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Abstract

We address the problem of automatically acquiring knowl-
edge of event sequences from text, with the aim of providing
a predictive model for use in narrative generation systems.
We present a neural network model that simultaneously learns
embeddings for words describing events, a function to com-
pose the embeddings into a representation of the event, and a
coherence function to predict the strength of association be-
tween two events.
We introduce a new development of the narrative cloze eval-
uation task, better suited to a setting where rich informa-
tion about events is available. We compare models that learn
vector-space representations of the events denoted by verbs in
chains centering on a single protagonist. We find that recent
work on learning vector-space embeddings to capture word
meaning can be effectively applied to this task, including
simple incorporation of a verb’s arguments in the representa-
tion by vector addition. These representations provide a good
initialization for learning the richer, compositional model of
events with a neural network, vastly outperforming a number
of baselines and competitive alternatives.

Introduction

This paper follows a line of work begun by Chambers
and Jurafsky (2008), who introduced a technique for auto-
matically extracting knowledge about typical sequences of
events from text. They observed that coreference resolu-
tion, which identifies passages that make repeated mentions
of the same entity, provides a source of information about
where an entity participates in multiple events within a doc-
ument. They make an assumption that places where an en-
tity is mentioned as the argument to a verb denote events that
the entity is involved in. In this way, they extract chains of
events, each centered on a single entity. They use this data
to infer prototypical narrative chains that are similar to the
classical notion of a script (Schank and Abelson 1977).

A narrative generation system builds the structure of a
story at some level of abstraction, involving sequences of
events, actions and states, and the characters and entities
that participate in them. Planning-based approaches (Turner
1994; Pérez y Pérez and Sharples 2001; Gervás et al. 2005)
require knowledge of actions and events that are possible at
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particular points in the narrative and their effects on the state.
Ensuring coherence in generated sequences of events is cru-
cial (Pérez y Pérez and Sharples 2004). Knowledge repre-
sentations are typically built by hand for small domains, but
acquiring them automatically from text is a difficult task.
Unsupervised induction in the style of Chambers and Juraf-
sky (2008) can provide a useful approximation to one part
of this knowledge (McIntyre and Lapata 2009).

Ultimately, we aim to provide tools for broad-domain nar-
rative generation. We consider a component that takes a
context of events/actions concerning a character (the story
so far) and measures the plausibility of possible continua-
tions. This is related to the narrative cloze task (Chambers
and Jurafsky 2008). In particular, we are interested in the
first half of the schema extraction pipeline, which addresses
the narrative cloze prediction task, but less in the subsequent
step, which infers generalized script-like schemas.

This paper makes two key contributions. Firstly, we pro-
pose a new task, multiple choice narrative cloze (MCNC),
closely related to the narrative cloze task, but better suited
to comparing systems’ usefulness as a component in narra-
tive generation. In MCNC, a system is able to make use of
richer information about events (in both the context and pre-
dictions). Secondly, we present a neural network model for
predicting whether or not two events are expected to appear
in the same chain by learning vector representations of event
predicates and argument nouns and a composition function
that builds a dense vector representation of the event.

We evaluate a range of systems that induce vector-space
representations of events and use them to make predictions,
comparing the results to the positive pointwise mutual infor-
mation (PPMI) measure of Chambers and Jurafsky (2008,
henceforth C&J08). We find that the vector-learning sys-
tem of Mikolov et al. (2013a), word2vec, learns useful
representations of events for the MCNC task. We show that
a naive use of the same system to learn representations of
verb arguments yields an improvement in prediction accu-
racy. We then treat these representations as a starting point
for the more sophisticated neural network model that com-
poses information about an event from a verb and its argu-
ments into a single vector. The composed representation
can be used for measuring the plausibility of possible next
events, vastly outperforming the other models.
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Text: Robbers made a big score, fleeing after stealing more than $300,000 from Wells Fargo armored-truck guards who were
servicing the track’s ATMs, the Police Department said. The two Wells Fargo guards reported they were starting to put money
in the clubhouse ATM when a man with a gun approached and ordered them to lie down. . .

Entity mentions: {Wells Fargo armored-truck guards, The two Wells Fargo guards, they, . . .}
Predicate events: service(x0, ATMs), report(x0), put(x0, money, in clubhouse), lie+down(x0), . . .

C&J08 events: (service, subj), (report, subj), (put, subj), (lie+down, subj)

Figure 1: Example event chain extraction. Mentions of an entity x0 (dashed underline) are identified by coreference resolution.
Events are extracted from verbs to which the entity is an argument (solid underline). The chain is shown first as predicates with
arguments, then as predicate-GRs as used by C&J08.

