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Abstract

Many NLP applications rely on the existence of sim-
ilarity measures over text data. Although word vec-
tor space models provide good similarity measures be-
tween words, phrasal and sentential similarities derived
from composition of individual words remain as a dif-
ficult problem. In this paper, we propose a new method
of of non-linear similarity learning for semantic com-
positionality. In this method, word representations are
learned through the similarity learning of sentences in
a high-dimensional space with kernel functions. On the
task of predicting the semantic relatedness of two sen-
tences (SemEval 2014, Task 1), our method outper-
forms linear baselines, feature engineering approaches,
recursive neural networks, and achieve competitive re-
sults with long short-term memory models.

1 Introduction

The notion of semantic similarity between text data (e.g.,
words, phrases, sentences, and documents) plays an im-
portant role in natural language processing (NLP) applica-
tions such as information retrieval, classification, and extrac-
tion. The simplest similarity measurement is based on word
matchings rather than word meanings, and suffers from lack
of generalization.

Recently, word semantic vector spaces based on distribu-
tional and distributed models have become popular (Turney
2012; Collobert et al. 2011; Pennington, Socher, and Man-
ning 2014). While such word representations are sufficient
to compute the similarity between words, it is not trivial to
capture meaning of phrases and sentences composed of in-
dividual words. To overcome the weakness, modeling and
learning compositionality have received a lot of attention
(Mitchell and Lapata 2010). The goal of this research is
to formulate how word vectors and operations are learned
and modeled to properly represent phrasal and sentential se-
mantics. However, there are still some problems in composi-
tional vector semantics. In particular, we are concerned with
the following question:
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Figure 1: Overview of our method. Our aim is to design a
word representation learning architecture which combines
the simplicity of encoding sentence structures in a low-
dimensional space with the power derived from a non-linear
similarity learning for the sentence semantics in a high-
dimensional space via kernel functions.

How can we represent the meaning of sentences, which
cover richer meaning variations than that of words, in a
vector space?

To answer this question, we propose a new method of non-
linear similarity learning for semantic compositionality. Our
approach is to capture semantics of sentences in a space dif-
ferent from that of words. Presumably, this space must be
of higher dimension than the word space, since a sentence
contains far more information than words. For example, a
sentence “Newton was inspired to formulate gravitation by
watching the fall of an apple from a tree.” should have a
more complex (therefore, higher-dimensional) representa-
tion than words “apple”, “gravitation”, “formulate”, and
“by”.

The proposed method is inspired by the previous work
on distance metric and similarity learning (Bellet, Habrard,
and Sebban 2013), and in particular leverages the non-linear
capacity of kernels (Kedem et al. 2012). Our goal is to ob-
tain new word representations that account for composition-
ality, through the similarity learning of sentential meaning in
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the kernel-induced high-dimensional space. Figure 1 shows
the geometric intuition of our model architecture. We can
learn and obtain new word representations inexpensively
by using kernel functions without explicit computation of
sentence vectors in the high-dimensional space. Note that
our approach differs from that of deep learning, such as
recursive neural network (RNN) (Socher et al. 2014) and
long short-term memory (LSTM) (Tai, Socher, and Man-
ning 2015). RNN and LSTM use intricate neural network
architectures to model and learn semantics of sentences in
a low-dimensional space, whereas ours integrates both low-
and high-dimensional space.

Our contributions are two-fold:
1. To the best of our knowledge, ours is the first work that ad-

dresses compositionality by combining similarity learn-
ing in kernel-induced high-dimensional space, and struc-
ture embedding in a low-dimensional space.

2. Our method is simple and effective. It outperforms lin-
ear baselines, feature engineering approaches, RNNs, and
achieves competitive results with LSTM models on the
task of predicting the semantic relatedness of two sen-
tences.

