
Syntactic Skeleton-Based Translation

Tong Xiao1,2, Jingbo Zhu1,2, Chunliang Zhang1,2

1Northeastern University, Shenyang 110819, China
2YaTrans Co., Ltd., Shenyang 110004, China

Tongran Liu3

3Institute of Psychology (CAS)
Beijing 100101, China

Abstract

In this paper we propose an approach to modeling
syntactically-motivated skeletal structure of source sentence
for machine translation. This model allows for application of
high-level syntactic transfer rules and low-level non-syntactic
rules. It thus involves fully syntactic, non-syntactic, and par-
tially syntactic derivations via a single grammar and decod-
ing paradigm. On large-scale Chinese-English and English-
Chinese translation tasks, we obtain an average improvement
of +0.9 BLEU across the newswire and web genres.

Introduction
The use of source-language syntax and structural infor-
mation has been a popular approach to replacing surface
string translation with learning of tree-string mappings from
parsed data. Unlike word or phrase-based models, begin-
ning in the 1990s, source-language syntactic models rely
on parse trees of input sentence. This enhances the abil-
ity of handling long-distance movement and complex re-
ordering of multiple constituents (Liu, Liu, and Lin 2006;
Huang, Kevin, and Joshi 2006). However, source tree-based
models have robustness problems in that sparse and limited-
coverage rules can lead to poor translation. A straightfor-
ward implementation has been found to underperform the
(hierarchical) phrase-based counterpart (Liu et al. 2009).

In machine translation (MT), the power of source syntax
lies in its good ability of modeling the skeletal structure of
input sentence (Liu, Liu, and Lin 2006; Xiao et al. 2014).
This property is very promising if we use MT systems as
analogies to human translation - given a source sentence,
we first have a high-level structure/pattern of the sentence
in mind with our syntactic knowledge. Then, we determine
the translation and order of the key elements in this struc-
ture/pattern, and then finish the remaining job of lexical se-
lection and local reordering. As sentence structures can be
well explained with the language syntax, a natural issue that
arises is that: can we apply source syntax to where it can
contribute most - i.e., translating the skeletal structure of the
source sentence - and meanwhile benefit from (hierarchical)
phrase-based models on non-syntactic segments?

To address this question, we propose an approach to learn-
ing to translate with a special syntactic structure (call it
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syntactic skeleton or skeleton for short) which models the
high-level source syntax for MT. It combines two merits in
one framework: 1) applying tree-to-string rules to translate
the syntactic skeleton; 2) and applying hierarchical phrase-
based rules to handle the lower-level lexical translation and
reordering.

Our model is very flexible. It involves fully syntactic,
non-syntactic, and partially syntactic derivations via a sin-
gle grammar and decoding paradigm. Thus the hierarchical
phrase-based and tree-to-string systems can be cast as two
special cases of this approach.

In addition, our model fits in the general framework of
synchronous context-free grammars (SCFGs). It is very easy
to implement and speed-up if one already has an SCFG de-
coder. On large-scale Chinese-English and English-Chinese
translation tasks, we obtain an average improvement of +0.9
BLEU across different genres.

Background

SCFG and Hiero-Style Translation

This work is based on synchronous context-free grammars
which have been widely used in statistical machine trans-
lation (SMT). More formally, an SCFG rule can be repre-
sented as: LHS → 〈α, β,∼〉, where the left hand side LHS
is a non-terminal, α and β are sequences of terminals and
non-terminals in the source and target languages, ∼ is a 1-
to-1 alignment between the non-terminals in α and β.

Probabilistic SCFGs can be learned from unparsed, word-
aligned parallel data using Hiero-style heuristics and con-
straints (Chiang 2007). Once the SCFG is obtained, new
sentences can be decoded by finding the most likely deriva-
tion of SCFG rules. See Figure 1 for example Hiero-style
rules extracted from a sentence pair with word alignments,
where the non-terminals are labeled with X only. A se-
quence of such rules covering the source sentence is an
SCFG derivation, e.g., rules h5, h1 and h3 generate a deriva-
tion for the sentence pair.

