
Text Matching as Image Recognition

Liang Pang∗, Yanyan Lan†, Jiafeng Guo†,
Jun Xu†, Shengxian Wan∗, and Xueqi Cheng†

CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

∗{pangliang,wanshengxian}@software.ict.ac.cn, †{lanyanyan,guojiafeng,junxu,cxq}@ict.ac.cn

Abstract

Matching two texts is a fundamental problem in many
natural language processing tasks. An effective way is
to extract meaningful matching patterns from words,
phrases, and sentences to produce the matching score.
Inspired by the success of convolutional neural network
in image recognition, where neurons can capture many
complicated patterns based on the extracted elementary
visual patterns such as oriented edges and corners, we
propose to model text matching as the problem of image
recognition. Firstly, a matching matrix whose entries
represent the similarities between words is constructed
and viewed as an image. Then a convolutional neural
network is utilized to capture rich matching patterns in
a layer-by-layer way. We show that by resembling the
compositional hierarchies of patterns in image recogni-
tion, our model can successfully identify salient signals
such as n-gram and n-term matchings. Experimental re-
sults demonstrate its superiority against the baselines.

Introduction

Matching two texts is central to many natural language
applications, such as machine translation (Brown et al.
1993), question and answering (Xue, Jeon, and Croft 2008),
paraphrase identification (Socher et al. 2011) and docu-
ment retrieval (Li and Xu 2014). Given two texts T1 =
(w1, w2, . . . , wm) and T2 = (v1, v2, . . . , vn), the degree of
matching is typically measured as a score produced by a
scoring function on the representation of each text:

match(T1, T2) = F
(
Φ(T1),Φ(T2)

)
, (1)

where wi and vj denotes the i-th and j-th word in T1 and
T2, respectively. Φ is a function to map each text to a vector,
and F is the scoring function for modeling the interactions
between them.

A successful matching algorithm needs to capture the rich
interaction structures in the matching process. Taking the
task of paraphrase identification for example, given the fol-
lowing two texts:

T1 : Down the ages noodles and dumplings were famous
Chinese food.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

T2 : Down the ages dumplings and noodles were popular in
China.

We can see that the interaction structures are of different
levels, from words, phrases to sentences. Firstly, there are
many word level matching signals, including identical word
matching between “down” in T1 and “down” in T2, and sim-
ilar word matching between “famous” in T1 and “popular”
in T2. These signals compose phrase level matching sig-
nals, including n-gram matching between “down the ages”
in T1 and “down the ages” in T2, unordered n-term match-
ing between “noodles and dumplings” in T1 and “dumplings
and noodles” in T2, and semantic n-term matching between
“were famous Chinese food” in T1 and “were popular in
China” in T2. They further form sentence level matching sig-
nals, which are critical for determining the matching degree
of T1 and T2. How to automatically find and utilize these
hierarchical interaction patterns remains a challenging prob-
lem.

In image recognition, it has been widely observed that
the convolutional neural network (CNN) (LeCun et al. 1998;
Simard, Steinkraus, and Platt 2003) can successfully abstract
visual patterns from raw pixels with layer-by-layer compo-
sition (Girshick et al. 2014). Inspired by this observation, we
propose to view text matching as image recognition and use
CNN to solve the above problem. Specifically, we first con-
struct a word level similarity matrix, namely matching ma-
trix, to capture the basic word level matching signals. The
matching matrix can be viewed as: 1) a binary image if we
define the similarity to be 0-1, indicating whether the two
corresponding words are identical; 2) a gray image if we de-
fine the similarity to be real valued, which can be achieved
by calculating the cosine or inner product based on the word
embeddings. Then we apply a convolutional neural network
on this matrix. Meaningful matching patterns such as n-gram
and n-term can therefore be fully captured within this ar-
chitecture. We can see that our model takes text matching
as a multi-level abstraction of interaction patterns between
words, phrases and sentences, with a layer-by-layer archi-
tecture, so we name it MatchPyramid.

