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Abstract

Unlike traditional machine learning methods, humans often
learn from natural language instruction. As users become
increasingly accustomed to interacting with mobile devices
using speech, their interest in instructing these devices in nat-
ural language is likely to grow.
We introduce our Learning by Instruction Agent (LIA), an in-
telligent personal agent that users can teach to perform new
action sequences to achieve new commands, using solely nat-
ural language interaction. LIA uses a CCG semantic parser
to ground the semantics of each command in terms of prim-
itive executable procedures defining sensors and effectors of
the agent. Given a natural language command that LIA does
not understand, it prompts the user to explain how to achieve
the command through a sequence of steps, also specified in
natural language. A novel lexicon induction algorithm en-
ables LIA to generalize across taught commands, e.g., hav-
ing been taught how to “forward an email to Alice,” LIA can
correctly interpret the command “forward this email to Bob.”
A user study involving email tasks demonstrates that users
voluntarily teach LIA new commands, and that these taught
commands significantly reduce task completion time. These
results demonstrate the potential of natural language instruc-
tion as a significant, under-explored paradigm for machine
learning.

Introduction

Natural language instructions are commonly used to teach
humans but are rarely used to teach machine learning sys-
tems. For example, a user may tell his human assistant “I’m
stuck in traffic and will be late.” The assistant may not know
what to do, so the user may then explain “first, use GPS to
estimate my time of arrival, then see who I am meeting and
send them an email indicating that I’ll be late.” Having been
instructed thus, the assistant now understands how to handle
similar situations in the future. We would like users to be
able to teach machine learning systems through this kind of
natural language interaction.

As a starting point, we focus on building an instructable
intelligent personal agent. Intelligent personal agents – such
as Siri, Google Now, Cortana and Echo – have demonstrated
great potential for assisting users with basic daily tasks.
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However, unlike the instructable human assistant above, in-
teractions with these agents are limited to commands pre-
programmed by the developers. A teachable agent has two
significant benefits over such preprogrammed agents. First,
teaching enables a user to define a new command and a se-
quence of actions to perform it, including commands that
were not considered by the software developer. Second,
teaching can also be used to expand the range of natural lan-
guage phrasings understood by the system (e.g., by teaching
the system that ”drop a note to Bill” has the same meaning
as ”send an email to Bill”.). Together, these two capabilities
might enable a community of users to jointly instruct a sys-
tem to achieve a significant number of new commands, and
ways to express them in natural language.

This paper presents a Learning by Instruction Agent
(LIA), an intelligent agent that allows users to teach it new
commands using solely natural language interactions. LIA
operates in an email environment, where it learns to inter-
pret natural language commands in terms of given prim-
itive actions such as sending emails. Users teach LIA to
perform a new command by providing step-by-step instruc-
tions. LIA is then able to generalize and later execute this
command with different parameters; for example, having
been taught “forward an email to Alice,” LIA can correctly
interpret “forward this email to Bob.” Users can also teach
LIA declarative knowledge by defining new concepts and re-
lations between them, e.g., defining the notion of a contact,
and that each contact has an associated email address. The
contributions of this work are:

1. A working implementation of an agent that can be taught
in natural language to perform new commands.

2. A novel lexicon induction algorithm that enables the agent
to generalize from a taught command to unseen com-
mands.

3. A user study demonstrating that users voluntarily teach
the agent new commands, and that these taught com-
mands result in a significant time savings on future tasks.

Related work

Three fields with vast work are closely related to ours show-
ing that researchers are reaching out to the vision of an
instructable agent. The first is grounded language acqui-
sition (Harnad 1990; Chen and Mooney 2008). In this
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field, the main challenges are extracting the semantic mean-
ing of words and sentences and connecting language to ac-
tion and perception. One example is work by Chen and
Mooney (2008), in which a system learns how to sportscast
a RoboCup simulated game and outputs statements, for ex-
ample, that a certain player has a ball, that the ball was
passed on to a different player and that a player has inter-
cepted this pass. The system learns from data which in-
cludes many games and the text description of what is shown
in the game, not having any additional domain or language
background. The system builds a generative model based
on PCFG, which maximizes the likelihood of the data, and
uses this model to sportcast a new, unseen, game. Chen and
Mooney, also apply a similar method to the domain of nav-
igation (Chen and Mooney 2011). In this domain, a user
must navigate via a 3-D maze with objects located in it and
reach a specific goal. The data in this domain is composed
of a set of paragraphs in natural language, each associated
with a video which shows the execution of this paragraph.
This learning method may be categorized as learning by ob-
servation. In recent work Thomason et al. (2015) use CCG
parsing on natural language commands in order to execute
them by a robot. They use conversations with previous users
to better understand user commands as well as overcoming
typos and spelling mistakes.