Learning Translation from Source Syntax

Hiero-style grammars are formally syntactic, but rules are
not constrained by source (or target) language syntax. A
natural extension is to use the source-language parse tree to
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Hiero-style SCFG Rules

h1 X → 〈他, he〉
h2 X → 〈对, with〉
h3 X → 〈回答, the answer〉
h4 X → 〈表示满意, was satisfied〉
h5 X → 〈X1 对 X2 表示满意,
... X1 was satisfied with X2〉

Rules Transformed from GHKM Extraction

r1 NP → 〈他, he 〉
r2 NP → 〈回答, the answer 〉
r3 VP → 〈表示满意, was satisfied 〉
r4 IP → 〈 NP1 VP2, NP1 VP2 〉
r5 VP → 〈对 NP1 VP2, VP2 with NP1 〉
...

Figure 1: Hiero-syle and tree-to-string rules extracted from a pair of word-aligned Chinese-English sentences with a source-
language (Chinese) parse tree.

guide the rule extraction and translation. To do this, a pop-
ular way is to perform the GHKM rule extraction (Galley et
al. 2006) on the bilingual sentences with both word align-
ment and source-language phrase structure tree annotations.

In the GHKM approach, translation equivalency relations
are modeled from source-language syntactic trees to target
language strings using derivations of GHKM rules (Liu, Liu,
and Lin 2006). A GHKM rule is a tuple of a source tree-
fragment sr, a target string tr, and the alignments between
the frontier non-terminals of sr and tr, for example,

VP(VV(提高) x1:NN) → increases x1

is a GHKM rule. We can transform this rule into the SCFG
form by keeping the frontier non-terminal annotations and
discarding the internal tree structure (Xiao et al. 2014), like
this

VP → 〈提高 NN1, increases NN1 〉
In this work we refer to the SCFG rules transformed

from the GHKM rules as tree-to-string rules. As the non-
terminals are annotated with source syntactic labels, apply-
ing tree-to-string rules are constrained to the ”well-formed”
constituents. See Figure 1 for tree-to-string rules extracted
from a tree-string pair. Note that the tree-to-string rules
used here ignore the multi-level tree structure of the origi-
nal GHKM rule but keep the frontier nodes. It gives us a
generation ability on new sentences (Zhu and Xiao 2011).

Decoding with tree-to-string rules can be seen as an in-
stance of SCFG parsing. A popular method is string-parsing
(or string-based decoding) which parses the input sentence
with a chart decoder (e.g., the CYK decoder). Also, we can
decode the parse tree using tree-parsing (or tree-based de-
coding) if source-language parse is available on the test data.
In this way, source syntax is used to impose hard constraints
that derivations must respect the constituents of the input
parse tree.

The Model

It is well-known that Hiero-style systems and tree-to-string
systems have different strengths and weaknesses (Cmejrek,
Mi, and Zhou 2013; Xiao et al. 2014). For example, Hiero-
style models are powerful in lexical selection and reorder-
ing that is inherent in lexicalized rules but have several con-
straints to complex constituent movement1. Tree-to-string
models characterize the movement of hierarchical structures
by linguistic notions of syntax and is promising in high-level
syntactic reordering. But they suffer from the sparsity and
limited coverage problems.

In an ideal case, we can apply the two types of models
to where they can contribute most: 1) tree-to-string rules
handle higher-level syntactic movement; 2) and Hiero-style
rules handle lower-level lexical translation and reordering.
To this end, we propose a method to ”combine” the two mer-
its in one model. We reuse the Hiero-style and tree-to-string
grammars in translation, and develop a new type of rules
- partially syntactic rules - to link tree-to-string rules with
Hiero-style rules.