The experiments on the task of paraphrase identification
show that MatchPyramid (with 0-1 matching matrix) out-
performs the baselines, by solely leveraging interactions be-
tween texts. While for other tasks such as paper citation
matching, where semantic is somehow important, Match-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2793

Pyramid (with real-valued matching matrix) performs the
best by considering both interactions and semantic represen-
tations.

Contributions of this paper include: 1) a novel view of
text matching as image recognition; 2) the proposal of a new
deep architecture based on the matching matrix, which can
capture the rich matching patterns at different levels, from
words, phrases, to the whole sentences; 3) experimental
analysis on different tasks to demonstrate the superior power
of the proposed architecture against competitor matching al-
gorithms.

Motivation
It has been widely recognized that making a good match-
ing decision requires to take into account the rich interaction
structures in the text matching process, starting from the in-
teractions between words, to various matching patterns in
the phrases and the whole sentences. Taking the aforemen-
tioned two sentences as an example, the interaction struc-
tures are of different levels, as illustrated in Figure 1.

Figure 1: An example of interaction structures in paraphrase
identification.

Word Level Matching Signals refer to matchings be-
tween words in the two texts, including not only iden-
tical word matchings, such as “down–down”, “the–the”,
“ages–ages”, “noodles–noodles”, “and–and”,“dumplings–
dumplings” and “were–were”, but also similar word match-
ings, such as “famous–popular” and “chinese–china”.

Phrase Level Matching Signals refer to matchings be-
tween phrases, including n-gram and n-term. N-gram match-
ing occurs with n exactly matched successive words, e.g.
“(down the ages)–(down the ages)”. While n-term matching
allows for order or semantic alternatives, e.g. “(noodles and
dumplings)–(dumplings and noodles)”, and “(were famous
chinese food)–(were popular in china)”.

Sentence Level Matching Signals refer to matchings be-
tween sentences, which are composed of multiple lower
level matching signals, e.g. the three successive phrase level
matchings mentioned above. When we consider matchings
between paragraphs that contain multiple sentences, the
whole paragraph will be viewed as a long sentence and the
same composition strategy would generate paragraph level
matching signals.

To sum up, the interaction structures are compositional
hierarchies, in which higher level signals are obtained by
composing lower level ones. This is similar to image recog-
nition. In an image, raw pixels provide basic units of the
image, and each patch may contain some elementary visual
features such as oriented edges and corners. Local combina-
tions of edges form motifs, motifs assemble into parts, and
parts form objects. We give an example to show the relation-
ships between text matching and image recognition (Jia et al.
2014), as illustrated in Figure 2. In the area of image recog-
nition, CNN has been recognized as one the most successful

way to capture different levels of patterns in image (Zeiler
and Fergus 2014). Therefore, it inspires us to transform text
matching to image recognition and employ CNN to solve it.
However, the representations of text and image are so dif-
ferent that it remains a challenging problem to perform such
transformation.

MatchPyramid

In this section we introduce a new deep architecture for
text matching, namely MatchPyramid. The main idea comes
from modeling text matching as image recognition, by tak-
ing the matching matrix as an image, as illustrated in Fig-
ure 3.

Matching Matrix: Bridging the Gap between Text
Matching and Image Recognition

As discussed before, one challenging problem by modeling
text matching as image recognition lies in the different rep-
resentations of text and image: the former are two 1D (one-
dimensional) word sequences while the latter is typically a
2D pixel grid. To address this issue, we represent the input
of text matching as a matching matrix M, with each ele-
ment Mij standing for the basic interaction, i.e. similarity
between word wi and vj (see Eq. 2). Here for convenience,
wi and vj denotes the i-th and j-th word in two texts re-
spectively, and ⊗ stands for a general operator to obtain the
similarity.

Mij = wi ⊗ vj . (2)
In this way, we can view the matching matrix M as an im-
age, where each entry (i.e. the similarity between two words)
stands for the corresponding pixel value. We can adopt dif-
ferent kinds of ⊗ to model the interactions between two
words, leading to different kinds of raw images. In this pa-
per, we give three examples as follows.

Indicator Function produces either 1 or 0 to indicate
whether two words are identical.