2 Background

2.1 Compositional Vector Semantics

Word vector representations can be learned through many
different approaches, such as distributional models using
co-occurrence statistics of a word and its context, and dis-
tributed models using neural networks (Turney 2012; Col-
lobert et al. 2011). Despite their usefulness, these word rep-
resentations do not capture semantic compositionality. As a
result, modeling and learning compositional semantics in the
word vector space have emerged as another important line of
research (Mitchell and Lapata 2010). For phrases and sen-
tences, many different models have been explored (Socher
et al. 2013; Tsubaki et al. 2013).

In particular, recursive neural networks (RNNs) are used
to represent a sentence vector. RNNs use the following com-
position function to compute a phrase vector p from two d
dimensional vectors d(wi) and d(wj) of words wi and wj :

p = g

(
W

[
d(wi)
d(wj)

])
, (1)

where W ∈ R
d×2d is the weight parameter to learn, and g

is a non-linear function such as sigmoid or tanh. To obtain
a vector representation of a sentence, we run a parser on the
sentence, and apply RNNs recursively at each node of the
parse tree, using phrase vectors in place of d(wi), or d(wj)
whenever necessary.

2.2 Distance Metric and Similarity Learning

The notion of the metric plays an important role in machine
learning (Bellet, Habrard, and Sebban 2013). There exists a
line of research on learning a measure of distance or simi-
larity between data that is suitable for problems at hand.

For example, the distance metric learning (Xing et
al. 2002) is to optimize the Mahalanobis distance:

DM(x,x′) = (x−x′)TM(x−x′), and the similarity learn-
ing (Qamar et al. 2008) is to optimize the inner product:
KM (x,x′) = xTMx′, where x and x′ are feature vectors,
and M is a transformation matrix to learn. Here, by decom-
posing positive semi-definite matrix M = WTW, we can
reformulate the above equations as follows:

DM(x,x′) = ||Wx−Wx′||2, (2)

KM(x,x′) = (Wx)T(Wx′). (3)

From this perspective, distance metric and similarity learn-
ing are equivalent to learning the linear projection W,
which maps x and x′ into new representations. Further-
more, these learning techniques can be extended with ker-
nel methods (Kedem et al. 2012). The theory describes that
the kernel function K implicitly maps original input data
set X to a high-dimensional (possibly infinite) reproduc-
ing kernel Hilbert space (RHKS) H through φ : X → H
and computes the inner product therein; i.e., K(x,x′) =
φ(x)Tφ(x′), x,x′ ∈ X . The motivation of kernelization
is to obtain a good high-dimensional space for solving prob-
lems while maintaining computational tractability.

2.3 Neural Networks for Paired Data

Recently, there has been growing interest in applying neu-
ral networks to various paired data. For example, (Gao et
al. 2014) construct a neural network for machine transla-
tion with parallel training data. This model represents a pair
of source and target phrases in a common low-dimensional
space, and their translation score is computed and opti-
mized using the cosine similarity between the pair of vec-
tors. (Kiela and Bottou 2014) construct a neural network for
multi-modal representations by integrating linguistic vectors
with visual concept vectors. These methods allow us to learn
richer meaning representations by optimizing the Euclidean
distance and cosine similarity for paired data.

Note that, from the distance metric and similarity learn-
ing perspective, these methods are equivalent to learning a
non-linear transformation function ||N(x) − N(x′)||2 and
N(x)TN(x′), where N is a non-linear function, and x and
x′ are feature vectors of paired data. Typically, these func-
tions are optimized with neural networks (Wu et al. 2013).

3 Method

In this section, we introduce a method of non-linear similar-
ity learning for semantic compositionality, and discuss the
motivation behind it. Consider a training dataset that con-
tains N pairs of tuples {((Si, S

′
i), yi)}Ni=1, where (Si, S

′
i) is

a sentence pair, and yi ∈ [0.0, 1.0] is the normalized similar-
ity score of (Si, S

′
i). The goal of this task is to correctly pre-

dict similarity scores for new sentence pairs. Our aim is to
design a model which jointly learns low-dimensional word
representation (Section 3.1) and the semantic similarity of
sentences in high-dimensional space (Section 3.2). Our ap-
proach is motivated by the following hypothesis:

For similarity computations that require composi-
tion (e.g., sentence similarity), it is necessary to
map the compositional representation to a space with
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higher representational power than the original low-
dimensional space of the components (e.g., words).