Related Work

Recent work on unsupervised inference of prototypical
event sequence information from text began with Chambers
and Jurafsky (2008). They introduced a technique for induc-
ing models of event sequences, or chains, using coreference
resolution, and an evaluation task they call narrative cloze.
Chambers and Jurafsky (2009) built on this to bring the in-
duced representations closer to the idea of semantic frames,
inferring event schemas. We focus on the original work of
Chambers and Jurafsky (2008), as we are interested in com-
paring or predicting possible upcoming events in a specific
narrative context, rather than building the abstract represen-
tation of an event schema. Chambers (2013) and Cheung,
Poon, and Vanderwende (2013) also focus on schema induc-
tion, rather than next event prediction, but we have explored
related models in the present context.

A variety of developments of C&J08 have been proposed.
Jans et al. (2012) compare ways of collecting and using
the model’s statistics to measure association between events.
They achieve better results with a bigram conditional proba-
bility model than C&J08’s PPMI statistic, and we adopt this
as one of our baselines.

Balasubramanian et al. (2013) use open-domain relations
extracted by the information extraction system Ollie in-
stead of verbs, capturing more information about events.
They too focus on event schema extraction. Pichotta
and Mooney (2014) propose a solution to limitations of
C&J08’s representations closer to the original model, es-
timating the joint probability of a pair of events, taking into
account all the entities that they share as arguments (rather
than just one, as in C&J08).

Another line of work approaches event knowledge acqui-
sition using event schema descriptions (ESDs), natural lan-
guage descriptions of typical sequences of events, written by
hand (Regneri, Koller, and Pinkal 2010; Regneri et al. 2011;
Modi and Titov 2013; Frermann, Titov, and Pinkal 2014).
We consider the approach of using large text corpora better
suited to our goals of learning broad-domain event knowl-
edge, since the events learned are not restricted to those in a
hand-constructed corpus. However, some models proposed
for ESDs could carry over to our setting. The embeddings
of Modi and Titov (2013) in particular are closely related to
our best performing system. Their event representation net-
work is similar to the argument composition component of
our model, differing in how the representations are trained

and treatment of the word representations at the inputs.
McIntyre and Lapata (2009) and McIntyre and Lap-

ata (2010) present, to our knowledge, the only previous work
to apply these models to narrative generation. We expect im-
provements in event prediction accuracy demonstrated here
to translate into better results in this downstream task.

Narrative Generation

We adopt the same approach as Chambers and Juraf-
sky (2008) to extraction of events. They assume that an
event is described each time an entity is an argument to
a verb. The event is represented by a pair of the verb
lemma and the grammatical dependency relation between
the verb and the entity (subj, obj or iobj), which we re-
fer to as a predicate-GR. An example is shown in fig-
ure 1. C&J08 can be applied directly as a component in
a narrative generation system (McIntyre and Lapata 2009;
2010). However, the model has some limitations in this con-
text, which we set out to address.

Firstly, in predicting the next event, C&J08 looks only at
the co-occurrences of predicate-GRs. Sometimes this con-
tains the most important information about the event – e.g.
(arrest, obj) – but often the meaning of the event is drasti-
cally changed by its arguments – e.g. (perform play, subj)
vs. (perform surgery, subj). In other cases, almost no in-
formation is conveyed by the predicate alone – e.g. (go
on holiday, subj) vs. (go to church, subj). We address this by
incorporating arguments into our representations of events.

Secondly, the model uses only co-occurrence statistics of
specific pairs of predicate-GRs: it does not generalize from
the observations to assign scores to unobserved pairs. It
makes remarkably good judgements about frequent predi-
cates, but is less successful with rare events. For example, a
model trained on the Gigaword NYT corpus has little infor-
mation concerning underestimate outside very specific con-
texts. A model that exploits contextual similarities between,
say, underestimate and calculate may be able to make more
informed predictions by making better use of the limited in-
formation it has about infrequent predicates. We address this
by using continuous vector embeddings of words and events.

