix respectively, where term can be word or
phrase. Meanwhile, SEING (or BEING) with negative sam-
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Figure 3: Results on the phrase analogy task.

pling can be seen as co-factorizing both a terms-by-terms
(or terms-by-n-terms) co-occurrence matrix and a terms-by-
morphemes (or terms-by-n-morphemes) co-occurrence ma-
trix simultaneously.

From the perspective of matrix factorization, given the
vocabulary, CBOW will outperform SG when the corpus is
sufficient, since n-terms can provide more expressive power.
And yet, CBOW will also confront with more serious spar-
sity problem than SG when the corpus is not big enough for
the vocabulary. This is the reason why CBOW can outper-
form SG on word tasks but fail on phrase task, considering
we use the same corpus but the vocabulary with the twice
size on phrase task. It also explains why SEING improves
SG with a larger margin on phrase task but improves not
much on word tasks comparing with BEING.

Conclusion and Future Work

In this paper, we propose two novel models to build bet-
ter word representations by modeling both external contexts
and internal morphemes in a jointly predictive way. The ex-
perimental results on both word similarity tasks and word
analogy tasks show that our models perform not only signif-
icantly better than state-of-the-art models that do not inte-
grate morphological information, but also much better than
other models also using morphological information.

Several directions remain to be explored. Although this
paper focuses on English, our models deserve to be applied
to other morphologically rich languages such as French and
Turkish. Considering morphemes (words) are used as sub-
unit for words (phrases) in this work, other more general
sub-unit will be an interesting way to explore, like letter n-
gram (Huang et al. 2013).
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