A rule is partially syntactic if its left-hand side (LHS) is a
source-language syntactic label and at least one of the non-
terminals on the right-hand side (RHS) has the X symbol.
See following for a partially syntactic rule

VP → 〈提高 X1, increases X1 〉
where the left-hand side represents a Verb Phrase (VP), and
the right-hand side involves the X non-terminals as in stan-
dard Hiero-style rules. We can apply this rule on top of a par-
tial Hiero-style derivation, and produce a derivation rooted
at VP. Then, tree-to-string rules can be applied to substitute
the VP derivation as usual in syntactic MT systems.

1The common constraints are a source-language span limit;
(non-glue) rules are lexicalised; and rules are limited to two non-
terminals which are not allowed to be adjacent in the source-
language.
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r1: NP → 〈他, he 〉
r4: IP → 〈 NP1 VP2, NP1 VP2 〉
r5: VP → 〈对 NP1 VP2, VP2 with NP1 〉
r6: NP → 〈回答, answers 〉

Tree-to-String Rules

p1: IP → 〈 X1 VP2, X1 VP2 〉
p2: IP → 〈 NP1 X2, NP1 X2 〉
p3: VP → 〈对 X1 X2, X2 with X1 〉

Partially Syntactic Rules

h3: X → 〈回答, the answer 〉
h6: X → 〈 X1 满意, X1 satisfied 〉
h7: X → 〈对, to 〉
h8: X → 〈表示, was 〉
h9: X → 〈表示 X1, show X1 〉

Hiero-style Rules

Grammar:

h8: X → 〈表示, was 〉 h3: X → 〈回答, the answer 〉

h6: X → 〈 1 满意, 1 satisfied 〉

p3: VP → 〈对 1 2 , 2 with 1 〉

r1: NP → 〈他, he 〉

r4: IP → 〈 1 2 , 1 2 〉

= substitution

Derivation:

Syntactic Skeleton:

IP

VP

XX对

NP

他

he � with �

Figure 2: Derivation and syntactic skeleton generated via a sample grammar.

As partially syntactic rules linkup Hiero-style rules with
tree-to-string rules, we can use all these rules to form a par-
tially syntactic derivation. See Figure 2 for a derivation built
from a sample grammar of Hiero-style, tree-to-string, and
partially syntactic rules. In this derivation, Hiero-style rules
(h3, h6 and h8) are applied to lower-level translation. A syn-
tactic structure is created by applying syntactic rules (par-
tially syntactic rule p3, and tree-to-string rules r1 and r4) on
top of the partial derivations of X.

The most interesting part of this derivation is the structure
created via the source-language sides of the syntactic rules
(see the top-right of Figure 2). We call it the syntactic skele-
ton. Basically it is a high-level syntactic tree-fragment with
terminals and non-terminal at leaves. By using this skele-
ton structure, it is easy to capture the reordering of the con-
stituents in ”对 NP VP”, and leave the translation of ”回答”
and ”表示满意” to Hiero-style rules.

For grammar extraction, learning Hiero-style and tree-to-
string rules is trivial because we can resort to the baseline ap-
proaches as described in the Background section. To acquire
partially syntactic rules, we employ a simple but straight-
forward method. For each tree-to-string rule, we transform
it into partially syntactic rules by generalizing the symbols
of one or two non-terminals on the RHS to Xs while keep-
ing LHS unchanged. For example, for rule r5 in Figure 1
(VP → 〈对 NP1 VP2, VP2 with NP1〉), there are three par-
tially syntactic rules:

VP → 〈对 X1 X2, X2 with X1〉
VP → 〈对 X1 VP2, VP2 with X1〉

VP → 〈对 NP1 X2, X2 with NP1〉
Once all rules (i.e., Hiero-style, tree-to-string and par-

tially syntactic rules) are ready, we collect them to build a
bigger SCFG and feed it to the decoder. We compute the rule
weight in a weighted log-linear fashion. As in the standard
SCFG-based model (Chiang 2007), we have the following
features for rule LHS → 〈α, β,∼〉:
• Translation probabilities P(α|β) and P(β|α) estimated by

relative frequencies2.
• Lexical weights Plex(α|β) and Plex(β|α) estimated by

Koehn et al.’s (2003) method.
• Rule bonuses (exp(1)) for Hiero-style, tree-to-string and

partially syntactic rules individually.
• Indicators (exp(1)) for glue rules, lexicalized rules and

non-lexicalized rules, which allow the model to learn a
preference for specified types of rules.