A second related research area is programming by demon-
stration (PbD) also referred to as learning from demonstra-
tion (LfD) and imitation learning. Much of this research
derives from the human-robot interaction (HRI) community
(although some work does not involve robots (Myers et al.
1991; Allen et al. 2007)). The common case study in PbD
is with a person trying to show a robot how to lift or select
a certain object, move an object or perform some other task
(Argall et al. 2009). In most studies the human teacher actu-
ally moves the robot’s arms to perform the taught task (Cali-
non, Guenter, and Billard 2007), or controls the robot using
a control peg, while in some other studies, the human teacher
performs the task in front of the robot’s cameras (Nakaoka
et al. 2007), or wears data gloves (Kuklinski et al. 2014). In
many cases the robot can also generalize beyond the specific
training scenario, to perform the task also in different condi-
tions. For example, Calinon et al. (2007), teach a robot by
demonstration how to move a chess piece on a board of chess
by moving the robot’s arms. The robot can then generalize
and move the same piece also when it is located in a different
location. Billard et al. (2008) state that learning by demon-
stration has three advantages, the first is that demonstration
reduces the search space for the robot, allowing the robot to
find the way to perform the task. The third, is that PbD cou-
ples the perception (or vision) and action (or robot motors).
While, programming by demonstration usually requires sev-
eral training examples, Allen et al. (2007) build a system
with a complex graphical interface which poses questions
to the teacher as it learns a new task (in the information
retrieval domain). Their system succeeded in learning 30
out of 55 tasks based on a single demonstration by a human
subject for each task. However, as they state, subjects did
not find the system easy to use, and each subject required
a full work day to teach approximately 3 tasks. Program-

ming by demonstration was also used in authoring intelli-
gent tutor behavior. Koedinger et al. (2004) built a system
with a graphical interface which allowed an author to cre-
ate arithmetic problems and demonstrate their solutions as
well as common errors. The intelligent tutor created a so-
lution graph and allowed the author to annotate this graph
with hints and feedback. The intelligent tutor used these ex-
amples to tutor a student providing hints and feedback.

The third field which is related to this research is natural
language programming (Biermann 1983), in which a pro-
grammer can use natural language to develop software. In
Inform 7 (Reed 2010), for example, a programmer can cre-
ate an interactive fiction program using statements which are
actually valid English sentences. Some examples for such
statements in the Inform 7 language are “The kitchen is a
room,” “The kitchen has a stove,” and “The description of
the stove is: ‘very dirty’ ”. However, although being in nat-
ural language, statements in Inform 7, are required to be in
a specific form. Therefore, while one may not be required
to know the specific grammar of the natural language pro-
gram language to read a program written in that language, it
is required to have programming skills and familiarity with
the given program language in order to actually develop a
program in that language. There has also been some prelimi-
nary work on translating functionality descriptions in natural
language into scripts by Le et al. (2013), and translation of
conditions into if-then clauses (Quirk, Mooney, and Galley
2015).

The Agent (LIA)

LIA, our instructable agent operates in an email domain,
where the basic actions include reading, composing, and
sending emails. We chose this domain as our research en-
vironment because email manipulation is a common use of
mobile phones where we anticipate that an instructable agent
may be useful. The user interacts with LIA in a text dia-
logue by giving it commands in natural language, and the
agent responds both in natural language and by taking vari-
ous actions. LIA is built from two components that enable
it to intelligently respond to user commands: a semantic
parser which assigns executable semantics to each natural
language command, and a back-end which executes these
commands. The back-end contains a number of built-in, ex-
ecutable functions understood by LIA, such as sendEmail,
along with a declarative knowledge base containing state-
ments in predicate logic. LIA interprets commands using a
semantic parser that maps each command to a logical form –
a program in a Lisp-like language – containing one or more
of these functions and predicates. This logical form repre-
sents the semantics of the user command, and is evaluated
(executed) by the back-end to produce a response.