Under this hypothesis, the goal of compositional seman-
tics is to model how high-dimensional sentence similarity
is computed from low-dimensional word representations.
This goal differs from that of the current neural network-
based models, which attempt to embed and measure the sim-
ilarity of sentences in the same low-dimensional space of
words. Our motivation of kernelization in compositionality
is to obtain a good high-dimensional space for representing
richer meanings of sentences while maintaining computa-
tional tractability.

3.1 Encoding of Sentence Meaning in
Low-Dimensional Space

We compute a vector representation x of a sentence S us-
ing a function f for encoding its meaning; i.e., x = f(S).
In this paper, we exploit two functions. The simplest candi-
date of f is: fSUM(S) =

∑
w∈S d(w), where w is a word

in the sentence S, and d(w) ∈ R
d is a d-dimensional vec-

tor of the word w. This is a bag-of-words approach in which
the sentence structure is not taken into account. For another
candidate of f , we make use of syntactic and semantic struc-
tures of S such as part-of-speech (POS) tags and predicate-
argument structures, which are available from the output of
a POS tagger or a syntactic/semantic parser. This function
is intended to capture structured sentence semantics from
the concatenated word vectors. This alternative f has sev-
eral variations. The first one uses POS tags, and is defined
as follows:

f
POS2
STR (S) = g

⎛
⎜⎝ ∑

(wi,wj)∈P (S)

h

(
W(pos(wi),pos(wj))

[
d(wi)

d(wj)

])⎞⎟⎠ ,

where P (S) is the set of word pairs in S that are related syn-
tactically or semantically as deemed by the parser, wi is the
i-th word in the sentence S, g and h are functions of identity
(i.e., linear) or elementwise tanh which is widely-used in
neural networks (i.e., non-linear), and W(pos(wi),pos(wj)) ∈
R

d×2d is the weight matrix to learn which depends on pairs
of POS tags for corresponding words. The second variation,
fSEM2

STR (S), is the same as the fPOS2
STR except that the matrices

W(pos(wi),pos(wj)) are replaced with matrices based on the
semantic relation labels from predicate-argument structures
(e.g., logical subject and object) of words. Furthermore, if
P (S) has the set of triples (subject, verb, object) in S, we
can define the third variation fSEM3

STR (S) as,

fSEM3
STR (S) = g

⎛
⎝ ∑

(wi,wj ,wk)∈P (S)

h

⎛
⎝W′

⎡
⎣d(wi)
d(wj)
d(wk)

⎤
⎦
⎞
⎠
⎞
⎠ ,

where W′ = W(sem(wi),sem(wj)),sem(wk)) ∈ R
d×3d. This

function naturally focuses on the action and agents in a sen-
tence, and allow us to directly capture the meaning such
as subject-verb-object triplet “man-performing-wheelie” in
“A man in a blue jumpsuit is courageously performing a

wheelie on a motorcycle”, and “girl-raising-arm” in “A girl
in a uniform, which is blue, is quickly raising her arm”. Sim-
ilarly, we can think of fPOS3

STR , which is identical to fPOS2
STR but

uses triples. We finally compute the fPOS
STR (S) = fPOS2

STR (S) +
fPOS3

STR (S) and fSEM
STR (S) = fSEM2

STR (S) + fSEM3
STR (S).

While the choice of composition functions g and h fur-
ther gives rise to numerous variants such as tensors and deep
non-linear functions (Socher et al. 2013), we leave these to
future work.