• Number of the X non-terminals (exp(#)) on the source-
language side of the partially syntactic rule, which con-
trols how often the model violates the syntactic compati-
bility.
We then define the weight (score) of derivation in our

model. Let d be the derivation of the above grammar. To
distinguish syntactic rules (i.e., tree-to-string and partially
syntactic rules) and Hiero-style rules, we define d as a tu-
ple 〈ds, dh〉, where ds is the partial derivation for the skele-
ton, and dh is the set of rules used to form the remaining

2For partially syntactic rules, the rule frequency is the sum of
the frequencies of all corresponding tree-to-string rules.
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parts of d. For example, in Figure 2, ds = {r4, r1, p3} and
dh = {h6, h8, h3}.

Let t be the target string encoded in d. Then the score of d
is defined as the product of rule weights, with a multiplica-
tion of an n-gram language model lm(t) and a word bonus
exp(|t|).

s(d) =
∏

ri∈ds

w(ri)×
∏

rj∈dh

w(rj)× lm(t)λlm

×exp(λwb · |t|)
where w(r∗) is the weight of rule r∗, and λlm and λwb are
the feature weights of the language model and word bonus.

Another note on our model. The framework presented
here is very flexible, and includes tree-to-string and Hiero-
style models as special cases. E.g., d is a Hiero-style deriva-
tion if it consists of Hiero-style rules only (i.e., ds = φ); and
d is a fully syntactic derivation if it consists of tree-to-string
rules only (i.e., dh = φ). What we are doing here is to in-
troduce partially syntactic derivations into a space of Hiero-
style and tree-to-string derivations3. The decoder can select
the best derivation from the enlarged pool of candidates in
terms of model score.

Decoding

Decoding with our grammar can be regarded as a string-
parsing problem - we parse the source string with the source-
language side of the grammar rules and generate the target
string using the target-language side. The output is the target
string yielded by the derivation with highest model score. In
this work we use a CYK-style decoder with beam search
and cube pruning (Chiang 2007). It operates on the bina-
rized rules which are obtained via synchronous binarization
(Zhang et al. 2006).

As a large number of partially syntactic rules are intro-
duced, the decoding is slow. To speed-up the system, we
further prune the search space in several ways. First, we
discard lexicalized, partially syntactic rules whose scope is
larger than 3 (Hopkins and Langmead 2010). We remove
these rules because they are one of the major factors that
slow down the system but are not very beneficial to trans-
lation. Also, we discard non-lexicalized, partially syntactic
rules with X non-terminals on the RHS only. This type of
rules does not make ”syntactic sense” in most cases. E.g.,
rule VP → 〈 X1 X2, X1 X2 〉 is too general so that it is ”im-
prudent” to induce a VP constituent from two consecutive
blocks with no lexical or syntactic sign.

In addition to pruning rules, we can control the depth of
syntactic skeletons using a parameter ωs. The system is
forced to use a smaller syntactic skeleton (and fewer syntac-
tic rules) if ωs chooses a smaller value. As extreme cases,
the system goes back to a hierarchical phrase-based model

3Note that if no partially syntactic derivations are introduced,
our model is doing something similar to hypothesis selection which
chooses the best derivation from either Hiero-style or tree-to-string
derivation space.

if ωs = 0; and it can consider syntactic skeletons with ar-
bitrary depth if ωs = +∞. Thus we can seek a balance by
tuning it on a development set.