One aspect of an event prediction model for narrative gen-
eration not considered here is the temporal order of events.
For example, we will produce improbable narratives if, pre-
sented with (die, subj), our model suggests (live, subj) as the
next event, simply because the two often co-occur. Build-
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ing such information into a model is a non-trivial task, since
the order of events in a document rarely corresponds to
their temporal order. Chambers and Jurafsky first build
an unordered model of event associations and then apply
a model of partial temporal ordering while building narra-
tive schemas. There is a large body of work on inferring
temporal relations (UzZaman et al. 2013), including recent
work specifically on ordering of events (Frermann, Titov,
and Pinkal 2014; Abend, Cohen, and Steedman 2015). Such
models could be used to constrain suggestions made by the
models discussed here, an extension we leave to future work.

Evaluating Representations for Prediction

We consider methods for representing information about not
just predicate-GRs, but verb arguments in inferring event
models. We therefore require an evaluation task capable of
comparing models in a context where this richer informa-
tion is available. The narrative cloze task (Chambers and Ju-
rafsky 2008) evaluates a predictive model by measuring the
rank assigned to the observed next event given its context
in a chain and a full vocabulary of possible events. When
including predicate arguments, the task is problematic: the
vocabulary becomes unmanageably large, once, e.g. put(x,
money, in clubhouse) and put(x, robber, in jail) are distin-
guished, and ranking metrics less meaningful. Recent work
has called into question the value of narrative cloze, even
for comparing models that represent events only by their
predicate-GRs (Rudinger et al. 2015).

We propose a multiple choice version of the narrative
cloze task, MCNC, inspired by multiple choice variants of
the cloze task for language assessment (Sadeghi 2014). As
before, the system is presented with a series of contextual
events, e0, . . . , en−1. It is given five randomly ordered can-
didates, c0, . . . , c4, to choose the next event from, one of
which is the observed event, the others sampled at random
from elsewhere in the corpus. The randomly sampled events
have their protagonist replaced by the protagonist of the cur-
rent chain and any other entities replaced by randomly cho-
sen other entities from the same document as the current
chain. An example is shown in figure 2. MCNC allows us
to compare models that take account of richer information
from the text about both context and candidate events.

An additional advantage of this form of evaluation is that
the task can in principle be completed by humans. A human
study would be a valuable comparison to the models’ results.
The test data is imperfect, due to noise in the automatic ex-
traction process and the random sampling of confounders.
Our informal initial human studies suggest these are indeed
problems, but not so common as to invalidate conclusions
drawn here. We have not yet carried out large-scale human
annotation, but plan to do so in the future.

Dataset

Following Chambers and Jurafsky (2008; 2009), we extract
events from the NYT portion of the Gigaword corpus (Graff
et al. 2003). The event extraction pipeline follows an al-
most identical procedure to Chambers and Jurafsky (2009),
using the C&C tools (Curran, Clark, and Bos 2007) for PoS

x0 = Giardino x1 = chairman, him
Entities

die(x0), attend(x0, reunion), specialize(x0, as partner),
describe(x0, x1, as product), hold(x0, position),
appoint(–, x0, to the board), lead(x0, effort),
improve(x0, operation), propose(x0, cut), play(x0, role),

Context (ei)

c1: receive(x0, response)
c2: drive(x0, mile)
c3: seem(x0)
c4: discover(x0, truth)
c5: modernize(x0, procedure)

?

Figure 2: Multiple choice narrative cloze prediction task.
The observed event is marked in bold.

tagging and dependency parsing and OpenNLP1 for phrase-
structure parsing and coreference resolution. In addition to
the events inferred from verbs, we also extract predicative
adjectives where an entity is an argument to the verb be or
become – e.g. Giardino was upset ⇒ be(x0, upset) – with
the intention of approximating narrative state information,
just as verbs approximate events. Such information is a po-
tentially helpful addition to a model’s output for downstream
narrative generation. As in C&J08, other occurrences of be
are dropped.

As well as the lemmatized verb and its dependency rela-
tion to the chain entity, the dataset also includes any subject,
object or indirect object arguments to the verb identified by
the parser. This may be another coreference entity (as for
describe in figure 2), or the text of a noun phrase (though
our models use just the headword of the noun phrase).

We randomly select 10% of the documents in the corpus
to use as a test set and 10% to use as a development set,
the latter being used to compare architectures and optimize
hyperparameters prior to evaluation. For repeatability, we
make the lists of documents selected for each set available
online2.

Using the full set of extracted chains for evaluation suffers
from an over-emphasis on frequent predicate types: e.g., the
predicate-GR (have, subj) accounts for 3.5% of the training
set. To mitigate this, we build a stopevent list (analogous to
stopwords – frequent words that carry little meaning), con-
sisting of the 10 most frequent predicate-GRs in the training
set and filter events using these out of the chains used for
evaluation. The full training set consists of 830,643 docu-
ments, with 11,538,312 event chains.