Mij = I{wi=vj} =

{
1, if wi = vj

0, otherwise.
(3)

One limitation of the indicator function is that it cannot
capture the semantic matching between similar words. To
tackle this problem, we define ⊗ based on word embed-
dings, which will make the matrix more flexible to capture
semantic interactions. Given the embedding of each word
�αi = Φ(wi) and �βj = Φ(vj), which can be obtained by
recent Word2Vec (Mikolov et al. 2013) technique, we in-
troduce the other two operators: cosine and dot product.

Cosine views angles between word vectors as the similar-
ity, and it acts as a soft indicator function.

Mij =
�αi

� �βj

‖ �αi‖ · ‖ �βj‖
, (4)

where ‖ · ‖ stands for the norm of a vector, and �2 norm is
used in this paper.

Dot Product further considers the norm of word vectors,
as compared to cosine.

Mij = �αi
� �βj . (5)

2794

Figure 2: Relationships between text matching and image recognition.

Figure 3: An overview of MatchPyramid on Text Matching.

Based on these three different operators, the matching ma-
trices of the given example are shown in Fig 4. Obviously
we can see that Fig 4(a) corresponds to a binary image, and
Fig 4(b) correspond to gray images.

Hierarchical Convolution: A Way to Capture Rich
Matching Patterns

The body of MatchPyramid is a typical convolutional neu-
ral network, which can extract different levels of matching
patterns. For the first layer of CNN, the k-th kernel w(1,k)

scans over the whole matching matrix z(0)=M to generate
a feature map z(1,k):

z
(1,k)
i,j = σ

(rk−1∑
s=0

rk−1∑
t=0

w
(1,k)
s,t · z(0)i+s,j+t + b(1,k)

)
, (6)

(a) Indicator (b) Dot Product

Figure 4: Three different matching matrices, where solid cir-
cles elements are all valued 0.

where rk denotes the size of the k-th kernel. In this paper
we use square kernel, and ReLU (Dahl, Sainath, and Hinton
2013) is adopted as the active function σ.

Dynamic pooling strategy (Socher et al. 2011) is then
used to deal with the text length variability. By applying dy-
namic pooling, we will get fixed-size feature maps:

z
(2,k)
i,j = max

0≤s<dk

max
0≤t<d′

k

z
(1,k)
i·dk+s,j·d′

k+t, (7)

where dk and d′k denote the width and length of the corre-
sponding pooling kernel, which are determined by the text
lengths n and m, and output feature map size n′ × m′,
i.e. dk = �n/n′�, d′k = �m/m′�.

After the first convolution and dynamic pooling, we con-
tinue to obtain higher level features z(l), l ≥ 2 by further
convolution and max-pooling, with general formulations:

z
(l+1,k′)
i,j =σ

(cl−1∑
k=0

rk−1∑
s=0

rk−1∑
t=0

w
(l+1,k′)
s,t ·z(l,k)i+s,j+t+b(l+1,k)

)
,

l = 2, 4, 6, . . . ,
(8)

z
(l+1,k)
i,j = max

0≤s<dk

max
0≤t<dk

z
(l,k)
i·dk+s,j·dk+t,

l = 3, 5, 7, . . . ,
(9)

where cl denote the number of feature maps in the l-th layer.
Analysis of Hierarchical Convolution
Similar to CNN in image recognition where it can make

abstractions based on extracted elementary visual patterns

2795

Figure 5: An illustration of Hierarchical Convolution.

such as oriented edges and corners, the hierarchical convo-
lution in MatchPyramid can also capture important phrase
level interactions from word level matching and make fur-
ther compositions. We revisit our example, and show how it
works1, as illustrated in Figure 5.

(1) With the given two kernels, we can see clearly that
the first convolutional layer can capture both n-gram match-
ing signals “(down the ages)–(down the ages)” and n-term
matching signal “(noodles and dumplings)–(dumplings and
noodles)”. The extracted matching patterns are like edges in
image recognition (refer Figure 2).

(2) The following convolutional layers make composi-
tions and form higher level of matching patterns. For exam-
ple, from the second layer, we can see that a more compli-
cated “T-type” pattern captured with the given 3D kernel. It
looks like some motif (parts) obtained in image recognition
(refer Figure 2).

