
Addressing a Question Answering Challenge by Combining
Statistical Methods with Inductive Rule Learning and Reasoning

Arindam Mitra
Arizona State University

amitra7@asu.edu

Chitta Baral
Arizona State University

chitta@asu.edu

Abstract

A group of researchers from Facebook has recently pro-
posed a set of 20 question-answering tasks (Facebook’s
bAbl dataset) as a challenge for the natural language under-
standing ability of an intelligent agent. These tasks are de-
signed to measure various skills of an agent, such as: fact
based question-answering, simple induction, the ability to
find paths, co-reference resolution and many more. Their goal
is to aid in the development of systems that can learn to solve
such tasks and to allow a proper evaluation of such systems.
They show existing systems cannot fully solve many of those
toy tasks. In this work, we present a system that excels at all
the tasks except one. The proposed model of the agent uses
the Answer Set Programming (ASP) language as the primary
knowledge representation and reasoning language along with
the standard statistical Natural Language Processing (NLP)
models. Given a training dataset containing a set of narra-
tions, questions and their answers, the agent jointly uses a
translation system, an Inductive Logic Programming algo-
rithm and Statistical NLP methods to learn the knowledge
needed to answer similar questions. Our results demonstrate
that the introduction of a reasoning module significantly im-
proves the performance of an intelligent agent.

Developing intelligent agents is one of the long term goals
of Artificial Intelligence. To track the progress towards
this goal, several challenges have been recently proposed
that employs a Question-Answering (QA) based strategy to
test an agent’s understanding. The Allen Institute for AI’s
flagship project ARISTO, (Richardson, Burges, and Ren-
shaw 2013)’s MCTest and the Winograd Schema Challenge
(Levesque, Davis, and Morgenstern 2012) are all examples
of this. As mentioned in the work of (Weston et al. 2015),
even though these tasks are promising and provide real
world challenges, successfully answering their questions re-
quire competence on many sub-tasks (deduction, use of
common-sense, abduction, coreference etc.); which makes
it difficult to interpret the results on these benchmarks. Of-
ten the state-of-the-art systems are highly domain specific
and rely heavily on the prior knowledge. In this light, they
(Weston et al. 2015) have proposed a new dataset (Facebook
bAbl dataset) that put together several question-answering
tasks where solving each task develops a new skill set into
an agent.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In the following paragraph, we provide some examples of
the tasks from (Weston et al. 2015). A detailed description
of all the tasks can be found there. Each task is noiseless,
provides a set of training and test data and a human can po-
tentially achieve 100% accuracy.

Example 1. Task 8: List/Sets

Mary grabbed the football.
Mary traveled to the office.
Mary took the apple there.
What is Mary carrying? A:football,apple
Mary left the football.
Daniel went back to the bedroom.
What is Mary carrying? A:apple

Example 2. Task 19: Path Finding

The office is east of the hallway.
The kitchen is north of the office.
The garden is west of the bedroom.
The office is west of the garden.
The bathroom is north of the garden.
How do you go from the kitchen to the garden?
A:s,e

In this work, we describe an agent architecture that simul-
taneously works with a formal reasoning model and a statis-
tical inference based model to address the task of question-
answering. Human beings in their lifetime learn to perform
various tasks. For some tasks they may have a clear reason-
ing behind their actions. For example, the knowledge needed
to answer the previous question “What is Mary carrying?”
is clear and can be described formally. On the other hand,
there are tasks such as Named Entity Recognition that we
can do easily, however, we may not be able to describe it
well enough for anyone else to use the description for recog-
nition. In these cases, a statistical inference model that al-
lows to learn by observing a distribution may be a better fit.
In this research, thus, we work with a heterogeneous agent
model. In our current implementation, the agent model con-
tains three layers.

Statistical Inference Layer This layer contains statistical
NLP models. In this case study, it contains only an Ab-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2779

Predicate Meaning
happensAt(F, T) Event E occurs at time T
initiatedAt(F, T) At time T a period of time

for which fluent F holds is
initiated

terminatedAt(F, T) At time T a period of time
for which fluent F holds is
terminated

holdsAt(F, T) Fluent F holds at time T
Axioms

holdsAt(F, T + 1)
← initiatedAt(F, T).

holdsAt(F, T + 1)←
holdsAt(F, T),
not terminatedAt(F, T).