Models

Chambers & Jurafsky 08

We take C&J08 as our starting point. Each event e is repre-
sented by its predicate p(e) and dependency relation to the

1https://opennlp.apache.org/
2http://mark.granroth-wilding.co.uk/\\papers/what\ happens\

next/
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Predicate events: service(x0, machine), report(x0), put(x0, money, in clubhouse), lie+down(x0), . . .

a. word2vec ‘sentence’: service:subj report:subj put:subj lie+down:subj

b. word2vec ‘sentence’ with arguments: service:subj arg:guards arg:machine report:subj arg:guards put:subj arg:guards
arg:money arg:clubhouse lie+down:subj arg:guards

Figure 3: Example chain from figure 1, in the form in which it is presented to word2vec. In a, we learn embeddings for
predicate-GRs only, in terms of surrounding predicate-GRs. In b, we also learn embeddings for argument headwords.

chain’s entity d(e) (together a predicate-GR, see figure 1).
As a shorthand, we use pg(e) = (p(e), d(e)).

For any given pair of event types represented in this way,
their PPMI is used as a relatedness score, computed from
their co-occurrence in the same chains in the training set.
Given the event context in MCNC, we compute a score s(c)
for a candidate next event c by summing its PPMI with each
of the n context events.

s(c) =

n−1∑

j=0

ppmi(pg(c), pg(ej)) (1)

Bigram

Jans et al. (2012) find that a bigram conditional probability
model performs better on the narrative cloze ranking task
than C&J08. We evaluate a simple conditional model, BI-
GRAM, that uses maximum likelihood estimates of the prob-
ability of each predicate-GR, conditioned on individual pre-
vious events. We apply Laplace smoothing to the estimates
and backoff to unigram probabilities for unobserved con-
texts. The score assigned to a candidate is its average prob-
ability given each of the context events.

s(c) =
1

n

n−1∑

j=0

P (pg(c) | pg(ej)) (2)

Distributional Vector Model

A shortcoming of C&J08 is that it only assigns a score to
pairs of events seen together in the training corpus. Models
that represent events in a continuous vector space may give
more reliable judgements of how likely two infrequent event
types are to co-occur. We use latent semantic indexing (LSI,
Deerwester et al. 1990) to represent events in terms of the
contexts in which they have been seen, as a baseline for other
vector-space models.

A matrix is built of co-occurrence counts of predicate-
GRs. Each row represents a predicate-GR and each cell the
number of times it appears in the same chain as another par-
ticular predicate-GR. Singular value decomposition (SVD)
on the matrix produces a lower-dimensional, dense repre-
sentation of each predicate-GR, S. We reduce the dimen-
sionality to 200.

To get a score for each candidate next event, we compute
a representation of the context as the sum of the vectors for
each predicate-GR. We score each candidate by the cosine
similarity of its predicate-GR’s vector to the context vector3.

3Levy, Goldberg, and Ramat-Gan (2014) observe that this is
equivalent to maximizing the sum of the similarity to each context
event.

We refer to this model as DIST-VECS.

s(c) = cosine(
n−1∑

j=0

Spg(ej), Spg(c)) (3)

We also experimented with a variety of other methods
of deriving vectors for events, among them LDA and an
LDA-inspired generative model of predicates and arguments
closely related to that of Chambers (2013). Since none of
them significantly outperformed DIST-VECS on the devel-
opment set, we do not discuss them further here.

Word2vec Word Representations

Mikolov et al. (2013a) introduce a method for efficiently
learning embeddings (dense vector representations) of
words from large text corpora that have proved to be effec-
tive at capturing a variety of relations between words and
useful for a range of tasks (Mikolov et al. 2013b). They are
learned by training a skip-gram model, in which surrounding
words are predicted based on vector similarity to the current
word. The authors’ implementation is available in the form
of the word2vec tool.

Embeddings of verbs learned by word2vec could pro-
vide a suitable measure to judge the relatedness of two
events. E.g., given a context event criticize(politician, x0)
and a candidate repeal(parliament, x0), a close relation be-
tween criticize and repeal in the word vector space could
provide evidence that this is a good candidate. This method
has the advantage that vectors can be learned for a huge vo-
cabulary by running word2vec over a large corpus. It can
score almost any pair of events encountered at test time, re-
gardless of whether they appeared together, or even at all,
in the event chain training set. It also provides a trivial way
to compose predicates with their arguments, since their vec-
tor representations live in the same, generic word-meaning
space. Mikolov et al. (2013a) found that the vectors com-
pose well for similarity-based tasks under vector addition.

