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Abstract

Following their monolingual counterparts, bilingual word
embeddings are also on the rise. As a major application task,
word translation has been relying on the nearest neighbor
to connect embeddings cross-lingually. However, the nearest
neighbor strategy suffers from its inherently local nature and
fails to cope with variations in realistic bilingual word embed-
dings. Furthermore, it lacks a mechanism to deal with many-
to-many mappings that often show up across languages. We
introduce Earth Mover’s Distance to this task by providing a
natural formulation that translates words in a holistic fashion,
addressing the limitations of the nearest neighbor. We further
extend the formulation to a new task of identifying parallel
sentences, which is useful for statistical machine translation
systems, thereby expanding the application realm of bilin-
gual word embeddings. We show encouraging performance
on both tasks.

Introduction

Over the past few years, distributed representations of
words, commonly referred to as word embeddings, have
shown promise for a range of natural language processing
tasks. They are welcomed by the community because they
represent words by continuous vectors and overcome many
limitations of the traditional discrete representations. Cru-
cially, they allow capturing syntactic and semantic regular-
ities of words by training neural networks on large-scale
corpora. For example, semantically similar words are close
to each other, and linear operations between word embed-
dings can capture interesting relationships between words
(Mikolov et al. 2013a; 2013b; Mikolov, Yih, and Zweig
2013).

With the increasing popularity of monolingual word em-
beddings, their bilingual counterparts are also gaining at-
tention. Ideally, bilingual word embeddings should capture
cross-lingual regularities in addition to monolingual ones by,
for example, placing monolingual synonyms and their trans-
lations in a cluster. A number of recent works have pursued
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this goal and produced high quality bilingual word embed-
dings (Zou et al. 2013; Mikolov, Le, and Sutskever 2013;
Chandar A P et al. 2014; Hermann and Blunsom 2014;
Kočiský, Hermann, and Blunsom 2014; Gouws, Bengio, and
Corrado 2015; Luong, Pham, and Manning 2015; Vulić and
Moens 2015; Soyer, Stenetorp, and Aizawa 2015).

Despite these efforts, existing bilingual word embeddings
are still far from perfect due to the diversity and distinctive-
ness across natural languages. This is evidenced by the per-
formance that leaves much to be desired on word translation,
one major task that has been explored to test the quality of
bilingual word embeddings.

However, the inadequate performance should also be at-
tributed to the retrieval strategy for translation. Previously,
a source word is translated by simply searching the tar-
get vocabulary for the nearest neighbors of the word vec-
tor (Mikolov, Le, and Sutskever 2013; Gouws, Bengio, and
Corrado 2015; Vulić and Moens 2015). While this simple
strategy would be perfectly effective if the bilingual word
embeddings were ideal, it is not robust to variations in im-
perfect real settings due to its essentially local nature. As
an illustrative example, Figure 1(a) shows a case where
the nearest neighbor fails to translate both left-side words
correctly because a right-side word is too close to them.
To demonstrate the seriousness of this problem, we find in
our English-Italian translation task that the nearest neighbor
makes nearly three quarters of source words (1693 out of
2266) share target proposals, and only 71 of them are val-
idated by the lexicon. Moreover, the nearest neighbor ex-
hibits a counterintuitive behavior when we reverse the trans-
lation direction: Retrieving the nearest neighbor for each
right-side word would result in correct translation in Figure
1(a). This asymmetry diverges from our general understand-
ing of translation.

Conceptually, for the example in Figure 1, if we are able
to minimize the total distance incurred by the translation
paths subject to the one-to-one translation constraint, we
will successfully find the correct translations, regardless of
translation direction. We capture this intuition by introduc-
ing the Earth Mover’s Distance (EMD). It is a well-studied
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Figure 1: An illustration of bilingual word embeddings for translating from Chinese to English, with squares representing
source side embeddings and circles target, and “yinyue”/“music” is a (romanized) Chinese-English translation pair, while “wu-
dao”/“dance” is another. (a) The nearest neighbor incorrectly translates “wudao” to “music” because the dotted path is longer.
(b) The Earth Mover’s Distance correctly matches both word pairs. We assume each word carries the same weight in this illus-
tration, as indicated by the matching sizes of squares and circles. In this case, the EMD automatically enforces the one-to-one
translation constraint, and consequently moves earth from circles to squares as indicated by the arrows.

optimization problem that aims to find the minimum dis-
tance required to move one set of points to another, which
provides a suitable solution to our task at hand. In addi-
tion to the one-to-one translation discussed above, the EMD
formulation naturally tackles multiple translations, which
commonly occur cross-lingually but nearest neighbor can-
not properly handle. Our evaluations show dramatic per-
formance gains brought by the EMD, which alleviates the
aforementioned problem by reducing the number of source
words that share target proposals to 770, and 140 of them
can be found in the lexicon. Furthermore, an analysis of the
EMD-produced translations reveals its interesting behavior
in dealing with multiple translations.