Another option for system speed-up is to apply the tree-
parsing technique (Eisner 2003). We feed the source parse
tree to the decoder in addition to the source sentence. The
source sentence is first parsed using Hiero-style rules as is
usual in hierarchical phrase-based systems (Chiang 2007),
with the exception that we impose no span limit on rule ap-
plications for source spans corresponding to constituents in
the syntactic tree. Then, we apply tree-to-string rules on
the tree. If the source side of a tree-to-string rule matches an
input tree fragment: 1) that rule is converted to partially syn-
tactic rules; and 2) the tree-to-string and corresponding par-
tially syntactic rules are added to the rule list linked with the
CYK grid cell associated with the span of the source syntac-
tic tree fragment. After that, the remaining decoding steps,
such as building translation hypergraph and language model
intersection, proceed as usual. This method can efficiently
match (partially) syntactic rules for decoding and does not
require rule binarization. As a trade-off, fewer syntactically-
sensitive derivations are taken into account due to the hard
constraints imposed by the source parse tree.

Experiments

We experimented with our approach on Chinese-English
(zh-en) and English-Chinese (en-zh) translation tasks.

Experimental Setup

We used 2.74 million sentence Chinese-English bitext from
NIST12 OpenMT. We ran GIZA++ on the bitext to produce
bidirectional alignments and then the grow-diag-final-and
method to obtain symmetric alignments. For syntactic pars-
ing, we ran the Berkeley parser on both sides of the bitext.
The parse trees were then binarized in a left-heavy fashion
for better generation on test sentences. Syntax-based (tree-
to-string) rules with up to five non-terminals were extracted
on the entire set of the training data. For the hierarchical
phrase-based system, hierarchial rules with up to two non-
terminals were extracted from a 0.94 million sentence subset
and phrasal rules were extracted from all the training data.
All these rules were learned using the NiuTrans open-source
toolkit (Xiao et al. 2012).

We trained two 5-gram language models: one on the
Xinhua portion of the English Gigaword in addition to the
English-side of the bitext, used by Chinese-English systems;
one on the Xinhua portion of the Chinese Gigaword in ad-
dition to the Chinese-side of the bitext, used by English-
Chinese systems. All language models were smoothed using
the modified Kneser-Ney smoothing method.

For Chinese-English translation, we evaluated our sys-
tems on newswire and web data, respectively. Our tuning
sets (newswire: 1,198 sentences, web: 1,308 sentences)
were drawn from the NIST MT 04-06 evaluation data and
the GALE data. The test sets (newswire: 1,779 sentences,
web: 1,768 sentences) contained all newswire and web
evaluation data of NIST MT 08, 12 and 08-progress. For
English-Chinese translation, our tuning set (995 sentences)
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Entry zh-en (nw) zh-en (wb) en-zh Average
Tune Test Tune Test Tune Test improve.

(1198) (1779) (1308) (1768) (995) (1859) on test
Hierarchical Phrase-based (Hier.) 35.70 31.76 27.29 22.61 33.12 30.59 0

Tr
ee

ba
nk

Tree-to-String 34.41 30.76 25.59 21.69 32.29 30.20 -0.77
Hier. + source syn. features 36.02 31.99 27.35 22.76 33.34 30.90 +0.23
Hier. + source syn. SAMT rules 36.09 32.09 27.47 22.86 33.46 30.99* +0.32
SYNSKEL 36.34* 32.43* 28.00* 23.15 33.70 31.50* +0.71
SYNSKEL (tree-parsing) 36.44* 32.35 27.95 23.11 33.49 31.32* +0.61

B
i-

tr
ee

s Tree-to-String 34.82 31.21 25.83 21.88 33.03 30.69 -0.39
Hier. + source syn. features 36.09 31.98 27.42 22.87 33.40 30.97 +0.29
Hier. + source syn. SAMT rules 36.14* 32.18* 27.46 22.90 33.40 30.92 +0.35
SYNSKEL 36.70* 32.75* 28.09* 23.29* 33.82* 31.77* +0.95
SYNSKEL (tree-parsing) 36.67* 32.64* 27.92 23.39* 33.95* 31.66* +0.91
SYNSKEL (forest-parsing) 36.77* 32.56* 28.05* 23.45* 33.95* 31.79* +0.94

Table 1: BLEU[%] scores of various systems. * means that a system is significantly better than the hierarchical phrase-based
(Hier.) baseline at p < 0.01.

and test set (1,859 sentences) were the evaluation data sets
of SSMT 07 and NIST MT 08 Chinese-English track, re-
spectively. All source-side parse trees were produced in the
same way as that used on the training data.