We try a verb-only model and a verb-argument model.
In the verb-only model, MIKOLOV-VERB, we represent an
event using the vector for its verb, summing context events
as before and computing cosine similarity. We use the 300-
dimensional vectors W trained by Mikolov et al. (2013b) on
the Google News corpus and made available by the authors4.

s(c) = cosine(
n−1∑

j=0

Wp(ej),Wp(c)) (4)

4https://code.google.com/p/word2vec/
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MIKOLOV-VERB+ARG represents each event as the sum
of the vectors from W for its verb and each of its arguments.

s(c) = cosine(
n−1∑

j=0

Wp(ej) +Wa0(ej) +Wa1(ej) +Wa2(ej),

Wp(c) +Wa0(c) +Wa1(c) +Wa2(c)) (5)

Word2vec Event Representations

Another way to use word2vec to derive representations of
events is to learn embeddings from the event chains. Like the
distributional vector model above, the vectors should have
the property that events that occur in similar chain contexts
are close together.

Vectors are learned by treating each event’s predicate-GR
as a word and each training chain as a sentence presented
to word2vec5 (see figure 3a). We train a skipgram model
with hierarchical sampling, using a window size of 5 and
vector size of 300. We call this WORD2VEC-PRED.

As a first step to including argument words in the vector
representations, WORD2VEC-PRED+ARG, we learn a rep-
resentation of predicates and arguments together by simply
placing all of the words in the ‘sentence’. Thus, each predi-
cate and argument functions both as context for surrounding
predicates and arguments and as a target word itself (see fig-
ure 3b). We increase the window size to 15 to ensure that
as many surrounding events are included in the context as
before. The representation of an event is now the sum of the
vectors for the predicate-GR and each of the arguments.

s(c) = cosine(
n−1∑

j=0

Wp(ej):d(ej) +Warg:a0(ej)+

Warg:a1(ej) +Warg:a2(ej),

Wp(c):d(c) +Warg:a0(c) +Warg:a1(c) +Warg:a2(c)) (6)

Neural Compositional Representations

We train a neural network, EVENT-COMP, to learn a non-
linear composition of predicates and arguments into an event
representation, shown in figure 4. As with WORD2VEC-
PRED+ARG, it has a large vocabulary of vectors correspond-
ing to predicate-GR and argument words. The vectors cor-
responding to an event’s predicate and each of its argument
positions are concatenated to form the first layer represent-
ing the event. Zero vectors are used for empty arguments
and unseen words. A series of layers (the argument com-
position), each with a tanh activation function, produces a
lower-dimensional representation of the event. For a pair
of events, a further series of layers (the event composition),
again with tanh activation functions and a sigmoid activation
function on the final layer, produces a single output value,
the coherence score (coh), representing how confident the
model is that the two events are from the same chain.

The word vectors are initialized using the vectors learned
by WORD2VEC-PRED+ARG. The argument composition

5We use the Gensim implementation:
http://radimrehurek.com/gensim/

Word vectors

Argument
composition

Event
composition

p0

a00

a01

a02

p1

a10

a11

a12

Coherence
score

E
vent0

E
vent1

Figure 4: Neural event composition model, which com-
poses each event’s predicates and arguments, then scores
how strongly they are expected to appear in the same chain.

layers are initialized by training a stack of denoising autoen-
coders, so that the initial representation of an event is an
efficient compression of the word2vec-trained representa-
tions of its predicate and arguments. The event composition
layers are randomly initialized6. Some training iterations
are performed updating only the weights of the event com-
position. Further iterations then update all the weights, in-
cluding the input word vectors7. Although word vectors and
argument composition function weights are updated at this
stage for both events in a pair, the parameters are tied, so that
only a single event representation network is learned, used
for events in both positions.

Both stages minimize the objective function:

1

m

m∑

i=1

−log(pi × coh(e0i, e1i)+

(1− pi)× (1− coh(e0i, e1i)) + λL(θ) (7)

where pi = 1 for positive examples and 0 for negative,
coh(e0i, e1i) is the score output by the network for the ith
training pair and L(θ) is an l2 regularization term on all
weights.

Training the event composition function requires positive
and negative samples of pairs of events. For every event e0i
in a chain containing more than one event, another event in
the chain is chosen at random to produce a positive sample
(e0i, e1i). An event is also chosen at random from outside

6Autoencoder pretraining of these layers did not improve the
results.