The idea of using the EMD to match word vectors in
different vocabularies can be further extended for matching
bilingual sentences. As its name suggests, the EMD provides
a distance so that we can measure sentence pairs across lan-
guages. Drawing information from bilingual word embed-
dings, this sentence-level distance is expected to encode se-
mantic closeness between a bilingual sentence pair. We ver-
ify its effectiveness by introducing a new task of finding par-
allel sentences out of a noisy bilingual corpus. With the help
of the EMD, the debut of an embedding-based approach on
this stage is encouragingly successful.

Related Work

Word translation is closely related to bilingual lexicon ex-
traction, which is a basis for many cross-lingual applica-
tions. Although prior works also involve representing words
with vectors (Haghighi et al. 2008; Vulić and Moens 2013),
they differ substantially from the neural word embeddings
we focus on, and from the methodology of our work. Sim-
ilarly, previous works on bilingual corpus filtering (Khadivi
and Ney 2005; Taghipour et al. 2010, inter alia) have never
utilized neural word embeddings.

Mikolov, Le, and Sutskever (2013) pioneered the use of
neural word embeddings for word translation by a trans-
lation matrix mapping between monolingual word embed-
dings. Gouws, Bengio, and Corrado (2015) followed up
by providing standard bilingual word embeddings with im-
proved results. Vulić and Moens (2015) explored training
bilingual word embeddings with comparable corpora to in-

duce bilingual lexica. As noted in our introduction, they all
use nearest neighbors to translate words, which we attempt
to improve upon.

Moving from word-level translation to sentence-level, we
see a wealth of works that involve the use of word embed-
dings. However, most of them train a neural network model
initialized by monolingual word embeddings, which are in
turn trained separately on monolingual data, such as the
work of (Zhang et al. 2014). The only work we are aware of
that utilizes bilingual word embeddings is (Zou et al. 2013).
In addition to training bilingual word embeddings on their
own, they composed phrase embeddings by averaging word
embeddings and computed distance between phrase pairs to
serve as an additional feature for a phrase-based machine
translation system. Our work uses the EMD instead of the
simple averaging composition, and computes distance on the
sentence level, though our idea can also be applied to the
phrase level.

The Earth Mover’s Distance is a well-studied transporta-
tion problem (Rubner, Tomasi, and Guibas 1998) and there
exist fast specialized solvers (Pele and Werman 2009). The
EMD has seen wide application in the computer vision lit-
erature (Rubner, Tomasi, and Guibas 1998; Ren, Yuan, and
Zhang 2011). Recently, it has been successfully used to de-
rive a document distance metric from monolingual word em-
beddings, which is then used for document categorization
(Kusner et al. 2015). We apply the EMD to machine transla-
tion, a fundamental cross-lingual task, with the basis being
bilingual word embeddings. Our novel formulation for word
translation also differs substantially.

Earth Mover’s Distance

with Bilingual Word Embeddings
In this section, we first formulate the word translation task as
an instance of the Earth Mover’s Distance problem. As we
get familiar with the framework, it can be naturally extended
to derive a distance between a pair of bilingual sentences.

Word Translation

Our approach builds on bilingual word embeddings, which
are fixed throughout. Each word in both languages is associ-
ated with a word vector in a shared D-dimensional semantic
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space, which can be looked up in matrices S ∈ R
D×Vs and

T ∈ R
D×Vt for the source and target languages with vocab-

ulary sizes Vs and Vt, respectively. In this D-dimensional
space, the Euclidean distance between a target embedding
Ti and a source embedding Sj naturally measures the cost
of translation between the i-th target word and the j-th
source word. We denote this cost as Cij = ‖Ti − Sj‖,
where i ∈ {1, ..., Vt} , j ∈ {1, ..., Vs}.