3.2 Non-linear Similarity Learning in
High-Dimensional Space

In this section, we present a non-linear similarity learning
method with kernel functions. We use several kernel func-
tions. The normalized inner product, i.e., cosine similarity,
is employed as the most basic kernel K between sentence
vectors x and x′ (described in Section 3.1): Kcos(x,x

′) =
xTx′/||x||||x′||. Note that all kernel functions K, including
the non-linear ones we introduce below, are normalized for
simplicity and preventing the kernel value from growing out
of control during learning process. When K is a non-linear
kernel, the normalized kernel is the cosine similarity in the
induced kernel space:

Kcos(φ(x),φ(x
′)) =

K(x,x′)√
K(x,x)

√
K(x′,x′)

, (4)

where φ(x) ∈ R
φ is a feature vector of x in the kernel space.

In addition, two non-linear kernels are employed in this
paper, polynomial kernel Kpoly and Gaussian kernel Krbf

1,
defined as follows:

Kpoly(x,x
′) =

(
c+Kcos(x,x

′)
c+ 1

)p

, (5)

s.t c ≥ 0, p ∈ N.

Krbf(x,x
′) = exp

(
Kcos(x,x

′)− 1

σ2

)
, (6)

s.t σ ≥ 0.

As mentioned earlier, we use the normalized version of Kpoly
and Krbf, given by substituting them for K in equation (4).

By combining these kernels with the composition func-
tions fSUM and fSTR introduced in Section 3.1, we define the
similarity of two sentences S and S′ as follows:

SimSUM(S, S′) = K(fSUM(S), fSUM(S′)), (7)

SimSUM+STR(S, S
′) = K(fSUM(S), fSUM(S′))

+ K(fSTR(S), fSTR(S
′)).

(8)

1Note that Gaussian kernel based on Euclidean distance is
Krbf(x,x

′) = exp
(−||x− x′||2/2σ2

)
. Using ||x − x′||2 =

xTx + x′Tx′ − 2xTx′ and substituting Kcos(x,x
′) in place of

the inner product, we obtain ||x−x′||2 = 2− 2Kcos(x,x
′). Thus,

we use equation (8) as the Gaussian kernel in this paper.
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Now, the training objective is to minimize L(Θ) for training
dataset {((Si, S

′
i), yi)}Ni=1 as follow:

L(Θ) =

N∑
i=1

1

2
{yi − Sim(Si, S

′
i)}2 +

λ

2
||Θ||2, (9)

where Θ is the set of all parameters: all word vector repre-
sentations d(w) (these are the main learning parameters in
the model), the weight matrix W (described in Section 3.1),
and parameters in kernel functions (c in polynomial and σ in
Gaussian). Thus, we can obtain the non-linear similarity be-
tween two sentences, and the computation and learning are
done inexpensively through a kernel function in the high-
dimensional space. Figure 1 shows the geometric intuition
of the model architecture.

As the main part of the learning process, we compute the
derivative ∂L/∂d(w), optimize the loss function with the
gradient descent, and obtain new word vector representa-
tions d(w)new. The gradient of polynomial and Gaussian
kernels are as follows:

∂Kpoly

∂d(w)
= p

(
c+Kcos

c+ 1

)(p−1) (
1

c+ 1

)
∂Kcos

∂d(w)
,

∂Krbf

∂d(w)
= exp

(
Kcos − 1

σ2

)(
1

σ2

)
∂Kcos

∂d(w)
,

where ∂Kcos/∂d(w) is the gradient of the cosine by the
word vector 2. Also, we compute a derivative for the weight
matrix W:

∂K

∂W
= K ′ ∂Kcos

∂W
,

where K ′ is the gradient of the non-linear kernel functions of
polynomial and Gaussian, and ∂Kcos/∂W is the gradient of
the cosine by the weight matrix. Note that, from the metric
learning perspective, optimization of this weight matrix is
equivalent to learning the transformation matrix for original
feature vectors (see Section 2.2)

4 Related Work

Successful approaches for the SemEval 2014 semantic re-
latedness subtask (describe in next section) combine several
kinds of features frequently used in NLP tasks, such as sur-
face form overlap, lexical distance, and WordNet. Some of
the submitted systems show that purely compositional mod-
els reach performance above Pearson correlation r about
0.70, and these scores are lower than the one of the best
purely non-compositional system which reaches r over 0.80
(Marelli et al. 2014). Note that all top systems (Zhao, Zhu,
and Lan 2014; Bjerva et al. 2014; Jimenez et al. 2014;
Lai and Hockenmaier 2014) are heavily feature engineered,
and use external resources.