7We find updating the word vectors at this stage to be benefi-
cial (c.f. Modi and Titov 2013). Unlike Modi and Titov, we learn
distinct representations for predicates and each argument slot.
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System Accuracy (%)

Chance baseline 20.00
C&J08 30.52
BIGRAM 29.67
DIST-VECS 27.94
MIKOLOV-VERB 24.57
MIKOLOV-VERB+ARG 28.97
WORD2VEC-PRED 40.17
WORD2VEC-PRED+ARG 42.23
EVENT-COMP 49.57

Table 1: Model accuracy on the MCNC task.

the current chain to serve as e1i for a negative sample, which
it is assumed should receive a low score.

The input vector for each word is 300-dimensional. We
use two hidden layers in the argument composition, with
sizes 600 and 300, and two in the event composition, with
sizes 400 and 200. Autoencoders were all trained with 30%
dropout corruption for 2 iterations over the full training set,
with a learning rate of 0.1 and λ = 0.001. Both subsequent
training stages used a learning rate of 0.01 and λ = 0.018.
The first (event composition only) was run for 3 iterations,
the second (full network) for 8. All stages of training used
SGD with 1,000-sized minibatches.

At test time, the model is used to score candidate next
events by averaging pairwise scores with the context events,
just as in C&J08:

s(c) =
1

n

n−1∑

j=0

coh(c, ej) (8)

Results

The test set prediction accuracy of each of the models is
shown in table 1. C&J08 performs comfortably above the
chance baseline of 20%. BIGRAM achieves the same level
of accuracy as C&J08: the difference is not significant9.
DIST-VECS, our baseline vector similarity method, does not
quite match the performance of C&J08.

Using embeddings for just the verb of each event,
MIKOLOV-VERB, performs worse than C&J08, but substan-
tially above chance. Including the embeddings of argument
headwords improves the result, almost matching C&J08.
Note that neither of these models is trained on event chain
data.

The best results of the predicate-GR-only models were
produced by using word2vec to learn vector represen-
tations of predicate-GRs from event chains (WORD2VEC-
PRED). A further gain is produced by also learning
a representation of argument headwords, WORD2VEC-
PRED+ARG, a considerable improvement over C&J08.

8Learning rates, regularization coefficients and network archi-
tectures were tuned on the development set.

9Significance under Pearson’s χ2 test, p < 0.05. All other dif-
ferences are significant, except MIKOLOV-VERB+ARG/DIST-VECS
and MIKOLOV-VERB+ARG/BIGRAM.

EVENT-COMP, which learns a complex composition of
arguments and predicates, achieves a further substantial im-
provement, giving the best result by far of all the models.
We attribute this to a combination of the non-linear argu-
ment composition function and the learned non-linear com-
bination of the vectors’ dimensions to score event pairs.

Implementations of all the models and the evalua-
tion, as well as the evaluation dataset split, are avail-
able at http://mark.granroth-wilding.co.uk/\\papers/what\
happens\ next/.

Conclusion

We consider the problem of automatic acquisition of event
knowledge from text as introduced by Chambers and Ju-
rafsky (2008), but with a focus on next event prediction.
We introduce a new development of the narrative cloze task
(Chambers and Jurafsky 2008): multiple choice narrative
cloze. We use this task to compare several approaches to
event prediction that involve deriving a vector representation
of events. We find that the word2vec learning technique
of Mikolov et al. (2013a) can be used to induce event repre-
sentations that, like C&J08, use only the predicate-GRs and
achieve considerably better predication accuracy. A simple
technique for using argument words to influence the vector
representation of an event yields further improvement.

We then use the representations of predicates and their
arguments learned in this way as initialization to a neural
network model that predicts how likely two events are to
appear in the same chain by performing a non-linear com-
position of their predicates and arguments. At training time,
it simultaneously adjusts the word embeddings and learns
the predicate-argument composition function and the chain
coherence function. This model achieves impressive MCNC
prediction accuracy. One possible reason for its success is its
ability to capture non-linear interactions between predicates
and arguments – e.g. allowing play golf and play dead to lie
in different regions of the vector space. Examination of the
best model’s performance on infrequent events shows that it
is better able than C&J08 to generalize what it has learned
about co-occurrence of frequent events to rarer items.

In future work, we plan to experiment with methods to
combine whole event chains into a single vector, so the
model is not limited to learning associations between pairs
of events. We also hope to explore ways in which the model
can be used in practice by a narrative generation system for
suggesting probable events in a given context.
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