We also associate each word with the number of times it
appears in the parallel corpus. These frequencies are packed
in vectors s ∈ R

Vs and t ∈ R
Vt , where sj represents the

frequency for the j-th source word, and similarly for the tar-
get side. Importantly, since the frequencies are collected on
a parallel corpus, we expect one-to-one translation pairs to
show up roughly equal times.

We can imagine source side words as holes, and target
side words as piles of earth, scattered in the D-dimensional
space as specified by the bilingual word embeddings. Each
word carries a frequency as its weight, representing the vol-
ume of a hole, or the amount of earth in a pile. Then our goal
is to move the earth to fill up the holes with minimal cost.
If we ensure there is sufficient earth, then every source word
will get fully explained.

This formulation is helpful for both one-to-one and mul-
tiple translations. For one-to-one translations, the word fre-
quencies on both sides are likely to match, which will nat-
urally lead to correct translation as shown in Figure 1(b),
because “music” would have used up all its earth to fill the
“yinyue” hole, and hence would not interfere with the trans-
lation of “wudao”. In the multiple-source-to-one-target case
for example, the target word frequency will roughly equal
the sum of frequencies of source equivalents, resulting in a
distribution of earth to multiple holes.

We formalize the intuition as follows. Let W ∈ R
Vt×Vs

be a (sparse) transportation matrix, with Wij representing
the amount of earth moved from the i-th pile to the j-th hole.
The optimization problem becomes

min

Vt∑

i=1

Vs∑

j=1

WijCij

s.t. Wij ≥ 0

Vs∑

j=1

Wij ≤ ti, i ∈ {1, ..., Vt}

Vt∑

i=1

Wij = sj , j ∈ {1, ..., Vs}

(1)

To ensure the problem is feasible, we require that

Vs∑

j=1

sj ≤
Vt∑

i=1

ti. (2)

This means there is at least as much earth to fill up all the
holes, which will ensure all source words get translated for
our task.

This optimization problem is a linear program, with spe-
cialized solvers available. Once the optimization problem is

solved, the transportation matrix W will store the transla-
tion relations between words of the two languages, where a
non-zero Wij signifies a translation between the i-th target
word and the j-th source word. Finally, the Earth Mover’s
Distance is defined as

EMD(s, t,C) =

∑Vt

i=1

∑Vs

j=1 WijCij
∑Vs

j=1 sj
, (3)

which is the objective value (total cost) normalized by the
total volume of the holes. This will quantify the quality of
the translation process based on bilingual word embeddings.

As a final note, the moving direction introduced by the
metaphor of earth and holes is not essential to the optimiza-
tion. In case the feasibility condition is violated, we can al-
ways exchange the roles of earth and holes, or equivalently
swap the variable names s and t, to arrive at a feasible pro-
gram. This means the EMD optimization essentially gives a
matching between Vs and Vt vocabularies. This invariance
to translation direction makes our approach immune from
the counterintuitive behavior of the nearest neighbor.

Bilingual Sentence Distance

The optimization problem (1) can be easily extended to other
tasks by varying the notion of frequency. In this section, we
would like to design a distance measure between a pair of
bilingual sentences.

Naturally, we associate vectors s ∈ R
Vs and t ∈ R

Vt to
a sentence pair, representing the source side and the target
side respectively. A first idea would be using bag-of-words
representations for the two sentences, and normalization is
desired because we weigh both sentences equally, similar
to the monolingual case in (Kusner et al. 2015). However,
the commonest words, mostly function words, would carry
overly high weights that overshadow the contribution of
the more important content words. What is worse, function
words often have no correspondence cross-lingually, which
would result in huge piles of earth finding hardly any mean-
ingful holes to move to. Kusner et al. simply removed stop
words for their document categorization task. However, we
argue that word removal is seldom an option under the trans-
lation scenario. Therefore, we propose to introduce the prin-
cipled Inverse Document Frequency (IDF) to the weighting
scheme to downplay the effect of common words.

Formally, for the j-th word in the source language, sj
now represents its term frequency in the source sentence,
reweighted by its IDF and a normalization factor:

sj =
TF-IDF (j)∑
k TF-IDF (k)

, j ∈ {1, ..., Vs} .