2Note that, for the concatenated vector
[
d(wi)
d(wj)

]
, we can also

compute the derivative, learn the phrase representations, and up-
date word representations. But in our experiment using composi-
tional function fSTR, we only learn the weight matrix W to prevent
overfitting (Socher et al. 2014; Tai, Socher, and Manning 2015).

The most common way to build a sentence representation
from words is to simply average the word vectors. While
this bag-of-words (BOWs) model can yield reasonable per-
formance in some tasks, it cannot distinguish sequences and
structures of the sentence. Unlike the BOWs model, Recur-
sive Neural Networks (RNNs) (Socher et al. 2011) com-
bine word vectors in constituency trees of sentences which
have potentially many hidden layers. While the induced sen-
tence vectors work very well on many tasks, they must also
take into account syntactic structure of the sentence in detail
(Socher et al. 2012). Unlike previous RNNs which use con-
stituency trees, Dependency Tree-RNN (DT-RNN) models
(Socher et al. 2014) naturally focus on the action and agents
in a sentence. They are better able to abstract from the details
of word order and syntactic expression using dependency
relations. On the other hand, in Long Short-Term Mem-
ory (LSTM) models (Hochreiter and Schmidhuber 1997),
while the standard composes its hidden state from the in-
put at the current time step and the hidden state of the unit
in the previous time step, the Constituency and Dependency
Tree-LSTM (Tai, Socher, and Manning 2015) composes its
state from an input vector and the hidden states of arbitrar-
ily many child units. These Tree-LSTM models builds on
the RNNs, which subsequently abbreviate as Tree-RNNs in
order to avoid confusion with Recurrent Neural Networks.

These deep learning and our approach have several im-
portant similarities and differences in terms of non-linearity
and high-dimensionality for modeling and learning compo-
sitional semantics in a vector space. RNN and LSTM models
use a composition function and apply these recursively in-
side a parse tree to compute a sentence vector. Note that this
leads us to represent sentence vector in a low-dimensional
space (e.g., the same dimensionality as words). In contrast,
our method is not subjected to dimensional restraints which
come from modeling with neural networks, and can flexi-
bly represent and properly learn the sentence meaning with
kernels.

5 Experiment

Dataset, Implementation, Compared Models

We evaluate our method in the SemEval 2014 semantic relat-
edness task, which uses the Sentences Involving Composi-
tional Knowledge (SICK) dataset3 (Marelli et al. 2014). The
task is to predict the relatedness of two sentences, as judged
by human annotators on a continuous scale from 1.0 (indi-
cating that the two sentences are completely dissimilar) to
5.0 (indicating that the two sentences are very similar). The
dataset consists of 9927 sentence pairs in a 4500/500/4927
train/dev/test split. Models are evaluated by computing Pear-
son’s r, and Spearman’s ρ correlations, and Mean Squared
Error (MSE) between the gold similarity scores and scores
predicted with the models.

For the proposed models, the final training objective is
to minimize the loss function L(Θ) in equation (9). Θ
is the set of learning parameters in our model: the word
vector representation d(w) which is the main learning pa-

3http://alt.qcri.org/semeval2014/task1/
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Method r ρ MSE

Cosine (SUM) 0.7588 0.7391 0.4820
Poly (SUM) 0.8332 0.7810 0.3205
RBF (SUM) 0.8339 0.7804 0.3162

Cosine (SUM + STR POS) 0.7510 0.7429 0.4510
Poly (SUM + STR POS) 0.8301 0.7858 0.3176
RBF (SUM + STR POS) 0.8325 0.7721 0.3094

Cosine (SUM + STR SEM) 0.7647 0.7435 0.4787
Poly (SUM + STR SEM) 0.8480 0.7968 0.2904
RBF (SUM + STR SEM) 0.8447 0.7923 0.2968