LIA can be instructed in two distinct fashions, corre-
sponding to two distinct types of knowledge that LIA can
acquire. First, the user can teach LIA new /em declarative
knowledge by defining new concepts, along with fields and
instances of those concepts. For example, the user can de-
fine the concept “contact” and further state that “a contact
has an email address” and “bob is a contact.” LIA processes
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Text Command Logical Form

set the subject to time to go (setFieldFromString (getMutableFieldByFieldName subject) (stringValue “time to go”))
send the email (send email)

set body to email’s (doSeq (setFieldFromFieldVal (getMutableFieldByFieldName body)
body and send email (evalField (getFieldByInstanceNameAndFieldName email body))) (send email))

add length as a field in table (addFieldToConcept table (stringNoun “length”))

(doSeq (doSeq (doSeq (doSeq (createInstanceByConceptName outgoingemail)
(setFieldFromFieldVal (getMutableFieldByFieldName subject) (evalField
(getFieldByInstanceNameAndFieldName email subject)))) (setFieldFromFieldVal

forward to charlie (getMutableFieldByFieldName body) (evalField (getFieldByInstanceNameAndFieldName
email body)))) (setFieldFromFieldVal (getMutableFieldByFieldName recipient)
(evalField (getFieldByInstanceNameAndFieldName charlie email)))) (sendEmail))

Table 1: Training examples for the semantic parser consist of a natural language command paired with a logical form, which is
a computer program written in a Lisp-like language composed of one or more basic actions that LIA can perform. The top four
examples are part of the default training set and the bottommost example was generated by a user teaching interaction.

Word Syntactic Category Logical Form

set ((S/PP StringV)/MutableField) (lambda x y (setFieldFromString x y))
to PP StringV/StringV (lambda x x)

subject FieldName subject
send S/InstanceName (lambda x (send x))
email InstanceName email

set ((S/PP FieldVal)/MutableField) (lambda x y (setFieldFromFieldVal x y))
to PP FieldVal/FieldVal (lambda x x)

and (S/S)\S (lambda x y (doSeq x y))
’s ((Field\InstanceName)/FieldName) (lambda x y (getFieldByInstanceNameAndFieldName y x))

(lambda x (doSeq (doSeq (doSeq (doSeq (createInstanceByConceptName
outgoingemail) (setFieldFromFieldVal (getMutableFieldByFieldName
subject) (evalField (getFieldByInstanceNameAndFieldName email subject))))

forward (S/InstanceName) (setFieldFromFieldVal (getMutableFieldByFieldName body)
(evalField (getFieldByInstanceNameAndFieldName email body))))
(setFieldFromFieldVal (getMutableFieldByFieldName recipient)
(evalField (getFieldByInstanceNameAndFieldName x email)))) (sendEmail)))

Table 2: Lexicon entries required to parse the examples in Table 1. The syntactic category specifies how each word can
combine with adjacent words and phrases during parsing and the logical form gives the word’s meaning. The bottommost entry
was automatically produced by lexicon induction when LIA was taught how to “forward to charlie.”

these interactions by adding new concepts, fields and in-
stances to its knowledge base (as performed in (Haas and
Hendrix 1980)). Second, using our novel approach, the user
can teach LIA new /em procedural knowledge, i.e., how to
execute a new command. For example, the user can teach
the system how to “forward” an email by providing natural
language instructions that map to actions the system already
understands. LIA learns new procedural knowledge from
these interactions using a novel lexicon induction algorithm
that updates the semantic parser. The updated parser is then
able to understand both the taught command as well as un-
seen, but similar commands.

Back-end Command Executor

LIA has a back-end that can evaluate logical forms (lambda
expressions) incorporating 45 primitive, executable func-

tions. Some examples are sendEmail, which sends the com-
posed email, setFieldFromFieldVal, which sets a field from
an evaluation of a different field, addFieldToConcept which
adds a field to a concept, createInstanceByConceptName
which creates an instance and deleteInstance which deletes
an instance. Two additional notable functions that will be
discussed later are unknownCommand and teachNewCom-
mand, both of which start a dialog that lets the user teach a
new command.