Table 1: The basic predicates and axioms of Simple Discrete
Event Calculus (SDEC)

stract Meaning Representation Parser (AMR) (Banarescu
et al. 2013; Flanigan et al. 2014).

Formal Reasoning Layer This layer is responsible for for-
mal reasoning. It uses the Answer Set Programming
(ASP) (Gelfond and Lifschitz 1988) language as the
knowledge representation and reasoning language. The
knowledge required for reasoning is learned with a mod-
ified version of the Inductive Logic Programming algo-
rithm XHAIL (Ray 2009). The reasoning module takes
sentences represented in the logical language of Event
calculus which is a temporal logic for reasoning about the
events and their efforts. The ontology of the Event calcu-
lus comprises of time points, fluent (i.e. properties which
have certain values in time) and event (i.e. occurrences
in time that may affect fluents and alter their value). The
formalism also contains two domain-independent axioms
to incorporate the commonsense law of inertia, according
to which fluents persist over time unless they are affected
by an event. The building blocks of Event calculus and its
domain independent axioms are presented in Table 1.

Translation layer The translation layer encodes the natural
language sentences to the syntax of Event calculus with
the help of the AMR parser from the statistical inference
layer. This layer communicates with both the other lay-
ers and allows information to be passed from one layer to
another. In this case study, we use a naive deterministic
algorithm to model the translation layer.

Given a question-answer text such as the one shown in
Example 1 (Task 8), the translation module first converts the
natural language sentences to the syntax of Event calculus.
While doing so, it first obtains the Abstract Meaning Rep-
resentation (AMR) of the sentence from the AMR parser in
the statistical NLP layer and then applies a rule-based pro-
cedure to convert the AMR graph to the syntax of Event
calculus. Figure 1 & 2 show two AMR representations for
the sentence “Mary grabbed the football.” and the question
“What is Marry carrying?”. The representation of the sen-
tences (narratives) and the question-answer pairs (annota-
tion) of Example 1 in Event calculus is shown in Table 2.
The narratives in Table 2 describe that the event of grabbing
a football by Mary has happened at time point 1, then an-

other event named travel has happened at time point 2 and
so on. The first two annotations state that both the fluents
specifying Mary is carrying an apple and Mary is carrying a
football holds at time point 3. The not holdsAt annotation
states that at time point 7 Mary is not carrying a football.
Given such a set of narratives and annotations the reasoning
module employs an Inductive Logic Programming algorithm
to derive a Hypothesis H, that can explain all the annota-
tions. Given more examples it updates the existing Hypoth-
esisH incrementally to remain consistent with the data.

The rest of the paper is organized as follows: in section
1, we provide a brief overview of Answer Set Programming
and Inductive Logic Programming; In section 2, we describe
the way the task specific ASP reasoning rules are learned.
Section 3 presents training of the coreference resolution sys-
tem with reasoning. In section 4, we describe the related
works. In section 5, we present a detailed experimental eval-
uation of our system. Finally, section 6 concludes our paper.
Further details are available at http://goo.gl/JMzHbG.

Figure 1: AMR representation of “Mary grabbed the foot-
ball.”

Figure 2: AMR representation of “What is Marry carry-
ing?”

Narrative
happensAt(grab(mary,football),1).
happensAt(travel(mary,office),2).
happensAt(take(mary,apple),3).
happensAt(leave(mary,footbal;),5).
happensAt(go back(daniel,bedroom),6).
Annotation
holdsAt(carry(mary,football),4).
holdsAt(carry(mary,apple),4).
holdsAt(carry(mary,apple),7).
not holdsAt(carry(mary,football),7).

Table 2: Representation of the Example 1 in Event Calculus

1 Background

Answer Set Programming

An answer set program is a collection of rules of the form,

L0 ← L1, ..., Lm, not Lm+1, ...,not Ln

where each of the Li’s is a literal in the sense of a classical
logic. Intuitively, the above rule means that if L1, ..., Lm are

2780

true and if Lm+1, ..., Ln can be safely assumed to be false
then L0 must be true (Baral 2003) . The left-hand side of an
ASP rule is called the head and the right-hand side is called
the body. The semantics of ASP is based on the stable model
(answer set) semantics of logic programming (Gelfond and
Lifschitz 1988).