Table 1: Correlations of with gold standard and MSE. Com-
positional function g and h are identity (i.e., linear). Polyno-
mial kernel achieves the best result. The word representation
is GloVe.

rameter, the weight matrix W, and parameters in polyno-
mial and Gaussian kernels (i.e., c and σ). We used 50-
dimensional word representation, with several different ini-
tializations: random initialization within (−0.1, 0.1), LSA
(Turney 2012), NLM4, and GloVe5. To obtain the predicate
argument structure of sentence for computing fSTR, we used
Enju6. We initialized all weight matrices as W = I + ε,
where ε is a matrix of small Gaussian noise, and parameters
in kernels as c = 1.0 in polynomial and σ = 1.0 in RBF.
Our models were trained using the adaptive gradient method
AdaGrad (Duchi, Hazan, and Singer 2011) with learning
rates α = 0.5 for the word representations, β = 10−2 for
the weight matrix, and γ = 10−3 for parameters in kernels,
with the regularization parameter λ = 10−6. These hyper-
parameters (α, β, γ, λ) for our models were tuned on the de-
velopment set.

We compare our method against the top systems for the
SemEval 2014 semantic relatedness subtask: ECNU, The
Meaning Factory, UNAL-NLP, and Illinois-LH (Zhao, Zhu,
and Lan 2014; Bjerva et al. 2014; Jimenez et al. 2014;
Lai and Hockenmaier 2014), which used a various types
of handicrafted features. We also compare with models
based on recursive neural networks (RNNs) and long short-
term memory (LSTM) (Socher et al. 2014; Tai, Socher,
and Manning 2015), which use deep learning architectures
for computing sentence semantic representations in a low-
dimensional space.

6 Results and Discussion

6.1 Main Results: Linear vs. Non-linear Similarity
Measures

Table 1 shows r, ρ, and MSE for different composition and
kernel models. We found that both Pearson’s r and Spear-
man’s ρ are higher with two non-linear (polynomial and
Gaussian) kernels than the linear (cosine) kernel by a large
margin. In particular, the model with polynomial kernel of

4http://ronan.collobert.com/senna/
5http://nlp.stanford.edu/projects/glove/
6http://www.nactem.ac.uk/enju/index.html

r (g and h are identity) r (g and h are tanh)

Cosine 0.7647 0.7717
Poly 0.8480 0.8392
RBF 0.8447 0.8393

Table 2: The non-linearity in similarity (i.e., polynomial
and RBF) is effective, but non-linearity in composition (i.e.,
tanh) does not improve results with non-linear kernels.

degree p = 4 and SUM + STR SEM achieved the best result
among our models, Pearson’s r is 0.8480, Spearman’s ρ is
0.7968, and MSE is 0.2904. These results suggest mean that
the similarity learning in kernel-induced high-dimensional
space is effective, and the kernel space allows us to obtain
new word representations which are suitable for sentence
composition.

While the STR model (i.e., taking into account sen-
tence structures) achieved higher performance than the SUM
model (i.e., bag of words), the results of SUM with non-
linear kernels are also high (polynomial: 0.8332; Gaussian:
0.8339), even though the model ignores the sentence struc-
tures. This suggests that the high-dimensional kernel space
is sufficient to capture sentence meanings without modeling
the structures in details. In addition, the result implies that
the co-occurrence information of words in a sentence is im-
portant to capture the meaning.

6.2 Linear or Non-linear Composition

Table 2 shows the Pearson correlations for combinations of
the linear or non-linear composition and similarity (all mod-
els are SUM + STR SEM). These results imply that the non-
linearity with kernel mappings is more effective than the
non-linearity with tanh functions, and the combination of
linear composition and non-linear similarity performs best.
This combination is easy to implement and optimize because
we can model and learn new word representations without
constructing intricate neural networks in a low-dimensional
space.