Upon execution, the back-end also builds a user-friendly
response that either indicates which action was just per-
formed (e.g., “The subject field of the outgoing email was
set to party time for all”), or, in case of failure provides
an informative statement conveying the reason for failure
and sometimes suggesting a possible correction. For exam-
ple, if the user says “set momthebest7@bestforyou.com,”
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Syntactic Input Syntactic Output Semantics
FieldName MutableField (lambda x (getMutableFieldByFieldName x))

Field FieldVal (lambda x (evalField x))

Table 3: Examples of unary rules (required to parse the examples in Table 1).

LIA replies “Sorry, but I don’t know what should be
set to momthebest7@bestforyou.com. Please repeat and
tell me what should be set to it (e.g., set example to
momthebest7@bestforyou.com).”

Semantic Parser

LIA uses a Combinatory Categorial Grammar (CCG) se-
mantic parser to map natural language commands to logical
forms containing functions and concepts executable by the
back-end. CCG is often used to build semantic parsers due
to its tight coupling of syntax and semantics (Zettlemoyer
and Collins 2005). CCG grammars are more expressive than
context-free grammars, and are able to represent long-range
dependencies present in some linguistic constructions, such
as relative clauses, that cannot be represented in context-free
formalisms (Steedman and Baldridge 2011).

A CCG semantic parser has three parts: a lexicon, a set
of grammar rules, and a trained parameter vector. The lex-
icon is a table mapping words to syntactic categories and
logical forms (see Table 2). The intuition of CCG is that,
syntactically and semantically, words behave like functions.
Thus, syntactic categories represent function type specifi-
cations, where the argument type appears on the right of
the slash and the return type on the left. The direction of
the slash determines on which side of the syntactic category
each argument must appear. For example, the syntactic cat-
egory ((S\PP StringV)/MutableField) accepts a Mutable-
Field on the right, followed by a PP StringV on the left, and
returns an S. In this fashion, the syntactic category of a lex-
icon entry specifies how it can combine with other words
during parsing. Our CCG parser also permits strings from
the command to enter the parse with the syntactic category
StringN or StringV, and words in the sentence to be skipped.
This second capability is used to ignore function words in
the sentence that contribute little to the overall meaning.

Parsing in CCG derives syntactic categories and logical
forms for phrases from their constituent parts by applying a
small number of grammar rules. These rules correspond to
standard function operations, such as application and com-
position. For example, the lexicon entries for “send” and
“email” in Table 2 can be combined using function applica-
tion to derive the second example in Table 1. Our grammar
also includes a small number of unary rules that represent
common implicit conversions between types.

Together, the lexicon and the grammar rules define a set
of possible parses for every input command, each of which
may have a different logical form. In order to select a sin-
gle best parse, the semantic parser is trained using a data set
of commands paired with their corresponding logical forms
(see Table 1). First, we define a feature function φ that maps
a CCG parse t of a command s to a feature vector φ(t, s).
Our features include indicator features for the lexicon en-

tries used in the parse, the parse’s function/argument appli-
cations, and various features derived from the string itself.
During training, the parser learns a parameter vector θ that
assigns a high score θTφ(t, s) to correct parses. At test time,
the parser selects the highest-scoring parse for each com-
mand, i.e., the parse t that maximizes θTφ(t, s). For more
information about CCG semantic parsing, including details
of parsing and training algorithms, we refer the reader to
Zettlemoyer and Collins (2005).

LIA’s semantic parser has over 300 lexicon entries, 14
unary rules, and was trained using 150 training examples,
and Table 3 the required unary rules.

Logical Form Evaluation

The logical forms output by the semantic parser are eval-
uated by the back-end in standard Lisp fashion. Each ar-
gument of a function application is recursively evaluated in
left-to-right order. For example, to interpret the first example
command in Table 1, LIA first evaluates getMutableField-
ByFieldName and subject, then performs a function appli-
cation with the corresponding values. The result of this ap-
plication is the subject of the outgoing email. Next, LIA
evaluates the expression containing stringValue, which re-
turns the string “time to go.” Finally, LIA calls setField-
FromString with the outgoing email’s subject and the string
“time to go.” The result of evaluation is to set the outgoing
email’s subject to “time to go.”