From the above analysis we can see that MatchPyramid
can abstract complicated matching patterns, from phrase to
sentence level, by hierarchical convolution.

Matching Score and Training

We use a MLP (Multi-Layer Perception) to produce the fi-
nal matching score. Take binary classification and two-layer
perceptron for example, we will obtain a 2-dimensional
matching score vector:

(s0, s1)
�=W2σ

(
W1z+ b1

)
+ b2, (10)

where s0 and s1 are the matching scores of the correspond-
ing class, z is the output of the hierarchical convolution, Wi

is the weight of the i-th MLP layer and σ denotes the activa-
tion function.

Softmax function is utilized to output the probability of
belonging to each class, and cross entropy is used as the
objective function for training. Therefore the optimization

1Here we take the matching matrix with indicator function as
example, similar observations can be obtained for other matching
matrix with cosine similarity and dot product.

becomes minimizing:

loss = −
N∑
i=1

[
y(i) log(p

(i)
1)+(1− y(i)) log(p

(i)
0)

]
,

pk =
esk

es0 + es1
, k = 0, 1,

(11)

where y(i) is the label of the i-th training instance. The
optimization is relatively straightforward with the standard
back-propagation (Williams and Hinton 1986). We apply
stochastic gradient descent method Adagrad (Duchi, Hazan,
and Singer 2011) for the optimization of models. It performs
better when we use the mini-batch strategy (32∼50 in size),
which can be easily parallelized on single machine with
multi-cores. For regularization, we find that some common
strategies like early stopping (Giles 2001) and dropout (Hin-
ton et al. 2012) are enough for our model.

Experiments

In this section, we conduct experiments on two tasks, i.e.
paraphrase identification and paper citation matching, to
demonstrate the superiority of MatchPyramid against base-
lines.

Competitor Methods and Experimental Settings

ALLPOSITIVE: All of the test data are predicted as positive.
TF-IDF: TF-IDF (Salton, Fox, and Wu 1983) is a widely

used method in text mining. In this method, each text is
represented as a |V |-dimensional vector with each element
stands for the TF-IDF score of the corresponding word in the
text, where |V | is the vocabulary size. In this paper, idf score
is calculated in the whole dataset. The final matching score
is produced by the inner product of the two vectors.

DSSM/CDSSM: Since DSSM (Huang et al. 2013) and
CDSSM (Gao et al. 2014; Shen et al. 2014) need large data
for training, we directly use the released models2 (trained on
large click-through dataset) on our test data.

2http://research.microsoft.com/en-us/downloads/731572aa-
98e4-4c50-b99d-ae3f0c9562b9/

2796

ARC-I/ARC-II: We implement ARC-I and ARC-II (Hu
et al. 2014) due to there is no publicly available codes, using
exactly the same setting as described in the original paper.

There are three versions of MatchPyramid, depending on
different methods used for constructing the matching ma-
trices, denoted as MP-IND, MP-COS, and MP-DOT, re-
spectively. All these models use two convolutional layers,
two max-pooling layers (one of which is a dynamic pooling
layer for variable length) and two full connection layers. The
number of feature maps is 8 and 16 for the first and second
convolutional layer, respectively. While the kernel size is set
to be 5 × 5 and 3 × 3, respectively. Unlike ARC-II which
initiates with Word2Vec trained on Wikipedia, we initi-
ate the word vectors in MP-COS and MP-DOT randomly
from a unit ball. Thus our model do not require any external
sources.

Experiment I: Paraphrase Identification

Paraphrase identification aims to determine whether two
sentences have the same meaning, a problem considered as a
touchstone of natural language understanding. Here we use
the benchmark MSRP dataset (Dolan and Brockett 2005),
which contains 4076 instances for training and 1725 for test-
ing. The experimental results are listed in Table 1. We can