6.3 Comparison to Competitive Performers

Table 3 shows the comparison to competitive performers.
Firstly, our models outperform four of the top systems sub-
mitted to SICK in SemEval 2014. Note that these four are
heavily feature engineered systems, whereas our approach
is mainly dependent on learning of word representations,
and does not require a large number of features and external
resources. Secondly, our correlation scores are higher than
RNN models, DT-RNN and SDT-RNN (Socher et al. 2014).
In fact, our model using the non-linear composition and lin-
ear similarity is similar to the RNN models (Socher et al.
2014), and the results are also similar to ours. This shows
that our model is more robust than RNNs. Thirdly, in terms
of the best correlation score, our model is the competitive
with LSTM models. These LSTM models also compute a
sentence representation in a low-dimensional space in the
RNNs fashion. This result also shows the effectiveness of
ours.
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Method r ρ MSE

Illinois-LH run1 (Lai and Hockenmaier 2014) 0.7993 0.7538 0.3692
UNAL-NLP run1 (Jimenez et al. 2014) 0.8043 0.7458 0.3593
Meaning Factory run1 (Bjerva et al. 2014) 0.8268 0.7722 0.3224
ECNU run1 (Zhao, Zhu, and Lan 2014) 0.8280 0.7689 0.3250

DT-RNN (Socher et al. 2014) 0.7923 0.7319 0.3822
SDT-RNN (Socher et al. 2014) 0.7900 0.7304 0.3848

LSTM 0.8528 0.7911 0.2831
Bidirectional LSTM (Graves, Jaitly, and Mohamed 2013) 0.8567 (2) 0.7966 (3) 0.2736 (2)
2-layer LSTM (Graves, Jaitly, and Mohamed 2013) 0.8515 0.7896 0.2838
2-layer Bidirectional LSTM (Graves, Jaitly, and Mohamed 2013) 0.8558 0.7965 0.2762
Constituency Tree LSTM (Tai, Socher, and Manning 2015) 0.8582 (3) 0.7966 (3) 0.2734 (3)
Dependency Tree LSTM (Tai, Socher, and Manning 2015) 0.8676 (1) 0.8083 (1) 0.2532 (1)

Our best model 0.8480 0.7968 (2) 0.2904

Table 3: Comparison to competitive performers. Results are grouped as follows: SemEval 2014 submissions, RNN models,
Sequential and structural LSTM and Our best model. Our best result outperforms the four of the top systems submitted to
SemEval and RNNs, and close to results of LSTM moddels. (1), (2), and (3) in the table are the ranking.

The number of iterations
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Figure 2: Learning curve with various word representations.
The composition is SUM, and the kernel is polynomial.

6.4 Initialization of Word Representations

We further analyze the influence of using pre-trained word
representations for initialization. Figure 2 shows that NLM
and GloVe achieved good results. In addition, we also ob-
tain, after a sufficient number of iterations, high performance
with random initialization. This suggests that the representa-
tion learning with kernels is still able to achieve comparable
accuracy without the help of pre-training, and we need to
re-train representations for solving problems.

On the one hand, the Pearson’s r with LSA is lower than
others. Interestingly, although initial correlation with LSA
is higher than other representations and similar to that of
NLM, increasing the number of iterations does not improve
the result. While initial Pearson’s r of random and GloVe
are lower than that of LSA and NLM, these finally achieve
high Pearson’s r as learning proceeds. This suggests that the
LSA representation based on co-occurrence counts is not

suitable for re-training with such a representation learning
model. Distributed representations such as NLM and GloVe
are seem more suitable.

7 Conclusion and Future Work

In this paper, we have proposed a new method of non-linear
similarity learning for semantic compositionality. Instead
of relying on RNNs operating in a low-dimensional space,
we train kernel functions that allows us to measure the se-
mantic similarity of sentences in a high-dimensional space.
In the task of predicting the relatedness of two sentences,
our method outperformed linear baselines, feature engineer-
ing approaches, RNNs, and achieved competitive results
with LSTMs. It is conceivable that combining our similarity
learning approach with LSTMs could lead to even more ex-
pressive models of compositionality, transitioning between
higher-order sentence representations and lower-order word
vector spaces. This is the main interest of our future work.
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