Learning New Commands

LIA learns new commands through an instruction dialogue
that is initiated whenever the user enters a command that
LIA does not understand. In this case, the semantic parser
outputs the logical form (unknownCommand). Evaluating
this expression starts an instruction interaction that enables
the user to teach LIA how to execute the given command.
LIA asks the user what it should do first in order to exe-
cute the command being learned, and then asks for consec-
utive actions, one at a time. The user responds with a se-
quence of natural language commands that LIA should per-
form. LIA parses and evaluates each command in the se-
quence during instruction to confirm that these commands
can be performed. Once the user ends the instruction inter-
action, LIA has a sequence of logical forms that, when eval-
uated sequentially, produce the desired result for the given
command. LIA combines this sequence into a single logical
form using the function doSeq (see Table 1, bottom).

This alone does not allow the agent to generalize beyond
this training command. However, LIA uses a novel lexicon
induction algorithm to update the semantic parser to gen-
eralize the instruction to interpret other, similar commands.
This algorithm learns which words in the taught command
correspond to each part of the complete logical form. It first
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parses the taught command with the current semantic parser
and examines the 100 best parses of each span of the com-
mand. If a span’s logical form is a subexpression of the com-
plete logical form, then it could be an argument that should
be filled during parsing. For example, in the command “for-
ward to charlie,” the text span “charlie” parses to the logi-
cal form charlie, which is a subexpression of the complete
logical form (Table 1, bottom). The algorithm finds possi-
ble arguments and removes them from the complete logical
form to construct a set of candidate logical forms, then cre-
ates lexicon entries by pairing each of these candidates with
every non-stopword in the command. In our example, the al-
gorithm creates the final entry in Table 2, where charlie has
been extracted as an argument to “forward.” These lexicon
entries are added to the lexicon, the command/logical form
pair is added to the training set, and the parser is re-trained.
Pseudocode for lexicon induction is provided as Algorithm
1.

Algorithm 1 Lexicon induction for a taught command.
Input: s - A command containing n tokens.

� - The user-provided logical form for the command.
b - Beam size.

Output: Λ - A set of induced lexicon entries.
Phase 1: Find spans of s that can be parsed to logical
forms that are subexpressions of �.

1: Parse s with beam search to produce b logical forms
λi,j,k for every span (i, j), (k ∈ [1, ..., b]) .

2: C ← {} // Set of candidate spans
3: for each span (i, j) : 0 ≤ i < j ≤ n do
4: for k : 1 < k ≤ b do
5: if ISSUBEXPRESSION(λi,j,k, �) then
6: C ← C ∪ {(i, j, k)}
7: Discard elements of C whose sentence span is com-

pletely contained by a larger candidate.
Phase 2: Generate lexicon entries by extracting argu-
ments in C from �.

8: Λ ← {}
9: for each subset S of C with non-overlapping spans do

10: �′ ← �
11: for each (i, j, k) ∈ S do
12: // Replace λi,j,k in �′ with an argument variable a.
13: a ← GETUNIQUEVARIABLENAME()
14: body ← SUBSTITUTE(λi,j,k, �

′, a)
15: �′ ← (lambda a body)
16: for each m : 0 ≤ m < n do
17: if m is not contained by a span in S and sm is not

a stopword then
18: Λ ← Λ ∪ {sm := �′}

The use of (unknownCommand) to begin the teaching
interaction allows the user to provide all commands natu-
rally, triggering a teaching interaction only when the user
enters language the parser does not understand. It also en-
sures that taught commands are written the same way that
the user wants to use them. LIA also allows the user to ex-
plicitly initiate a teaching interaction by using a command
such as “teach a command,” which is parsed to (teachNew-

Command). In this case, LIA responds “I’m happy to hear
that want to teach me a new command. Now say the com-
mand the way you would use it , then I will ask you what
exactly to do in that case. I will try to generalize to similar
sentences.”

Evaluation

Experimental Setup

We conducted a user study with 123 subjects from Ama-
zon Mechanical Turk, to evaluate our agent. The set of
subjects consisted of 60 (48.8%) females and 63 (51.2%)
males. Subjects’ ages ranged from 19 to 74, with a mean of
35.1. All subjects were residents of the USA. The subject
had to fill out a short demographic questionnaire and sign
the consent form. They received instructions and had to an-
swer a short quiz to ensure that they fully understood the
experiment. (We will use the terms users and subjects inter-
changeably in order to avoid confusion with email subjects.)