Table 1: Results on MSRP.
Model Acc.(%) F1(%)
ALLPOSITIVE 66.50 79.87
TF-IDF 70.31 77.62
DSSM 70.09 80.96
CDSSM 69.80 80.42
ARC-I 69.60 80.27
ARC-II 69.90 80.91
MP-IND 75.77 82.66
MP-COS 75.13 82.45
MP-DOT 75.94 83.01

see that traditional simple model such as TF-IDF has already
achieved a high accuracy of about 70%, though it only uses
the unigram matching signals. Our methods performs much
better than TF-IDF, which indicates that the complicated
matching patterns captured by hierarchical convolution are
important to the text matching task. For the comparison with
recent deep models, we can see that DSSM performs better
than the others (though the improvement is quite limited),
and our models (MP-IND, MP-COS and MP-DOT) outper-
form all of them. Though the best performance of our model
(75.94%/83.01%) is still slightly worse than URAE (Socher
et al. 2011) (76.8%/83.6%), URAE relies heavily on pre-
training with an external large dataset annotated with parse
tree information. In the future work, we will study how to
utilize external data to further improve our models.

We also visualize what we have learned in MatchPyra-
mid3, with expectation that we can gain some insights from

3Here we only demonstrate the case of MP-DOT due to space
limitation. Similar results can be observed with MP-IND and MP-
COS.

the process. Specifically, we take a pair of texts as an ex-
ample (selected from the MSRP dataset), and illustrate the
feature maps and kernels in Figure 6. We can see that n-gram
and n-term matching, which are emphasized in the blue and
yellow color in original texts, are represented as a diago-
nal sub-matrix emphasized with the blue and yellow rectan-
gles in the matching matrix, respectively. Kernel 1 and ker-
nel 2 are the two kernels learned in the first convolutional
layer, which well captures the important n-gram and n-term
matching signals respectively. We can see that these patterns
are quite similar to the edge extracted by CNN in image
recognition (see Figure 2). We also give some more kernels
and show some patterns learned in the second convolutional
layer. We can see that the latter layer make compositions and
keep the useful matching signals until passing it to the MLP
classifier. This explains clearly why our model works well:
MatchPyramid captures useful matching patterns at differ-
ent levels, from words, phrase, to sentences, with a similar
process in image recognition.

Experiment II: Paper Citation Matching

We evaluate the effectiveness of MatchPyramid with another
text matching task called paper citation matching, based on
a large academic dataset4. Basically, we are given a set of
papers along with their abstracts. A paper and its citations’
abstracts then becomes a pair of texts, and defined as a type
of matching. One representative example is given as follows:

T1 : this article describes pulsed thermal time of flight ttof
flow sensor system as two subsystems pulsed wire sys-
tem and heat flow system the entire flow sensor is re-
garded system theoretically as linear.

T2 : the authors report on novel linear time invariant lti
modeling of flow sensor system based on thermal time
of flight tof principle by using pulsed hot wire anemom-
etry thermal he at pulses.

We can see that the matching here should take both lexi-
cal and semantic information into consideration. The dataset
is collected from a commercial academic website. It con-
tains 838 908 instances (text pairs) in total, where there are
279 636 positive (matched) instances and 559 272 negative
(mismatch) instances. The negative instances are randomly
sampled papers which have no citation relations. We split the
whole dataset into three parts, 599 196 instances for training,
119 829 for validation and 119 883 for testing.

The results in Table 2 show that TF-IDF is also a strong
baseline on this dataset, which is even better than some deep
models such as DSSM and CDSSM. This may be caused by
the large difference between the testing data (paper citation
data) and training data (click-through data) used in DSSM
and CDSSM. ARC-I and ARC-II gain a significant improve-
ment over these models, which may benefit much from the
large training data. As for our models, the best performance
is still achieved by MP-DOT (88.73%/82.86%), which is
better than ARC-II (86.84%/79.57%). MP-COS also gains
a better result than ARC-II. The reason of the poor perfor-
mance of MP-IND on this task may lie in that the indicator

4We only use the first 32 words in the abstract.

2797

Figure 6: Analysis of the feature maps and kernels in the MatchPyramid Model. The brighter the pixel is, the larger value it has.
Better viewed in color.