Things are similar for the target side.
Since a sentence is relatively short, s and t are usually

very sparse. The sparsity allows a dramatic reduction in
the number of constraints of the optimization problem (1),
which will lead to fast solution. Furthermore, normalization
causes the feasibility condition (2) to hold with equality, and
the second set of constraints in (1) can be rewritten as equal-
ity constraints. Finally, the EMD (3) simplifies to the objec-
tive value in (1). This value gathers word distances specified
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by bilingual word embeddings to the sentence level through
the EMD optimization, and we hope it to encode the seman-
tic distance between a sentence pair. We will use this sen-
tence distance to filter out non-parallel sentence pairs in a
bilingual corpus.

Experiments

Word Translation

We start out our experiments on English-Italian word trans-
lation before we move to the Chinese-English task.

Setup Our approach can be applied on top of any existing
bilingual embeddings. We choose BilBOWA (Gouws, Ben-
gio, and Corrado 2015) to train bilingual word embeddings,
which holds the state of the art on this task. Our embeddings
consist of 50 dimensions, and other hyperparameters are as
recommended by the toolkit.

We take nearest neighbor (NN) as our primary baseline.
Dinu, Lazaridou, and Baroni (2014) proposed a globally-
corrected (GC) method to deal with the hubness problem
NN faces. We implemented their approach and report re-
sults with zero and 5000 additional source word vectors,
where more additional vectors are expected to enhance per-
formance.

Out of computation efficiency concerns, we limit the
source and target vocabularies to the most frequent 4000 and
10000 words, i.e. Vs = 4000 and Vt = 10000. We choose
a relatively large Vt because we want to ensure the feasibil-
ity condition (2) is met so that all the Vs source words get
translated. It is not common practice to limit the target vo-
cabulary where NN retrieves from, but we actually observe a
boost in NN performance, likely because it keeps NN from
being distracted by rare garbage words. Indeed, it is fairly
unlikely that a top 4000 frequent source word should trans-
late to a target word that falls out of rank 10000.

Training and Testing Data We train BilBOWA on the
English-Italian part of Europarl (Koehn 2005), a parallel cor-
pus of 1.94M sentence pairs with 50.8M English words and
49.0M Italian words. A lexicon is needed to determine the
correctness of word translation. We use an English-Italian
lexicon1 that consists of 4942 English entries, each having
one or more Italian translations.

Evaluation Metrics Our evaluation procedure is as fol-
lows. First, we take M ≤ Vs source words to look up the
gold lexicon. If a word is not found, it is counted as out-of-
lexicon (OOL). If all the translations of an in-lexicon word
fall out of our Vt-sized target vocabulary, this source word
is counted as out-of-coverage (OOC). Then we gather our
test instances totaling N = M −#OOL−#OOC. We also
report Coverage = N

M−#OOL to gauge our target vocabu-
lary size. We summarize the test set information in Table 1,
where we also split statistics over frequency bins. Finally,
for each test instance n ∈ {1, ..., N}, we obtain gold trans-
lation set SG (n) and proposed translation set SP (n) to cal-
culate evaluation metrics, including precision P , recall R,

1http://clic.cimec.unitn.it/˜georgiana.dinu/down

Frequency bin 0-4K 0-1K 1-2K 2-3K 3-4K
M 4000 1000 1000 1000 1000

# OOL 1695 212 346 499 638
# OOC 39 9 4 7 19
N 2266 779 650 494 343

Coverage (%) 98.3 98.9 99.4 98.6 94.8

Table 1: English-Italian test set statistics drawn from the
most frequent 4K English words and split over four bins. M
is the number of words in the bin, and N is the number of
test instances after ruling out out-of-lexicon (OOL) and out-
of-coverage (OOC) words. Coverage shows the percentage
of N over in-lexicon words.

K R A

NN 1 4.91 7.11
GC-0 1 11.05 15.98

GC-5000 1 11.44 16.55
EMD 1 19.50 28.20

Table 2: Overall recall and accuracy for English-Italian word
translation when each approach only proposes one transla-
tion (K = 1).

F1 score, and accuracy A.

P =

∑N
n=1 |SG (n) ∩ SP (n)|
∑N

n=1 |SP (n)|

R =

∑N
n=1 |SG (n) ∩ SP (n)|
∑N

n=1 |SG (n)|
F1 =

2PR

P +R

A =
1

N

N∑

n=1

I [SG (n) ∩ SP (n) �= ∅]

We use K to denote the (average) number of transla-
tions a method outputs for a source word, i.e. K ≡
1
N

∑N
n=1 |SP (n)|. For K = 1, accuracy will equal preci-

sion, and correlate with recall.
Previous works typically report accuracy only, but preci-

sion and recall are also important for K > 1, especially
when we are interested in finding multiple translations of
one source word.