The interaction page (see Figure ) included a training
phase consisting of 13 tasks that appeared on the top of the
screen. After completing all 13 training tasks, the users were
given the main task. The training tasks were designed in
a way that anyone who completes all training tasks should
be able to complete the main task. In the main task, users
were requested to read each incoming email and, for each
email, to follow the sender’s request. There were 12 main
tasks, corresponding to requests in 12 emails. An example
of such a request is an email sent by Charlie with the follow-
ing body: “Please email Alex saying that I’m on my way”.
The user responds to this task by commanding our agent, in
natural language, to compose a new email, to set the recip-
ient to Alex’s email address (which appears on the left of
the screen) and to include a text body in the email stating
that ’Charlie is on his way’. Other emails included requests
to say something to someone, forward or reply to the given
email. The users were instructed to include the same subject
both when replying and forwarding an email and include the
same body when forwarding an email. None of these tasks
required the user to teach LIA new commands; however, as
we will show, users taught the system new commands that
they believed would be useful for future tasks. Users could
quit the experiment at any time using the “quit” button. The
appendix presents a sample user interaction with LIA that
includes teaching new commands.

After completing all tasks or clicking the “quit” but-
ton, subjects received an ending questionnaire asking about
their acquaintance with programming. The subjects could
chose one of the following: None; Very little; Some
background from high-school; Some background from col-
lege/university; Bachelors (or other degree) with a major
or minor in software, electrical or computer engineering or
similar; and Significant knowledge, but mostly from other
sources. We assigned numbers to each of the options, re-
sulting in a numeric measure of acquaintance with program-
ming from 1 to 6. (Significant knowledge from other sources
was assigned the value 5 while a bachelors in computer sci-
ence was assigned the value 6.) Subjects were also asked to
assign their level of agreement with each of the following
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Figure 1: A screen-shot of a subject interacting with LIA. The training task is shown on top (in red) and communication
with LIA is performed using the text pane on the bottom. The previous commands appear above (in purple) along with LIA’s
responses (in green). The subject’s notes (email addresses required for the experiment) appear on the left.

sentences on a 7-point Likert scale (Hinkin 1998) (strongly
disagree, disagree, slightly disagree, neither agree nor dis-
agree, slightly agree, agree, strongly agree): (1) The com-
puterized agent was smart, (2) The computerized agent un-
derstood me, and (3) I would like to have such an agent on
my mobile phone.

Results

We evaluate the performance of LIA on the following di-
mensions: whether new commands were taught, usage of
taught commands, completion rate of all tasks, the success
rate of the parser and execution, and user rating as obtained
from the Likert scale questionnaire. Table 4 summarizes of
our results.

LIA was very successful in terms of learning new com-
mands, with all but 4 subjects (among the 50 who completed
all tasks) teaching it new commands and reusing them. On
average, each subject taught LIA 2.32 commands. We de-
fine the gain from taught commands as the number of times
each taught command was used, multiplied by the number
of subcommands executed by this new command. We do
not subtract one, since users often define a short new com-
mand to replace a single, much more complex, command.
This average gain for subjects who completed all tasks was
52.18 commands. Multiplying the gain by 14 seconds – the
average time per command – results in an average savings
of slightly over 12 minutes per subject. This implies that

Criterion Result
Average number of taught commands 2.3

Avg. subcommands gained by taught commands 52.18
Average task completion time 30:28

Average time saved by taught commands 12:08
Percent of time saved by taught commands 39.4%

Completion rate 41%
Parse failure 15.4%

Execution error 5.4%
“The computerized agent was smart” (1-7) 5

“The computerized agent understood me” (1-7) 5.5
“I would like such an agent on my phone” (1-7) 4.6

Table 4: Summary of results.

the subjects saved 39.4% of their time on the main task by
teaching LIA new commands.