Table 2: Results on the task of paper citation matching.
Model Acc.(%) F1(%)
ALLPOSITIVE 33.33 50.00
TF-IDF 82.63 70.21
DSSM 71.97 29.88
CDSSM 69.84 19.97
ARC-I 84.51 76.79
ARC-II 86.48 79.57
MP-IND 73.76 44.71
MP-COS 86.65 79.70
MP-DOT 88.73 82.86

function only captures the exact matching between words,
but omits the semantic similarity.

Table 3: The norm of learned word embeddings on the task
of paper citation matching.

Word the with for be are
Len 0.448 0.508 0.509 0.510 0.515

Word robotics java snakes musical rfid
Len 1.572 1.576 1.589 1.610 1.878

We further show the reason why MP-DOT performs better
than MP-COS by analyzing the learned word embeddings.
Specifically, we pick some words with large and small norm,
listed in Table 3. We can see that most words with small
norm are indeed useless for matching, while most words
with large norm (such as robotics and java) are domain
terms which play an important role in paper citation match-
ing. By further considering the importance of words, MP-
DOT can capture more semantic information than MP-COS
and thus achieve better performance.

Related Work

Most previous work on text matching tries to find good rep-
resentations for a single text, and usually use a simple scor-
ing function to obtain the matching results. Examples in-
clude Partial Least Square (Wu, Li, and Xu 2013), Canoni-
cal Correlation Analysis (Hardoon and Shawe-Taylor 2003)

and some deep models such as DSSM (Huang et al. 2013),
CDSSM (Gao et al. 2014; Shen et al. 2014) and ARC-I (Hu
et al. 2014).

Recently, a brand new approach focusing on modeling the
interaction between two sentences has been proposed and
gained much attention, examples include DEEPMATCH (Lu
and Li 2013), URAE (Socher et al. 2011) and ARC-II (Hu
et al. 2014). Our model falls into this category, thus we give
some detailed discussions on the differences of our model
against these methods.

DEEPMATCH uses topic model to construct the interac-
tions between two texts, and then make different levels of
abstractions by a hierarchical architecture based on the rela-
tionships between topics. Compared with our matching ma-
trix defined at word level, DEEPMATCH uses topic informa-
tion with more rough granularity. Moreover, it relies largely
on the quality of learned topic model, and the hierarchies are
usually ambiguous since the relationships between topics are
not absolute. On the contrary, MatchPyramid clearly models
the interactions at different levels, from words, phrases to
sentences.

URAE constructs the interactions between two texts
based on the syntactic trees, thus it relies on a predefined
compact vectorial representation of text. Specifically, URAE
first learns the representation of each node on the tree by a
auto-encoder, then directly inserts different levels of inter-
action, such as word, prase and sentence, to a single matrix.
Different from that, our MatchPyramid is end-to-end, and
captures different levels of interactions in a hierarchical way.

ARC-II and ARC-I are both proposed based on convolu-
tional sentence model DCNN (Kalchbrenner, Grefenstette,
and Blunsom 2014). Different from ARC-I which defers the
interaction of two texts to the end of the process, ARC-
II lets them meet early by directly interleaving them to a
single representation, and makes abstractions on this basis.
Therefore, ARC-II is capturing sentence level interactions
directly. However, it is not clear what exactly the interac-
tions are, since they used a sum operation. Our model is also
based on a convolutional neural network, but the idea is quite
different from that of ARC-II. It is clear that we start from
word level matching patterns, and compose to phrase and
sentence level matching pattern layer by layer.

2798

Conclusion

In this paper, we view text matching as image recognition,
and propose a new deep architecture, namely MatchPyra-
mid. Our model can automatically capture important match-
ing patterns such as unigram, n-gram and n-term at different
levels. Experimental results show that our model can out-
perform baselines, including some recently proposed deep
matching algorithms.

Acknowledgments

This work was funded by 973 Program of China under
Grants No. 2014CB340401 and 2012CB316303, 863 Pro-
gram of China under Grants No. 2014AA015204, the Na-
tional Natural Science Foundation of China (NSFC) un-
der Grants No. 61472401, 61433014, 61425016, 61425016,
and 61203298, Key Research Program of the Chinese
Academy of Sciences under Grant No. KGZD-EW-T03-2,
and Youth Innovation Promotion Association CAS under
Grants No. 20144310.