Results We first report overall performance when M =
Vs. For K = 1, we only report recall and accuracy, as shown
in Table 2. Our approach substantially improves on NN by
more than 21 accuracy points. GC also improves on NN,
with more additional source vectors bringing slight benefit
as expected, but still lags far behind our approach.

Next we allow more than one translation proposals per
source word (K > 1). Unlike NN rigidly retrieving K target
words for each test instance, our approach automatically de-
termines the number of proposals. On average, each source
word gets 3.8 translations, so we set K = 3 and 4 for NN to
approach fairness. From Table 3, we observe increased ac-
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K P R F1 A

NN 3 4.34 9.00 5.86 12.80
NN 4 3.66 10.13 5.38 14.34

EMD 3.8 9.99 25.97 14.43 35.22

Table 3: Overall performance for English-Italian word trans-
lation when more than one translation is allowed (K > 1).
Our approach outputs an average number of 3.8 proposals,
so we list NN at K = 3 and 4.
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Figure 2: English-Italian accuracy over different frequency
bins when each approach only proposes one translation
(K = 1). The EMD wins by the largest gap for the com-
monest words (0-1K).

curacy over K = 1 as expected, and our approach still wins
over NN by a large gap. Enlarging K naturally brings up
recall at the cost of precision, but our approach manages to
surpass both the recall of NN with K = 4 and the precision
of NN with K = 3, even though this comparison offers NN
an advantage.

To gain further insight into the behavior of the tested ap-
proaches, we split our test set into four frequency bins (Table
1) and report accuracy on them at K = 1 in Figure 2. Neither
NN nor GC vary much across the four bins. It is clear that
our approach outperforms them across all frequency bins,
and the gain is more pronounced for the commoner words.

Finally, we are particularly interested in how the EMD
deals with multiple translations. To analyze this trait, we
make another split of our test set based on the number of
answers provided by the lexicon, and then count the propos-
als for each split. As listed in Table 4, we observe a matching
trend between the number of answers and the average num-
ber of proposals, unless entries having that many answers
become too few to trust the statistics. It is surprising that
the EMD manages to adaptively determine the length of its
proposal list by mere word occurrence statistics and unsu-
pervised embeddings.

Chinese-English Translation Embeddings for this task
are trained on a Chinese-English parallel corpus compris-

ing 1.23M sentence pairs with 32.1M Chinese words and
35.4M English words. To evaluate the quality of translation,
we use Chinese-English Translation Lexicon Version 3.02

as the gold standard. This lexicon includes 54170 Chinese
headwords, each listed with at least one English translation.
All the other settings are the same as the English-Italian
case.

In this translation task, our approach returns an average
of 2.9 translation proposals per word, so we list K = 2 and
3 for NN for reference. The results are summarized in Ta-
ble 5. NN appears more competent for this language pair,
while GC fails to improve on it. But our approach still man-
ages to improve. For K = 1, we obtain an accuracy gain of
roughly 3 points. For K > 1, our approach achieves higher
recall even when compared to NN with K = 3 in adverse
condition, highlighting its superiority in managing multiple
translations.

Bilingual Corpus Filtering

This task aims to filter out non-parallel sentence pairs in a
bilingual corpus because the noise can bring a detrimental
effect to the translation system. We prepare a noisy corpus
by introducing artificial noise into our parallel data. First,
we remove duplicates from our Chinese-English corpus and
split it into three parts: a portion of 100K sentence pairs
to be made noisy, another 100K clean portion, and the re-
maining 842K data for training our bilingual embeddings.
Then for each English sentence in the first portion, we ran-
domly select 
l × n� words, where l is the sentence length
and n ∈ [0, 1] is the noise level, and replace each of them
with a random word in the vocabulary. Finally, the distorted
sentences are mixed with the clean portion to obtain a 200K
test set with half of them being noisy. A filter is asked to
take out half of the test set with as many parallel sentences
as possible. For this specific testing scenario, all the above
evaluation metrics coincide.