We implemented our CYK decoder as described in the
Decoding section. By default, string-parsing was used and
ωs was set to +∞. All feature weights were tuned using
minimum error rate training (MERT). Since MERT is prone
to local optimums, we ran each experiment on the tuning
set five times with different initial setting of feature weights.
In the evaluation, we report uncased BLEU4 on zh-en and
uncased BLEU5 on en-zh, respectively.

MT Systems for Comparison

For comparison to other state-of-the-art methods, we re-
port results of several systems in our empirical study. Two
of them are the standard implementations of the hierar-
chical phrase-based model (Chiang 2007) and the tree-to-
string model (Liu, Liu, and Lin 2006). Because hierarchical
phrase-based translation is one of the most popular MT mod-
els in recent MT evaluations, we selected it as the primary
baseline in the experiments.

Also, we introduced the source syntax-based features (or
soft constraints) into the hierarchical phrase-based system
to build another syntax-aware MT system. It is a simple and
straightforward method to incorporate source-language syn-
tax into existing non-syntactic systems. In our experiment
we chose one of the best feature sets reported in Marton and
Resnik’s work (Marton and Resnik 2008) 4.

In addition, we experimented with adding a source-
language syntax-augmented MT (SAMT) grammar into the
hierarchical phrase-based system, as described in (Zollmann
and Vogel 2010). In this system, the hierarchical phrase-
based and syntax-based models are bridged by glue rules.
It thus allows monotonic concatenation of hierarchical and
syntactic partial derivations. As source-language SAMT

4The features are NP+, NP=, VP+, VP=, PP+, PP=, XP+ and
XP=.

grammars have finer grained labels induced from the source-
language parse trees, using them in a Hiero-style system can
be regarded as a straightforward way of making use of both
hierarchical phrase-based and syntactic models.

Results

Table 1 shows the result, where our syntactic skeleton-based
system is abbreviated as SYNSKEL. We see, first of all, that
the SYNSKEL system obtains significant improvements on
all three of the test sets. Using CTB style parse trees yields
an average improvement of +0.6 BLEU, and using binary
trees yields an average improvement of +0.9 BLEU. Also,
tree-parsing is promising for applying (partially) syntactic
rules on top of a standard use of Hiero-style rules. It ob-
tains comparable BLEU scores as the string-parsing method.
However, involving more trees in a binary forest does not
help5. These interesting results indicate that it might be diffi-
cult to introduce ”new” derivations into an already very large
derivation space by considering more binary parse alterna-
tives. More interestingly, it is observed that SYNSKEL even
outperforms the ”Hier.+ SAMT” system over 0.6 BLEU
points (the improvements are statistically significant). We
found that the systems with SAMT rules ran very slow due
to the large number of CCG-style labels. It made the system
hard to tune. In comparison, the SYNSKEL system relies
on a relatively small number of syntactic labels and applies
syntactic rules on the higher level of sentence structure only.
It thus obtains bigger improvements and is easy to run.

In addition, we study the system behavior under the con-
trol of the maximum depth of skeleton (i.e., ωs). Figure 3
shows that too large skeletons are not always helpful. Us-
ing skeletons with ωs ≤ 5 can obtain satisfactory improve-
ments, with a 27% reduction in decoding time in comparison
of the full use of skeletons.

We then investigate how often the system chooses differ-
ent types of derivations. Table 2 shows a preference to par-

5The forest was produced by binarizing a CTB-style parse tree
into a binary forest.
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Figure 3: BLEU as a function of maximum depth of skeleton
(tuning set of zh-en newswire).

tially syntactic and Hiero-style derivations on all three of the
tasks. The en-zh task shows a heavy use of fully and par-
tially syntactic derivations, followed by the zh-en newswire
and zh-en web tasks. This result may reflect a fact of varying
parse quality over different languages and genres.