Example

initiatedAt(carry(A,O), T)←
happensAt(take(A,O), T). (1)

The above rule represents the knowledge that the fluent
carry(A,O), denoting A is carrying O, gets initiated at
time point T if the event take(A,O) occurs at T . Follow-
ing Prolog’s convention, throughout this paper, predicates
and ground terms in logical formulae start with a lower
case letter, while variable terms start with a capital letter.
A rule with no head is often referred to as a constraint.
A rule with empty body is referred to as a fact. An an-
swer set program P containing the above rule (Rule 1) and
the axioms of Event calculus (from Table 1) along with the
fact happensAt(take(mary, football), 1) logically entails
(|=) that mary is carrying a football at time point 2 i.e.
holdsAt(carry(mary, football), 2). Since it can be safely
assumed that mary is not carrying a football at time point
1, P |= not holdsAt(carry(mary, football), 1) or equiva-
lently P �|= holdsAt(carry(mary, football), 1).

It should be noted that it is also true that P |=
holdsAt(carry(mary, football), 3), due to the axioms in
Table 1. However, if we add the following two rules in the
program P :

terminatedAt(carry(A,O), T)←
happensAt(drop(A,O), T). (2)

happensAt(drop(marry, football), 2). (3)

then the new program P will no longer entail
holdsAt(carry(mary, football), 3) due the axioms
of Event calculus. This is an example of non-monotonic
reasoning when adding more knowledge changes one’s
previous beliefs and such thing is omnipresent in human
reasoning. First Order Logic does not allow non-monotonic
reasoning and this is one of the reasons why we have
used the Answer Set Programming language as the formal
reasoning language.

Inductive Logic Programming

Inductive Logic Programming (ILP) (Muggleton 1991) is
a subfield of Machine learning that is focused on learning
logic programs. Given a set of positive examples E+,
negative examples E− and some background knowledge
B, an ILP algorithm finds an Hypothesis H (answer set
program) such that B ∪H |= E+ and B ∪H �|= E−.

The possible hypothesis space is often restricted with
a language bias that is specified by a series of mode
declarationsM (Muggleton 1995). A modeh(s) declaration
denotes a literal s that can appear as the head of a rule

(Table 3). A modeb(s) declaration denote a literal s that can
appear in the body of a rule (Table 3). The argument s is
called schema and comprises of two parts: 1) an identifier
for the literal and 2) a list of placemakers for each argument
of that literal. A placemaker is either +type (input), -type
(output) or #type (constant), where type denotes the type
of the argument. An answer set rule is in the hypothesis
space defined by L (call it L(M)) iff its head (resp. each
of its body literals) is constructed from the schema s in a
modeh(s) (resp. in a modeb(s)) in L(M)) as follows:
- By replacing an output (-) placemaker by a new variable.
- By replacing an input (+) placemaker by a variable that

appears in the head or in a previous body literal.
- By replacing a ground (#) placemaker by a ground term.

modeh(initiatedAt(carrying(+arg1,+arg3),+time))
modeh(terminatedAt(carrying(+arg1,+arg3),+time))
modeb(happensAt(grab(+arg1,+arg2),+time))
modeb(happensAt(take(+arg1,+arg3),+time))
modeb(happensAt(go back(+arg1,+arg2),+time))
modeb(happensAt(leave(+arg1,+arg3),+time))

Table 3: Mode declarations for the problem of Task 8

Table 3 shows a set of mode declarations M for the ex-
ample problem of Task 8. The Rule 1 of the previous section
is in this L(M) and so is the fact,

initiated(carrying(A,O), T).

However the following rule is not in L(M)).

initiated(carrying(A,O), T)←
happensAt(take(A,O), T ′).

The set E− is required to restrainH from being over gen-
eralized. Informally, given a ILP task, an ILP algorithm finds
a hypothesisH that is general enough to cover all the exam-
ples in E+ and also specific enough so that it does not cover
any example in E−. Without E−, the learnedH will contain
only facts. In this case study, negative examples are automat-
ically generated from the positive examples by assuming the
answers are complete, i.e. if a question-answer pair says that
at a certain time point mary is carrying a football we assume
that mary is not carrying anything else at that time stamp.