Since our approach offers a measure of distance between
a bilingual sentence pair, we use it to sort the test set in as-
cending order and take the first half to return. We choose
as baseline a similar filter based on length-normalized log
probabilities, which provides a score to sort in descending
order (Khadivi and Ney 2005):

Score
(
fJ
1 , e

I
1

)
=

1

J
log p

(
fJ
1 |eI1

)
+

1

I
log p

(
eI1|fJ

1

)
.

We use IBM model 1 (Brown et al. 1993) to estimate prob-
abilities for both directions, which avoids the necessity of
approximation in (Khadivi and Ney 2005).

In addition to reporting accuracy for identifying noise, we
also test the quality of the filtered bilingual corpus by feed-
ing it to the phrase-based translation system Moses (Koehn
et al. 2007) as training data. We use NIST 2006 MT Chinese-
English data set as the development set. Testing is performed
on NIST 2002-2005, 2008 MT data sets, and evaluated with
case-insensitive BLEU-4 score (Papineni et al. 2002).

We expect realistic corpora to contain relatively low level
of noise, so we present our results under noise level 0.2 in

2https://catalog.ldc.upenn.edu/LDC2002L27

2874



# answers 1 2 3 4 5 6
# entries 1488 603 122 49 3 1

Average # proposals 3.3 4.4 5.4 5.3 3.0 11

Table 4: Average number of Italian proposals by the EMD for English entries having different number of answers in the lexicon.

K P R F1 A

NN 1 26.14 11.47 15.94 26.14
GC-0 1 25.71 11.28 15.68 25.71

GC-5000 1 25.84 11.34 15.76 25.84
EMD 1 29.07 12.76 17.74 29.07
NN 2 17.85 15.66 16.68 34.53
NN 3 13.54 17.83 15.39 38.30

EMD 2.9 14.21 18.32 16.01 39.46

Table 5: Overall performance for Chinese-English word
translation.

�!� �!� �!" �!# �
"�

#�

���

�
��
��
��
��
��
�

�$����%�&�%

�

�

'���
()���

�!� �!� �!" �!# �
�"!	

�*

�*!	

�#

�#!	

)
+�
,
���
�

�$����%�&�%

�

�

'���%�
'���
()���

Figure 3: Accuracy and the resulting average BLEU of our
approach and the baseline for filtering various levels of
noise-corrupted corpus. Lower levels of noise more closely
mimic reality but are harder to identify, for which our ap-
proach predominates over the baseline.

Table 6. Although IBM model 1 identifies noise better than
chance, it fails to improve on the unfiltered for machine
translation, which means the reduction in noise does not
counter the loss of parallel data. In contrast, our approach
offers substantially better accuracy. As the effect of noise
reduction begins to outweigh, our approach obtains better
translation quality, surpassing the IBM baseline with 1.13
BLEU points on average, and nearing the oracle BLEU. We
also test the version of our approach with IDF weighting
disabled, retreating to a scheme similar to (Kusner et al.
2015). We observe a marked degradation in both accuracy
and BLEU, and conclude that IDF weighting plays an indis-
pensable role.

We also relax the difficulty of the task by varying the noise
level. Intuitively, lower levels of noise constitute harder
tasks, as noisy sentence pairs would be more similar to bi-

text and thus more difficult to tell apart. As charted in Figure
3, the accuracy trend matches our intuition, and with 0.6 or
higher noise level, both methods achieve reasonably good
performance. We also observe that accuracy over 80% basi-
cally leads to BLEU around oracle, and since our approach
invariably attains that position regardless of noise level, its
BLEU never falls far behind the oracle, while the baseline
only catches up until the task becomes rather easy with suf-
ficiently high level of noise.

Conclusion
Motivated by the shortcomings of using nearest neighbor for
word translation with bilingual embeddings, we reformulate
the task by introducing the Earth Mover’s Distance. With
the mere aid of occurrence statistics, it pairs up word vec-
tors from distinct languages with substantially better perfor-
mance, and naturally handles multiple translations. We fur-
ther extend the vocabulary-level matching to sentence-level
to arrive at a bilingual sentence distance metric that draws
on information encoded in bilingual word embeddings. We
apply the distance metric to a bilingual corpus filtering task,
on which bilingual word embeddings come into play for the
first time, and observe encouraging performance in terms of
both filtering accuracy and resultant translation quality.
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