Unfortunately, only 50 subjects (41%) completed all
tasks. However, a large percent of those who did not com-
plete all tasks did not seem to struggle with giving com-
mands to LIA. Many of them interacted with LIA only for a
few minutes. In fact 65% of the subjects who completed the
training, completed all tasks, and 83% of the subjects who
completed at least a single task from the 12 main tasks, com-
pleted all the tasks. Still, unfortunately, 28.5% of the sub-
jects did not complete all tasks despite spending more than
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14:34 minutes on them.1 The average completion time if we
exclude pauses of over a minute (i.e. if the user didn’t write
anything for over a minute, it is counted just as one minute),
is 30:28 (the raw average completion time was: 34:36).

As for the success rate of the parsing and execution, out
of a total of 12, 654 commands, 15.4% (1, 952) were parsed
to an unknown command (which in most cases is a parse
failure), and an additional 5.4% (679 commands) resulted in
an execution error (e.g. trying to change an immutable field
or setting an email to a non-email value). When considering
only those who completed the tasks, this error rate drops to
9.9% (659 out of 6, 649) of unknown commands, and 4.9%
of execution errors. This improvement is expected, since
those who completed all tasks interacted longer with LIA
and thus were more likely to provide commands that LIA
understood. Furthermore, the subjects who provided com-
mands that LIA could not execute were more likely to drop
out early. In addition to unknown commands and unsuc-
cessful executions, there were also undesired executions in
which LIA executed an action that differed from the sub-
ject’s intent. This problem can be caused either by a parse
error (this happened several times when a subject wanted to
set a to b’s value, but said set a as b, and, if both a and b
were mutable fields, b was set to a’s value, due to the more
common meaning of the token “as”) or human error (e.g.
“set recipient to inbox email’s recipient”, where the subject
really ment to use the sender of the email in the inbox). In
future work we intend to develop methods to measure and
correct these types of errors.

As for the Likert scale questions (among those who com-
pleted all tasks), the subjects seemed to slightly agree that
LIA was smart, giving it exactly 5 on average (slightly
agree); the subjects gave LIA 5.5 with respect to whether
they thought that LIA understood them (between slightly
agree and agree). The subjects gave LIA a score of 4.6
with regards to whether they would like an agent like that
on their mobile phone (between neither agree nor disagree,
and slightly agree). However, this final question may have
been ambiguous because the subjects interacted with LIA
using text whereas we intend to use speech commands for
mobile phones.

Most commands taught by users were very similar; most
subjects taught the system to reply to an email and for-
ward an email. Furthermore, users had a clear preference
on the order of subcommands that compose a taught com-
mand, even when this order had no impact on the results
(such as in which order to set the subject, the body and
the recipient of an email). This result suggests that users
have similar expectations of commands, which should sim-
plify generalizing commands across users. Nevertheless, we
found some unique and interesting commands, such as com-
mands that set only the recipient to be a specific contact’s
email, and semi-recursive commands. For example, one user
first taught “forward,” and then taught “forward to charlie,”
which executes forward, sets the recipient to charlie, then
sends the email. LIA generalized this second command so

114:34 minutes is the time it took the fastest subject to complete
all tasks.

that it could be used with any contact, not just charlie. An-
other interesting command was taught by a user who kept
typing “read” instead of “read email.” After making this
mistake several times, the user taught LIA to execute “read
email” every time it received the command “read.”

Interestingly, there was only a weak correlation (0.1) be-
tween the level of acquaintance with programming and the
number of commands gained by reusing programmed com-
mands. This result is encouraging because it suggests that
teaching our agent with natural language instructions does
not require programming knowledge. Even the 6 subjects
who reported no programming knowledge gained an aver-
age of 43.3 commands from teaching, and only one of them
did not take advantage of LIA’s teachability. There was
a stronger correlation between acquaintance with program-
ming and a user’s task completion time (−0.31); however,
this correlation may be due to other differences between pro-
grammers and non-programmers, such as typing speed.

Conclusions and Future Work
In this paper we present our Learning by Instruction Agent
(LIA), which using CCG parsing, lambda calculus, and our
novel lexicon induction method, is able to learn by instruc-
tions given in natural language. LIA receives step by step
natural language instructions from users, on how to imple-
ment a command (such as forwarding an email to a specific
contact), and is able to generalize and later execute this com-
mand using different parameters (e.g. to forward a different
email to a different contact). We show that with very lit-
tle training (approximately 10 minutes), and with little or
no programming knowledge, many subjects were able to in-
teract with LIA and teach it new commands resulting in a
significant time gain of nearly 40% of the time required to
complete all tasks.