Related Work

Recently MT models based on source syntax have achieved
promising results due to their good abilities in modeling
source-language syntax for lexicon selection and reorder-
ing (Eisner 2003; Liu, Liu, and Lin 2006; Huang, Kevin,
and Joshi 2006). Improvements are continuing for a bet-
ter use of the source-language syntactic information on top
of non-syntactic models. A straightforward way is to intro-
duce n-gram phrases into syntactic systems (Liu, Liu, and
Lin 2006), or vice versa (Tinsley, Hearne, and Way 2007).
Also, source-syntax constraints were developed to integrate
tree-based constraints into hierarchical phrase-based sys-
tems (Marton and Resnik 2008).

More sophisticated models include system combination
and joint decoding-like methods (Liu et al. 2009; Cmejrek,
Mi, and Zhou 2013; Xiao et al. 2014). Unlike these methods,
our focus is to study approaches to introducing partially syn-
tactic (skeleton-based) derivations into MT, rather than de-
veloping new decoding paradigms. Beyond this, we develop
a grammar to handle fully syntactic, partially syntactic, and
Hiero-style derivations in one framework, which does not
require modification of the SCFG decoder (or need little
coding work if tree-parsing is adopted). By contrast, joint
decoding-like methods need two or more individual mod-
els/grammars for input.

Another related line of work is to introduce source-
language syntactic annotations to hierarchical phrase-based
systems (Zhao and Al-Onaizan 2008; Hoang and Koehn
2010), or to simplify syntactic rules in syntax-based systems
(Zhu and Xiao 2011; Zhao et al. 2011). E.g., the partially
syntactic rules presented here are similar to the rules used
in (Hoang and Koehn 2010; Zhao et al. 2011). Their rule
extraction methods resort to either a single Hiero-like algo-
rithm or a single GHKM-like algorithm, which may miss
some useful rules. Moreover, the underlying structure of
source sentence, such as sentence skeleton, is not well ex-

derivation zh-en zh-en en-zh
type (nw) (wb)

fully syn. 1.4% 0.6% 14.4%
non-syn. 19.7% 26.6% 11.6%

partially syn. 78.9% 72.8% 74.0%

Table 2: Derivation usage on the tuning sets.

plained in previous work.
Note that the approach presented here is doing something

similar to fine-grained labeling of SCFGs (Chiang 2010;
Mylonakis and Sima’an 2011). Previous work focuses more
on enhancing Hiero-style grammars or ITGs with syntactic
labels, while our approach ”combines” two different models
to model different levels of translation. The only exception
is (Zollmann and Vogel 2010; 2011). They bridge Hiero-
style models and SAMT models by glue rules in a single sys-
tem. But they point out that the huge number of CCG-style
non-terminals in SAMT grammars lead to a bad estimation
of low-occurrence-count rules. Unlike their work, our ap-
proach uses standard labeling of non-terminals, and it uses
the partially syntactic rules to bridge tree-to-string rules and
Hiero-style rules. In this way, we apply the syntactic rules
to where they can contribute most.

Though integrating sentence skeleton information into
MT is promising, it is rare to see investigation on this issue.
Perhaps the most related studies are (Mellebeek et al. 2006)
and (Xiao, Zhu, and Zhang 2014). These methods rely on
heuristics or expensive annotated data for skeleton acquisi-
tion. Our method instead views skeletons as latent structures
and automatically induces them in MT decoding.

Conclusions

We have described an approach to introducing syntactic
skeleton into MT for a better use of source syntax. Our
model allows for applying tree-to-string rules to handle
high-level syntactic movement, and meanwhile Hiero-style
rules to handle low-level non-syntactic translation. Thus the
system can search for best translation over a space of fully
syntactic, non-syntactic and partially syntactic derivations.
The hierarchical phrase-based model and the tree-to-string
model can be regarded as two special cases of our frame-
work. We experiment with our approach on large-scale MT
tasks and obtain an average improvement of +0.9 BLEU
across different languages and genres.
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