2 Learning Answer Set Programs for QA

In this section, we illustrate the formulation of an ILP task
for a QA task and the way the answer set programs are
learned. We explain our approach with the XHAIL (Ray
2009) algorithm and specify why ILED (Katzouris, Artikis,
and Paliouras 2015) algorithm is needed. We continue with
the example of Task 8 and conclude with path finding.

Task 8: Lists/Sets

Given an ILP task ILP (B, E = {E+ ∪ E−},M), XHAIL
derives the hypothesis in a three step process. For the exam-
ple of task 8, B contains both the axioms of SDEC and the

2781

narratives from Table 1. The set E comprises of the anno-
tations from Table 1 which contains three positive and one
negative examples.M is the set of mode declarations in Ta-
ble 2.

Step 1 In the first step the XHAIL algorithm finds a set
of ground (variable free) atoms � = ∪ni=1αi such that
B ∪ � |= E where each αi is a ground instance of the
modeh(s) declaration atoms. For the example ILP problem
of task 8 there are two modeh declarations. Thus the set �
can contain ground instances of only those two atoms de-
scribed in two modeh declarations. In the following we show
one possible � that meets the above requirements for the
ILP task of Example 1.

� =

⎧⎨
⎩

initiatedAt(carry(mary, football), 1)

initiatedAt(carry(mary, apple), 3)

terminatedAt(carry(mary, football), 5)

⎫⎬
⎭

Step 2 In the second step, XHAIL computes a clause
αi ← δ1i ...δ

mi
i for each αi in �, where B ∪ � |=

δji , ∀1 ≤ i ≤ n, 1 ≤ j ≤ mi and each clause αi ←
δ1i ...δ

mi
i is a ground instance of a rule in L(M). In the

running example, � contains three atoms that each must
lead to a clause ki, i = 1, 2, 3. The first atom α1 =
initiatedAt(carry(mary, football), 1) is initialized to the
head of the clause k1. The body of k1 is saturated by adding
all possible ground instances of the literals in modeb(s) dec-
larations that satisfy the constraints mentioned above. There
are six ground instances (all the narratives) of the literals in
the modeb(s) declarations; however only one of them, i.e.
happensAt(grab(mary, football), 1) can be added to the
body due to restrictions enforced by L(M). In the follow-
ing we show the set of all the ground clauses K constructed
in this step and their variabilized version Kv that is obtained
by replacing all input and output terms by variables.

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

initiatedAt(carry(mary, football), 1)

← happensAt(grab(mary, football), 1).

initiatedAt(carry(mary, apple), 3)

← happensAt(take(mary, apple), 3).

terminatedAt(carry(mary, football), 6)

← happensAt(leave(mary, apple), 6).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Kv =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

initiatedAt(carry(X,Y), T)

← happensAt(grab(X,Y), T).

initiatedAt(carry(X,Y), T)

← happensAt(take(X,Y), T).

terminatedAt(carry(X,Y), T)

← happensAt(leave(X,Y), T).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Step 3 In this step XHAIL tries to find a compressive the-
ory H by deleting from Kv as many literals (and clauses)
as possible while ensuring that B ∪H |= E . In the running
example, working out this problem will lead toH = Kv.

Scalability of the learning algorithm The discovery of a
hypothesis H depends on the choice of �. Since the value
of � that satisfies the constraints described in Step 1 is not
unique, we employ an iterative deepening strategy to se-
lect � of progressively increasing size until a solution is
found. Furthermore, in Step 2 of XHAIL we restricted the
algorithm to consider only those ground instances of modeb
declarations that are not from the future time points. This
method works when the size of the example is small. How-
ever, the dataset of Task 8 like other tasks contains 1000 ex-
amples, where each example comprises of a set of narrative
and annotations (as we have shown before) and the choice
of � will be numerous. This issue is addressed by learning
rules from each example and then using the learned rules to
learn new rules from yet unsolved examples. A recent in-
cremental learning algorithm, ILED (Katzouris, Artikis, and
Paliouras 2015) can be used to address the scalability issue.
The first step of the ILED algorithm is the XHAIL algo-
rithm. After finding an initial hypothesisH1 by XHAIL, the
ILED algorithm incrementally revises the current hypothesis
Hi when subjected to a new example Ei so that the revised
hypothesis Hi+1 is consistent with the current example Ei

and all the previous ones E0, ..., Ei−1. It will be interesting
to see if ILED can scale up to this dataset.