We suggest that although our current system is only a par-
tial, initial implementation of an instructable agent, our ap-
proach can serve as a template for more elaborate systems.
If instructable agents of this form could be made widely
available to all users of mobile devices, the collective set
of commands and natural language phrasings that could be
learned by instruction would quickly become quite exten-
sive, changing the nature of mobile devices from systems
that can perform only commands built in by their developers,
into devices that can be instructed (programmed) by millions
of users.

There are significant opportunities for future work. The
most obvious direction is supporting more sensors and ef-
fectors, both physical and cyber, such as, calendar, caller
ID, SMS, GPS and social networks. We intend to deploy
the instructable agent to a community of users and have the
users collaboratively define new commands. Deploying LIA
also raises questions such as generalizability, and stability.
LIA and/or its users will need to have a method to evalu-
ate new commands taught, and decide which should be el-
evated to the collective knowledge of the agent used by all
users and which should remain with the specific user who
taught it (since some commands may be personal, confus-
ing, non intuitive and perhaps even adversary). Another di-
rection for future work is to develop a method which will
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identify whether a command has actually completed what
the user intended to or not (this can be done by using simi-
larity to consecutive commands, or attempts to undo). Using
this data, the agent can improve its accuracy, both by updat-
ing its feature weights and by learning new lexicon entries.

In this current work, we focused solely on procedural ex-
ecution, i.e. commands that translate to a list of other known
commands which are serially executed (with support of ar-
guments and variables). In future work we intend to provide
support also to more complex instructions including if-then
clauses, which may be interpreted as rules (e.g. “if I receive
an email during a meeting, and it is related to the meeting,
then notify me immediately”).
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Appendix

Following is a sample user interaction with LIA that
includes teaching new commands:

User: go
Agent: Sorry, but I don’t understand. Would you like to
teach me what to do in this case (either say yes or simply
ignore this question)?
User: yes
Agent: Great! When you say, for example: “go”, what shall
I do first?
User: move to next email and read it
Agent: Set to next incoming email successfully. sender:
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caseyousoon8@myworkplace.com subject: Another email
body: I felt like sending you another email. Please ignore
this email too and read the next one. What shall I do next
(when executing: “go”)?
User: end
Agent: I’m currently learning the new command (“go”).
I’m trying to generalize to other similar commands, this
takes several seconds...
Agent: I now know what to do when you say (for example):
“go”!
...
User: go
Agent: Set to next incoming email successfully. re-
cipient list: you@myworkplace.com sender: casey-
ousoon8@myworkplace.com subject: Charlie body: I asked
Charlie to do what you said, but I see that it must come
from you. Please forward this email to Charlie.
User: create contact Charlie
Agent: Instance “charlie” (of concept “contact”) was
created. “contact” fields are: email.
User: set Charlie’s email to charlieisas-
leep4@myworkplace.com
Agent: The “email” field in “charlie” was set to: “char-
lieisasleep4@myworkplace.com”.
...
User:go
Agent: Set to next incoming email successfully. sender:
alextimetowork@myworkplace.com subject: Work before
parting body: We will all have to work very hard next
Monday, Tuesday and Wednesday. Please forward this
email to Charlie.
User: forward charlie
Agent: Sorry, but I don’t understand. Would you like to
teach me what to do in this case?
User: yes
Agent: Great! When you say, for example: “forward
charlie”, what shall I do first?
User: set recipient list to charlie’s email, set subject to
current email’s subject, set body to current email’s
Agent: I see that there is no email being composed. Do you
want to compose a new email?
User: create new email, set recipient list to charlie’s email,
set subject to current email’s subject, set body to current
email’s body, send email
Agent: Composing new email. The “recipient list”
field in “outgoing email” was set to: “charlieisas-
leep4@myworkplace.com”. The “subject” field in
“outgoing email” was set to: “Work before parting”. The
“body” field in “outgoing email” was set to: “We will
all have to work very hard next Monday, Tuesday and
Wednesday. Please forward this email to Charlie.”. Email
sent successfully. What shall I do next (when executing:
“forward charlie”)?
User: end
Agent: I now know what to do when you say (for example):
“forward charlie”!
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