References

Brown, P. F.; Pietra, V. J. D.; Pietra, S. A. D.; and Mer-
cer, R. L. 1993. The mathematics of statistical machine
translation: Parameter estimation. Computational linguistics
19(2):263–311.
Dahl, G. E.; Sainath, T. N.; and Hinton, G. E. 2013. Im-
proving deep neural networks for lvcsr using rectified lin-
ear units and dropout. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference on,
8609–8613. IEEE.
Dolan, W. B., and Brockett, C. 2005. Automatically con-
structing a corpus of sentential paraphrases. In Proc. of IWP.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
The Journal of Machine Learning Research 12:2121–2159.
Gao, J.; Pantel, P.; Gamon, M.; He, X.; Deng, L.; and Shen, Y.
2014. Modeling interestingness with deep neural networks. In
Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing.
Giles, R. C. S. L. L. 2001. Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping. In Ad-
vances in Neural Information Processing Systems 13: Pro-
ceedings of the 2000 Conference, volume 13, 402. MIT Press.
Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and se-
mantic segmentation. In Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on, 580–587. IEEE.
Hardoon, D. R., and Shawe-Taylor, J. 2003. Kcca for differ-
ent level precision in content-based image retrieval. In Pro-
ceedings of Third International Workshop on Content-Based
Multimedia Indexing, IRISA, Rennes, France.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2012. Improving neural networks
by preventing co-adaptation of feature detectors. CoRR
abs/1207.0580.

Hu, B.; Lu, Z.; Li, H.; and Chen, Q. 2014. Convolutional neu-
ral network architectures for matching natural language sen-
tences. In Advances in Neural Information Processing Sys-
tems, 2042–2050.
Huang, P.-S.; He, X.; Gao, J.; Deng, L.; Acero, A.; and Heck,
L. 2013. Learning deep structured semantic models for web
search using clickthrough data. In Proceedings of the 22nd
ACM international conference on Conference on Information
and Knowledge Management, 2333–2338. ACM.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.
Kalchbrenner, N.; Grefenstette, E.; and Blunsom, P. 2014. A
convolutional neural network for modelling sentences. CoRR
abs/1404.2188.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Li, H., and Xu, J. 2014. Semantic matching in search. Foun-
dations and Trends in Information Retrieval 7(5):343–469.
Lu, Z., and Li, H. 2013. A deep architecture for matching
short texts. In Advances in Neural Information Processing
Systems, 1367–1375.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
CoRR abs/1301.3781.
Salton, G.; Fox, E. A.; and Wu, H. 1983. Extended
boolean information retrieval. Communications of the ACM
26(11):1022–1036.
Shen, Y.; He, X.; Gao, J.; Deng, L.; and Mesnil, G. 2014.
A latent semantic model with convolutional-pooling structure
for information retrieval. In Proceedings of the 23rd ACM
International Conference on Conference on Information and
Knowledge Management, 101–110. ACM.
Simard, P. Y.; Steinkraus, D.; and Platt, J. C. 2003. Best
practices for convolutional neural networks applied to visual
document analysis. In 2013 12th International Conference
on Document Analysis and Recognition, volume 2, 958–958.
IEEE Computer Society.
Socher, R.; Huang, E. H.; Pennin, J.; Manning, C. D.; and
Ng, A. Y. 2011. Dynamic pooling and unfolding recursive
autoencoders for paraphrase detection. In Advances in Neural
Information Processing Systems, 801–809.
Williams, D. R. G. H. R., and Hinton, G. 1986. Learning
representations by back-propagating errors. Nature 323–533.
Wu, W.; Li, H.; and Xu, J. 2013. Learning query and doc-
ument similarities from click-through bipartite graph with
metadata. In Proceedings of the sixth ACM international con-
ference on WSDM, 687–696. ACM.
Xue, X.; Jeon, J.; and Croft, W. B. 2008. Retrieval models for
question and answer archives. In Proceedings of the 31st an-
nual international ACM SIGIR conference on Research and
development in information retrieval, 475–482. ACM.
Zeiler, M. D., and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In Computer Vision–ECCV
2014. Springer. 818–833.

2799