Task 19 : Path Finding

In this task (Example 2), each example first describes the
relative positions of several places and then asks a question
about moving from one place to another. The answer to the
question is then a sequence of directions. For the question
“How do you go from the kitchen to the garden?” in Ex-
ample 2, the answer “s,e” tells that to reach garden from
kitchen, you should first head south and then head east.

Given such an example, an agent learns how moving to-
wards a direction changes its current location with respect to
the particular orientation of the places. Let us say, mt(X,Y)
denotes the event of X moving towards the direction Y. Sim-
ilar to the earlier problem, the natural language text is first
translated to the syntax of ASP (Table 4). However, in this
task the background knowledge B also contains the rules
learned from the task 4. In the following we show an ex-
ample of such rules:

holdsAt(relative position(X,Y, east), T)←
holdsAt(relative position(Y,X,west), T).

The above rule says that if Y is to the west of X at time
point T then X is to the east of Y at T. Similar rules were
learned for each direction pair from the Task 4 which were
used in the process of hypothesis generation for the task of
path finding. Table 4 shows the corresponding ILP task for
the example of path finding and the hypothesis generated by
the XHAIL algorithm. This example illustrates how the task
of path finding can be easily learned when a formal repre-
sentation is used. While the state-of-the-art neural network
based systems have achieved 36% accuracy on this task with
an average of 93% on all tasks, our system is able to achieve
100% with the two compact rules shown in Table 4.

2782

Input

Narrative
holdsAt(relative position(office,hallway,east),1).
holdsAt(relative position(kitchen,office,north),2).
holdsAt(relative position(garden,bedroom,west),3).
holdsAt(relative position(office,west,garden),4).
holdsAt(relative position(bathroom,garden,north),5).
holdsAt(location(you,kitchen),6).
happensAt(mt(you,south),6).
happensAt(mt(you,east),7).
Annotation
not holdsAt(location(you, garden), 6).
holdsAt(location(you, garden), 8).
not holdsAt(location(you, kitchen), 8).
Mode declarations
modeh(initiatedAt(location(+arg1,+arg2),+time))
modeh(terminatedAt(carrying(+arg1,+arg2),+time))
modeb(happensAt(mt(+arg1,+direction),+time))
modeb(holdsAt(location(+arg1,+arg2),+time))
modeb(holdsAt(relative position(+arg2,+arg2,
+direction),+time))
Background Knowledge
Axioms of SDEC (Table 1)
Output

initiatedAt(location(X,Y), T)←
happensAt(move towards(X,D), T),
holdsAt(relative position(Y, Z,D), T),
holdsAt(location(X,Z), T).

terminatedAt(location(X,Y), T)←
happensAt(mt(X,D), T).

Table 4: Hypothesis Generation For Path Finding

3 Learning Coreference Resolution with

Reasoning

The dataset contains contains two tasks related to corefer-
ence resolution : 1) task of basic coreference resolution and
2) task of compound coreference resolution. Examples of
the tasks are shown below :

Task 11: Basic Coreference

Mary went back to the bathroom.
After that she went to the bedroom.
Daniel moved to the office.
Where is Mary? bedroom

Task 13: Compound Coreference

Daniel and Sandra journeyed to the office.
Then they went to the garden.
Sandra and John travelled to the kitchen.
The office is west of the garden.
After that they moved to the hallway.
Where is Daniel? A:garden

We formulate both the coreference resolution tasks as ILP
problems and surprisingly it learns answer set rules that can

fully explain the test data. For the task of basic coreference,
it learns a total of five rules one for each of the five different
events go, travel, go back, move, journey that appeared in the
training data. The rule corresponding to the event go (Table
5) states that if a narrative at time point T +1 contains a pro-
noun, then the pronoun is referring to the arg1 (agent) of the
event go that happened at time point T . Similar rules were
learned for the other four events. Here, corefId(X,T) de-
notes that the pronoun with id X has appeared in a narrative
at time point at T + 1.

initiatedAt(coref(X,Y), T)← corefId(X,T),
happensAt(go(Y, Z), T).

Table 5: One rule for coreference resolution

One drawback of the learned rules is, they are event de-
pendent, i.e. if a coreference resolution text contains a pro-
noun which is referring to an argument of an previously un-
seen event, these rules will not be able to resolve the coref-
erence. In spite of that, these rules reflect one of the basic
intuitions behind coreference resolution and all of them are
learned from data.

4 Related Works

In this section, we briefly describe the two other attempts
on this challenge. The attempt using Memory Network
(MemNN) (Weston, Chopra, and Bordes 2014) formulates
the QA task as a search procedure over the set of narratives.
This model takes as input the Question-Answering samples
and the set of facts required to answer each question. It then
learns to find 1) the supporting facts for a given question and
2) the word or set of words from the supporting facts which
are given as answer. Even though this model performs well
on average, the performance on the tasks of positional rea-
soning (65%) and path finding (36%) are far below from the
average (93%).

The attempt using Dynamic Memory Network (DMN)
(Kumar et al. 2015) also models the the QA task as a search
procedure over the set of narratives. The major difference
being the way supporting facts are retrieved. In the case of
the Memory Networks, given a question, the search algo-
rithm scans the narratives in the reverse order of time and
finds the most relevant hypothesis. It then tries to find the
next most relevant narrative and the process continues un-
til a special marker narrative is chosen to be the most rele-
vant one in which case the procedure terminates. In the case
of Dynamic Memory Networks the algorithm first identi-
fies a set of useful narratives conditioning on the question
and updates the agent’s current state. The process then it-
erates and in each iterations it finds more useful facts that
were thought to be irrelevant in the previous iterations. After
several passes the module finally summarizes its knowledge
and provides the answer. Both the models rely only on the
given narratives to answer a question. However, for many
QA tasks (such as task of Path finding) it requires additional
knowledge that is not present in the text (for path finding,
knowledge from Task 4), to successfully answer a question.

2783

TASK MemNN DMN Our
Method

1: Single Supporting Fact 100 100 100
2: Two Supporting Facts 100 98.2 100
3: Three Supporting facts 100 95.2 100
4: Two Argument Relations 100 100 100
5: Three Argument Relations 98 99.3 100
6: Yes/No Questions 100 100 100
7: Counting 85 96.9 100
8: Lists/Sets 91 96.5 100
9: Simple Negation 100 100 100
10: Indefinite Knowledge 98 97.5 100
11: Basic Coreference 100 99.9 100
12: Conjunction 100 100 100
13: Compound Coreference 100 99.8 100
14: Time Reasoning 99 100 100
15: Basic Deduction 100 100 100
16: Basic Induction 100 99.4 93.6
17: Positional Reasoning∗ 65 59.6 100
18: Size Reasoning 95 95.3 100
19: Path Finding 36 34.5 100
20: Agent’s Motivations∗ 100 100 100
Mean Accuracy(%) 93.3 93.6 99.68

Table 6: Performance on the set of 20 tasks

Both MemNN and DMN models suffer in this case whereas
our method can swiftly combine knowledge learned from
various tasks to handle more complex QA tasks.

5 Experiments

Table 6 shows the performance of our method on the set of
20 tasks. For each task, there are 1000 questions for training
and 1000 for testing. Our method was able to answer all the
question correctly except the ones testing basic induction.
In the following we provide a detail error analysis for the
task of Induction. For each task the modeh and the modeb
declarations were manually defined and can be found at the
project website. The test set of Task 5 (Three argument rela-
tions) contains 2 questions that have incorrect answers. The
result is reported on the corrected version of that test set.
The details on the error can be found on the project website.
Training of the tasks that are marked with (*) used the an-
notation of supporting facts present in the training dataset.

Error Analysis for Basic Induction This task tests basic
induction via potential inheritance of properties. The dataset
contains a series of examples like the one described below:

Lily is a frog.
Julius is a swan.
Julius is green.
Lily is grey.
Greg is a swan.
What color is Greg? green

The learning algorithm could not find a hypothesis that can
characterize the entire training data with the given set of
mode declarations. So, we took the hypothesis that partially

explained the data. This was obtained by ignoring the ex-
amples in the training data which resulted in a failure. The
resulted hypothesis then contained the following single rule:

holdsAt(color(X,C), T)← holdsAt(domain(Z,D), T),

holdsAt(color(Z,C), T),

holdsAt(domain(X,D), T).

The above rule says that X has color C at time T if there
exists a Z which is of type D and has color C at time point
T, where X is also of type D. This rule was able to achieve
93.6% accuracy on the test set. However it failed for the ex-
amples of following kind where there are two different entity
of type D having two different colors:

Error Case 1 Error Case 2
Lily is a frog. Lily is a rhino.
Brian is a frog. Lily is yellow.
Greg is frog. Bernhard is a frog.
Lily is yellow. Bernhard is white.
Julius is a frog. Brian is a rhino.
Brian is grey. Greg is a rhino.
Julius is grey. Greg is yellow.
Greg is grey. Julius is a rhino.
Bernhard is a frog. Julius is green.
What color is Bernhard? A:grey What color is Brian?

A:green

Table 7: Failure cases for Induction

For the error case 1, the learned rule will produce two an-
swers stating that Bernhard has the color grey and yellow.
Since, the more number of frogs are grey it may seem like
the correct rule should produce the color that has appeared
maximum number of times for that type (here, frog). How-
ever, error case 2 describes a complete opposite hypothesis.
There are two yellow rhino and one grey rhino and the color
of Brian which is a rhino is grey. The actual rule as it appears
is the one that determines the color on the basis of the lat-
est evidence. Since, Memory Networks scans the facts in the
deceasing order of time, it always concludes from the recent
most narratives and thus has achieved a 100% accuracy.

6 Conclusion

This paper presents a learning approach for the task of
Question-Answering that benefits from the field of knowl-
edge representation and reasoning, inductive logic program-
ming and statistical natural language processing. We have
shown that the addition of a formal reasoning layer signif-
icantly increases the reasoning capability of an agent. We
anticipate our attempt to be a starting point for more sophis-
ticated architectures of agents that combine statistical NLP
methods with formal reasoning methods.

7 Acknowledgement

We thank NSF for the DataNet Federation Consortium grant
OCI-0940841 and ONR for their grant N00014-13-1-0334
for partially supporting this research.

2784

References

Banarescu, L.; Bonial, C.; Cai, S.; Georgescu, M.; Griffitt,
K.; Hermjakob, U.; Knight, K.; Koehn, P.; Palmer, M.; and
Schneider, N. 2013. Abstract meaning representation for
sembanking.
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge university press.
Flanigan, J.; Thomson, S.; Carbonell, J.; Dyer, C.; and
Smith, N. A. 2014. A discriminative graph-based parser
for the abstract meaning representation.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080.
Katzouris, N.; Artikis, A.; and Paliouras, G. 2015. Incre-
mental learning of event definitions with inductive logic pro-
gramming. Machine Learning 100(2-3):555–585.
Kumar, A.; Irsoy, O.; Su, J.; Bradbury, J.; English, R.; Pierce,
B.; Ondruska, P.; Gulrajani, I.; and Socher, R. 2015. Ask me
anything: Dynamic memory networks for natural language
processing. arXiv preprint arXiv:1506.07285.
Levesque, H. J.; Davis, E.; and Morgenstern, L. 2012. The
winograd schema challenge. In KR.
Muggleton, S. 1991. Inductive logic programming. New
generation computing 8(4):295–318.
Muggleton, S. 1995. Inverse entailment and progol. New
generation computing 13(3-4):245–286.
Ray, O. 2009. Nonmonotonic abductive inductive learning.
Journal of Applied Logic 7(3):329–340.
Richardson, M.; Burges, C. J.; and Renshaw, E. 2013.
Mctest: A challenge dataset for the open-domain machine
comprehension of text. In EMNLP, volume 1, 2.
Weston, J.; Bordes, A.; Chopra, S.; and Mikolov, T. 2015.
Towards ai-complete question answering: a set of prerequi-
site toy tasks. arXiv preprint arXiv:1502.05698.
Weston, J.; Chopra, S.; and Bordes, A. 2014. Memory net-
works. arXiv preprint arXiv:1410.3916.

2785

